// Copyright 2016 Joe Wilm, The Alacritty Project Contributors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. //! State management for a selection in the grid //! //! A selection should start when the mouse is clicked, and it should be //! finalized when the button is released. The selection should be cleared //! when text is added/removed/scrolled on the screen. The selection should //! also be cleared if the user clicks off of the selection. use std::convert::TryFrom; use std::mem; use std::ops::Range; use crate::index::{Column, Point, Side}; use crate::term::cell::Flags; use crate::term::{Search, Term}; /// A Point and side within that point. #[derive(Debug, Clone, PartialEq)] pub struct Anchor { point: Point, side: Side, } impl Anchor { fn new(point: Point, side: Side) -> Anchor { Anchor { point, side } } } /// Represents a range of selected cells. #[derive(Copy, Clone, Debug, Eq, PartialEq)] pub struct SelectionRange { /// Start point, top left of the selection. pub start: Point, /// End point, bottom right of the selection. pub end: Point, /// Whether this selection is a block selection. pub is_block: bool, } impl SelectionRange { pub fn new(start: Point, end: Point, is_block: bool) -> Self { Self { start, end, is_block } } pub fn contains(&self, col: Column, line: L) -> bool where L: PartialEq + PartialOrd, { self.start.line <= line && self.end.line >= line && (self.start.col <= col || (self.start.line != line && !self.is_block)) && (self.end.col >= col || (self.end.line != line && !self.is_block)) } } /// Describes a region of a 2-dimensional area. /// /// Used to track a text selection. There are three supported modes, each with its own constructor: /// [`simple`], [`semantic`], and [`lines`]. The [`simple`] mode precisely tracks which cells are /// selected without any expansion. [`semantic`] mode expands the initial selection to the nearest /// semantic escape char in either direction. [`lines`] will always select entire lines. /// /// Calls to [`update`] operate different based on the selection kind. The [`simple`] mode does /// nothing special, simply tracks points and sides. [`semantic`] will continue to expand out to /// semantic boundaries as the selection point changes. Similarly, [`lines`] will always expand the /// new point to encompass entire lines. /// /// [`simple`]: enum.Selection.html#method.simple /// [`semantic`]: enum.Selection.html#method.semantic /// [`lines`]: enum.Selection.html#method.lines /// [`update`]: enum.Selection.html#method.update #[derive(Debug, Clone, PartialEq)] pub enum Selection { Simple { /// The region representing start and end of cursor movement. region: Range, }, Block { /// The region representing start and end of cursor movement. region: Range, }, Semantic { /// The region representing start and end of cursor movement. region: Range>, }, Lines { /// The region representing start and end of cursor movement. region: Range>, }, } impl Selection { pub fn simple(location: Point, side: Side) -> Selection { Selection::Simple { region: Range { start: Anchor::new(location, side), end: Anchor::new(location, side) }, } } pub fn block(location: Point, side: Side) -> Selection { Selection::Block { region: Range { start: Anchor::new(location, side), end: Anchor::new(location, side) }, } } pub fn semantic(point: Point) -> Selection { Selection::Semantic { region: Range { start: point, end: point } } } pub fn lines(point: Point) -> Selection { Selection::Lines { region: Range { start: point, end: point } } } pub fn update(&mut self, location: Point, side: Side) { let (_, end) = self.points_mut(); *end = location; if let Some((_, end_side)) = self.sides_mut() { *end_side = side; } } pub