mirror of
https://github.com/Raymo111/i3lock-color.git
synced 2024-12-02 14:05:43 -05:00
fix msse3
This commit is contained in:
commit
99842b3963
9 changed files with 333 additions and 137 deletions
|
@ -22,8 +22,7 @@ i3lock_CFLAGS = \
|
|||
$(XKBCOMMON_CFLAGS) \
|
||||
$(CAIRO_CFLAGS) \
|
||||
$(CODE_COVERAGE_CFLAGS) \
|
||||
$(X11_CFLAGS) \
|
||||
$(SIMD_CFLAGS)
|
||||
$(X11_CFLAGS)
|
||||
|
||||
i3lock_CPPFLAGS = \
|
||||
$(AM_CPPFLAGS) \
|
||||
|
|
151
blur.c
151
blur.c
|
@ -1,6 +1,6 @@
|
|||
/*
|
||||
* Copyright © 2008 Kristian Høgsberg
|
||||
* Copyright © 2009 Chris Wilson
|
||||
* Copyright © 2008 Kristian Høgsberg
|
||||
* Copyright © 2009 Chris Wilson
|
||||
*
|
||||
* Permission to use, copy, modify, distribute, and sell this software and its
|
||||
* documentation for any purpose is hereby granted without fee, provided that
|
||||
|
@ -24,12 +24,15 @@
|
|||
#include <math.h>
|
||||
#include "blur.h"
|
||||
|
||||
/* Performs a simple 2D Gaussian blur of standard devation @sigma surface @surface. */
|
||||
#define ARRAY_LENGTH(a) (sizeof (a) / sizeof (a)[0])
|
||||
|
||||
/* Performs a simple 2D Gaussian blur of radius @radius on surface @surface. */
|
||||
void
|
||||
blur_image_surface (cairo_surface_t *surface, int sigma)
|
||||
blur_image_surface (cairo_surface_t *surface, int radius)
|
||||
{
|
||||
cairo_surface_t *tmp;
|
||||
int width, height;
|
||||
// int src_stride, dst_stride;
|
||||
uint32_t *src, *dst;
|
||||
|
||||
if (cairo_surface_status (surface))
|
||||
|
@ -61,85 +64,89 @@ blur_image_surface (cairo_surface_t *surface, int sigma)
|
|||
return;
|
||||
|
||||
src = (uint32_t*)cairo_image_surface_get_data (surface);
|
||||
// src_stride = cairo_image_surface_get_stride (surface);
|
||||
|
||||
dst = (uint32_t*)cairo_image_surface_get_data (tmp);
|
||||
// dst_stride = cairo_image_surface_get_stride (tmp);
|
||||
|
||||
// according to a paper by Peter Kovesi [1], box filter of width w, equals to Gaussian blur of following sigma:
|
||||
// σ_av = sqrt((w*w-1)/12)
|
||||
// for our 8x8 filter we have σ_av = 2.0.
|
||||
// applying the same Gaussian filter n times results in σ_n = sqrt(n*σ_av*σ_av) [2]
|
||||
// after some trivial math, we arrive at n = ((σ_d)/(σ_av))^2
|
||||
// since it's a box blur filter, n >= 3
|
||||
//
|
||||
// [1]: http://www.peterkovesi.com/papers/FastGaussianSmoothing.pdf
|
||||
// [2]: https://en.wikipedia.org/wiki/Gaussian_blur#Mathematics
|
||||
|
||||
int n = lrintf((sigma*sigma)/(SIGMA_AV*SIGMA_AV));
|
||||
if (n < 3) n = 3;
|
||||
//blur_impl_naive(src, dst, width, height, src_stride, dst_stride, 10000);
|
||||
//blur_impl_sse2(src, dst, width, height, 4.5);
|
||||
blur_impl_ssse3(src, dst, width, height, 4.5);
|
||||
|
||||
for (int i = 0; i < n; i++)
|
||||
{
|
||||
// horizontal pass includes image transposition:
|
||||
// instead of writing pixel src[x] to dst[x],
|
||||
// we write it to transposed location.