fn rotate(&mut self, offset: isize) { let (start, end) = self.points_mut(); start.line = usize::try_from(start.line as isize + offset).unwrap_or(0); end.line = usize::try_from(end.line as isize + offset).unwrap_or(0); } pub fn is_empty(&self) -> bool { match self { Selection::Simple { ref region } => { let (start, end) = if Selection::points_need_swap(region.start.point, region.end.point) { (®ion.end, ®ion.start) } else { (®ion.start, ®ion.end) }; // Simple selection is empty when the points are identical // or two adjacent cells have the sides right -> left start == end || (start.side == Side::Right && end.side == Side::Left && (start.point.line == end.point.line) && start.point.col + 1 == end.point.col) }, Selection::Block { region: Range { ref start, ref end } } => { // Block selection is empty when the points' columns and sides are identical // or two cells with adjacent columns have the sides right -> left, // regardless of their lines (start.point.col == end.point.col && start.side == end.side) || (start.point.col + 1 == end.point.col && start.side == Side::Right && end.side == Side::Left) || (end.point.col + 1 == start.point.col && start.side == Side::Left && end.side == Side::Right) }, Selection::Semantic { .. } | Selection::Lines { .. } => false, } } /// Convert selection to grid coordinates. pub fn to_range(&self, term: &Term) -> Option { let grid = term.grid(); let num_cols = grid.num_cols(); // Get selection boundaries let points = self.points(); let (start, end) = (*points.0, *points.1); // Get selection sides, falling back to `Side::Left` if it will not be used let sides = self.sides().unwrap_or((&Side::Left, &Side::Left)); let (start_side, end_side) = (*sides.0, *sides.1); // Order start above the end let (start, end) = if Self::points_need_swap(start, end) { (Anchor { point: end, side: end_side }, Anchor { point: start, side: start_side }) } else { (Anchor { point: start, side: start_side }, Anchor { point: end, side: end_side }) }; // Clamp to inside the grid buffer let (start, end) = Self::grid_clamp(start, end, self.is_block(), grid.len()).ok()?; let range = match self { Self::Simple { .. } => self.range_simple(start, end, num_cols), Self::Block { .. } => self.range_block(start, end), Self::Semantic { .. } => Self::range_semantic(term, start.point, end.point), Self::Lines { .. } => Self::range_lines(term, start.point, end.point), }; // Expand selection across fullwidth cells range.map(|range| Self::range_expand_fullwidth(term, range)) } /// Expand the start/end of the selection range to account for fullwidth glyphs. fn range_expand_fullwidth(term: &Term, mut range: SelectionRange) -> SelectionRange { let grid = term.grid(); let num_cols = grid.num_cols(); // Helper for checking if cell at `point` contains `flag` let flag_at = |point: Point, flag: Flags| -> bool { grid[point.line][point.col].flags.contains(flag) }; // Include all double-width cells and placeholders at top left of selection if range.start.col < num_cols { // Expand from wide char spacer to wide char if range.start.line + 1 != grid.len() || range.start.col.0 != 0 { let prev = range.start.sub(num_cols.0, 1, true); if flag_at(range.start, Flags::WIDE_CHAR_SPACER) && flag_at(prev, Flags::WIDE_CHAR) { range.start = prev; } } // Expand from wide char to wide char spacer for linewrapping if range.start.line + 1 != grid.len() || range.start.col.0 != 0 { let prev = range.start.sub(num_cols.0, 1, true); if (prev.line + 1 != grid.len() || prev.col.0 != 0) && flag_at(prev, Flags::WIDE_CHAR_SPACER) && !flag_at(prev.sub(num_cols.0, 1, true), Flags::WIDE_CHAR) { range.start = prev; } } } // Include all double-width cells and placeholders at bottom right of selection if range.end.line != 0 || range.end.col < num_cols { // Expand from wide char spacer for linewrapping to wide char if (range.end.line + 1 != grid.len() || range.end.col.0 != 0) && flag_at(range.end, Flags::WIDE_CHAR_SPACER) && !flag_at(range.end.sub(num_cols.0, 1, true), Flags::WIDE_CHAR) { range.end = range.end.add(num_cols.0, 1, true); } // Expand from wide char to wide char spacer if flag_at(range.end, Flags::WIDE_CHAR) { range.end = range.end.add(num_cols.0, 1, true); } } range } // Bring start and end points in the correct order fn points_need_swap(start: Point, end: Point) -> bool { start.line < end.line || start.line == end.line && start.col > end.col } /// Clamp selection inside grid to prevent OOB. fn grid_clamp( mut start: Anchor, end: Anchor, is_block: bool, lines: usize, ) -> Result<(Anchor, Anchor), ()> { // Clamp selection inside of grid to prevent OOB if start.point.line >= lines { // Remove selection if it is fully out of the grid if end.point.line >= lines { return Err(()); } // Clamp to grid if it is still partially visible if !is_block { start.side = Side::Left; start.point.col = Column(0); } start.point.line = lines - 1; } Ok((start, end)) } fn range_semantic( term: &Term, mut start: Point, mut end: Point, ) -> Option { if start == end { if let Some(matching) = term.bracket_search(start) { if (matching.line == start.line && matching.col < start.col) || (matching.line > start.line) { start = matching; } else { end = matching; } return Some(SelectionRange { start, end, is_block: false }); } } start = term.semantic_search_left(start); end = term.semantic_search_right(end); Some(SelectionRange { start, end, is_block: false }) } fn range_lines( term: &Term, mut start: Point, mut end: Point, ) -> Option { start = term.line_search_left(start); end = term.line_search_right(end); Some(SelectionRange { start, end, is_block: false }) } fn range_simple( &self, mut start: Anchor, mut end: Anchor, num_cols: Column, ) -> Option { if self.is_empty() { return None; } // Remove last cell if selection ends to the left of a cell if end.side == Side::Left && start.point != end.point { // Special case when selection ends to left of first cell if end.point.col == Column(0) { end.point.col = num_cols - 1; end.point.line += 1; } else { end.point.col -= 1; } } // Remove first cell if selection starts at the right of a cell if start.side == Side::Right && start.point != end.point { start.point.col += 1; } Some(SelectionRange { start: start.point, end: end.point, is_block: false }) } fn range_block(&self, mut start: Anchor, mut end: Anchor) -> Option { if self.is_empty() { return None; } // Always go top-left -> bottom-right if start.point.col > end.point.col { mem::swap(&mut start.side, &mut end.side); mem::swap(&mut start.point.col, &mut end.point.col); } // Remove last cell if selection ends to the left of a cell if end.side == Side::Left && start.point != end.point && end.point.col.0 > 0 { end.point.col -= 1; } // Remove first cell if selection starts at the right of a cell if start.side == Side::Right && start.point != end.point { start.point.col += 1; } Some(SelectionRange { start: start.point, end: end.point, is_block: true }) } fn points(&self) -> (&Point, &Point) { match self { Self::Simple { ref region } | Self::Block { ref region } => { (®ion.start.point, ®ion.end.point) }, Self::Semantic { ref region } | Self::Lines { ref region } => { (®ion.start, ®ion.end) }, } } fn points_mut(&mut self) -> (&mut Point, &mut Point) { match self { Self::Simple { ref mut region } | Self::Block { ref mut region } => { (&mut region.start.point, &mut region.end.point) }, Self::Semantic { ref mut region } | Self::Lines { ref mut region } => { (&mut region.start, &mut region.end) }, } } fn sides(&self) -> Option<(&Side, &Side)> { match self { Self::Simple { ref region } | Self::Block { ref region } => { Some((®ion.start.side, ®ion.end.side)) }, Self::Semantic { .. } | Self::Lines { .. } => None, } } fn sides_mut(&mut self) -> Option<(&mut Side, &mut Side)> { match self { Self::Simple { ref mut region } | Self::Block { ref mut region } => { Some((&mut region.start.side, &mut region.end.side)) }, Self::Semantic { .. } | Self::Lines { .. } => None, } } fn is_block(&self) -> bool { match self { Self::Block { .. } => true, _ => false, } } } /// Tests for selection. /// /// There are comments on all of the tests describing the selection. Pictograms /// are used to avoid ambiguity. Grid cells are represented by a [ ]. Only /// cells that are completely covered are counted in a selection. Ends are /// represented by `B` and `E` for begin and end, respectively. A selected cell /// looks like [XX], [BX] (at the start), [XB] (at the end), [XE] (at the end), /// and [EX] (at the start), or [BE] for a single cell. Partially selected cells /// look like [ B] and [E ]. #[cfg(test)] mod test { use std::mem; use super::{Selection, SelectionRange}; use crate::clipboard::Clipboard; use crate::config::MockConfig; use crate::event::{Event, EventListener}; use crate::grid::Grid; use crate::index::{Column, Line, Point, Side}; use crate::term::cell::{Cell, Flags}; use crate::term::{SizeInfo, Term}; struct Mock; impl EventListener for Mock { fn send_event(&self, _event: Event) {} } fn term(width: usize, height: usize) -> Term { let size = SizeInfo { width: width as f32, height: height as f32, cell_width: 1.0, cell_height: 1.0, padding_x: 0.0, padding_y: 0.0, dpr: 1.0, }; Term::new(&MockConfig::default(), &size, Clipboard::new_nop(), Mock) } /// Test case of single cell selection. /// /// 1. [ ] /// 2. [B ] /// 3. [BE] #[test] fn single_cell_left_to_right() { let location = Point { line: 0, col: Column(0) }; let mut selection = Selection::simple(location, Side::Left); selection.update(location, Side::Right); assert_eq!(selection.to_range(&term(1, 1)).unwrap(), SelectionRange { start: location, end: location, is_block: false }); } /// Test case of single cell selection. /// /// 1. [ ] /// 2. [ B] /// 3. [EB] #[test] fn single_cell_right_to_left() { let location = Point { line: 0, col: Column(0) }; let mut selection = Selection::simple(location, Side::Right); selection.update(location, Side::Left); assert_eq!(selection.to_range(&term(1, 1)).unwrap(), SelectionRange { start: location, end: location, is_block: false }); } /// Test adjacent cell selection from left to right. /// /// 1. [ ][ ] /// 2. [ B][ ] /// 3. [ B][E ] #[test] fn between_adjacent_cells_left_to_right() { let mut selection = Selection::simple(Point::new(0, Column(0)), Side::Right); selection.update(Point::new(0, Column(1)), Side::Left); assert_eq!(selection.to_range(&term(2, 1)), None); } /// Test adjacent cell selection from right to left. /// /// 1. [ ][ ] /// 2. [ ][B ] /// 3. [ E][B ] #[test] fn between_adjacent_cells_right_to_left() { let mut selection = Selection::simple(Point::new(0, Column(1)), Side::Left); selection.update(Point::new(0, Column(0)), Side::Right); assert_eq!(selection.to_range(&term(2, 1)), None); } /// Test selection across adjacent lines. /// /// 1. [ ][ ][ ][ ][ ] /// [ ][ ][ ][ ][ ] /// 2. [ ][ B][ ][ ][ ] /// [ ][ ][ ][ ][ ] /// 3. [ ][ B][XX][XX][XX] /// [XX][XE][ ][ ][ ] #[test] fn across_adjacent_lines_upward_final_cell_exclusive() { let mut selection = Selection::simple(Point::new(1, Column(1)), Side::Right); selection.update(Point::new(0, Column(1)), Side::Right); assert_eq!(selection.to_range(&term(5, 2)).unwrap(), SelectionRange { start: Point::new(1, Column(2)), end: Point::new(0, Column(1)), is_block: false, }); } /// Test selection across adjacent lines. /// /// 1. [ ][ ][ ][ ][ ] /// [ ][ ][ ][ ][ ] /// 2. [ ][ ][ ][ ][ ] /// [ ][ B][ ][ ][ ] /// 3. [ ][ E][XX][XX][XX] /// [XX][XB][ ][ ][ ] /// 4. [ E][XX][XX][XX][XX] /// [XX][XB][ ][ ][ ] #[test] fn selection_bigger_then_smaller() { let mut selection = Selection::simple(Point::new(0, Column(1)), Side::Right); selection.update(Point::new(1, Column(1)), Side::Right); selection.update(Point::new(1, Column(0)), Side::Right); assert_eq!(selection.to_range(&term(5, 2)).unwrap(), SelectionRange { start: Point::new(1, Column(1)), end: Point::new(0, Column(1)), is_block: false, }); } #[test] fn line_selection() { let mut selection = Selection::lines(Point::new(0, Column(1))); selection.update(Point::new(5, Column(1)), Side::Right); selection.rotate(7); assert_eq!(selection.to_range(&term(5, 10)).unwrap(), SelectionRange { start: Point::new(9, Column(0)), end: Point::new(7, Column(4)), is_block: false, }); } #[test] fn semantic_selection() { let mut selection = Selection::semantic(Point::new(0, Column(3))); selection.update(Point::new(5, Column(1)), Side::Right); selection.rotate(7); assert_eq!(selection.to_range(&term(5, 10)).unwrap(), SelectionRange { start: Point::new(9, Column(0)), end: Point::new(7, Column(3)), is_block: false, }); } #[test] fn simple_selection() { let mut selection = Selection::simple(Point::new(0, Column(3)), Side::Right); selection.update(Point::new(5, Column(1)), Side::Right); selection.rotate(7); assert_eq!(selection.to_range(&term(5, 10)).unwrap(), SelectionRange { start: Point::new(9, Column(0)), end: Point::new(7, Column(3)), is_block: false, }); } #[test] fn block_selection() { let mut selection = Selection::block(Point::new(0, Column(3)), Side::Right); selection.update(Point::new(5, Column(1)), Side::Right); selection.rotate(7); assert_eq!(selection.to_range(&term(5, 10)).unwrap(), SelectionRange { start: Point::new(9, Column(2)), end: Point::new(7, Column(3)), is_block: true }); } #[test] fn double_width_expansion() { let mut term = term(10, 1); let mut grid = Grid::new(Line(1), Column(10), 0, Cell::default()); grid[Line(0)][Column(0)].flags.insert(Flags::WIDE_CHAR); grid[Line(0)][Column(1)].flags.insert(Flags::WIDE_CHAR_SPACER); grid[Line(0)][Column(8)].flags.insert(Flags::WIDE_CHAR); grid[Line(0)][Column(9)].flags.insert(Flags::WIDE_CHAR_SPACER); mem::swap(term.grid_mut(), &mut grid); let mut selection = Selection::simple(Point::new(0, Column(1)), Side::Left); selection.update(Point::new(0, Column(8)), Side::Right); assert_eq!(selection.to_range(&term).unwrap(), SelectionRange { start: Point::new(0, Column(0)), end: Point::new(0, Column(9)), is_block: false, }); } #[test] fn simple_is_empty() { let mut selection = Selection::simple(Point::new(0, Column(0)), Side::Right); assert!(selection.is_empty()); selection.update(Point::new(0, Column(1)), Side::Left); assert!(selection.is_empty()); selection.update(Point::new(1, Column(0)), Side::Right); assert!(!selection.is_empty()); } #[test] fn block_is_empty() { let mut selection = Selection::block(Point::new(0, Column(0)), Side::Right); assert!(selection.is_empty()); selection.update(Point::new(0, Column(1)), Side::Left); assert!(selection.is_empty()); selection.update(Point::new(0, Column(1)), Side::Right); assert!(!selection.is_empty()); selection.update(Point::new(1, Column(0)), Side::Right); assert!(selection.is_empty()); selection.update(Point::new(1, Column(1)), Side::Left); assert!(selection.is_empty()); selection.update(Point::new(1, Column(1)), Side::Right); assert!(!selection.is_empty()); } }