|
||||
// (to be exact: dst[height * current_column + current_row])
|
||||
#ifdef __SSE2__
|
||||
blur_impl_horizontal_pass_sse2(src, dst, width, height);
|
||||
blur_impl_horizontal_pass_sse2(dst, src, height, width);
|
||||
#else
|
||||
blur_impl_horizontal_pass_generic(src, dst, width, height);
|
||||
blur_impl_horizontal_pass_generic(dst, src, height, width);
|
||||
#endif
|
||||
}
|
||||
|
||||
cairo_surface_destroy (tmp);
|
||||
cairo_surface_flush (surface);
|
||||
cairo_surface_mark_dirty (surface);
|
||||
}
|
||||
|
||||
void blur_impl_horizontal_pass_generic(uint32_t *src, uint32_t *dst, int width, int height) {
|
||||
for (int row = 0; row < height; row++) {
|
||||
for (int column = 0; column < width; column++, src++) {
|
||||
uint32_t rgbaIn[KERNEL_SIZE];
|
||||
void blur_impl_naive(uint32_t* _src, uint32_t* _dst, int width, int height, int src_stride, int dst_stride, int radius)
|
||||
{
|
||||
int x, y, z, w;
|
||||
uint32_t *s, *d, a, p;
|
||||
int i, j, k;
|
||||
uint8_t kernel[17];
|
||||
const int size = ARRAY_LENGTH (kernel);
|
||||
const int half = size / 2;
|
||||
|
||||
// handle borders
|
||||
int leftBorder = column < HALF_KERNEL;
|
||||
int rightBorder = column > width - HALF_KERNEL;
|
||||
int i = 0;
|
||||
if (leftBorder) {
|
||||
// for kernel size 7x7 and column == 0, we have:
|
||||
// x x x P0 P1 P2 P3
|
||||
// first loop mirrors P{0..3} to fill x's,
|
||||
// second one loads P{0..3}
|
||||
for (; i < HALF_KERNEL - column; i++)
|
||||
rgbaIn[i] = *(src + (HALF_KERNEL - i));
|
||||
for (; i < KERNEL_SIZE; i++)
|
||||
rgbaIn[i] = *(src - (HALF_KERNEL - i));
|
||||
} else if (rightBorder) {
|
||||
for (; i < width - column; i++)
|
||||
rgbaIn[i] = *(src + i);
|
||||
for (int k = 0; i < KERNEL_SIZE; i++, k++)
|
||||
rgbaIn[i] = *(src - k);
|
||||
} else {
|
||||
for (; i < KERNEL_SIZE; i++)
|
||||
rgbaIn[i] = *(src + i - HALF_KERNEL);
|
||||
}
|
||||
uint8_t *src = (uint8_t*)_src;
|
||||
uint8_t *dst = (uint8_t*)_dst;
|
||||
|
||||
uint32_t acc[4] = {0};
|
||||
a = 0;
|
||||
for (i = 0; i < size; i++) {
|
||||
double f = i - half;
|
||||
a += kernel[i] = exp (- f * f / 30.0) * 80;
|
||||
}
|
||||
|
||||
for (i = 0; i < KERNEL_SIZE; i++) {
|
||||
acc[0] += (rgbaIn[i] & 0xFF000000) >> 24;
|
||||
acc[1] += (rgbaIn[i] & 0x00FF0000) >> 16;
|
||||
acc[2] += (rgbaIn[i] & 0x0000FF00) >> 8;
|
||||
acc[3] += (rgbaIn[i] & 0x000000FF) >> 0;
|
||||
}
|
||||
|
||||
for(i = 0; i < 4; i++)
|
||||
acc[i] *= 1.0/KERNEL_SIZE;
|
||||
|
||||
*(dst + height * column + row) = (acc[0] << 24) |
|
||||
(acc[1] << 16) |
|
||||
(acc[2] << 8 ) |
|
||||
(acc[3] << 0);
|
||||
/* Horizontally blur from surface -> tmp */
|
||||
for (i = 0; i < height; i++) {
|
||||
s = (uint32_t *) (src + i * src_stride);
|
||||
d = (uint32_t *) (dst + i * dst_stride);
|
||||
for (j = 0; j < width; j++) {
|
||||
if (radius < j && j < width - radius) {
|
||||
d[j] = s[j];
|
||||
continue;
|
||||
}
|
||||
|
||||
x = y = z = w = 0;
|
||||
for (k = 0; k < size; k++) {
|
||||
if (j - half + k < 0 || j - half + k >= width)
|
||||
continue;
|
||||
|
||||
p = s[j - half + k];
|
||||
|
||||
x += ((p >> 24) & 0xff) * kernel[k];
|
||||
y += ((p >> 16) & 0xff) * kernel[k];
|
||||
z += ((p >> 8) & 0xff) * kernel[k];
|
||||
w += ((p >> 0) & 0xff) * kernel[k];
|
||||
}
|
||||
d[j] = (x / a << 24) | (y / a << 16) | (z / a << 8) | w / a;
|
||||
}
|
||||
}
|
||||
|
||||
/* Then vertically blur from tmp -> surface */
|
||||
for (i = 0; i < height; i++) {
|
||||
s = (uint32_t *) (dst + i * dst_stride);
|
||||
d = (uint32_t *) (src + i * src_stride);
|
||||
for (j = 0; j < width; j++) {
|
||||
if (radius <= i && i < height - radius) {
|
||||
d[j] = s[j];
|
||||
continue;
|
||||
}
|
||||
|
||||
x = y = z = w = 0;
|
||||
for (k = 0; k < size; k++) {
|
||||
if (i - half + k < 0 || i - half + k >= height)
|
||||
continue;
|
||||
|
||||
s = (uint32_t *) (dst + (i - half + k) * dst_stride);
|
||||
p = s[j];
|
||||
|
||||
x += ((p >> 24) & 0xff) * kernel[k];
|
||||
y += ((p >> 16) & 0xff) * kernel[k];
|
||||
z += ((p >> 8) & 0xff) * kernel[k];
|
||||
w += ((p >> 0) & 0xff) * kernel[k];
|
||||
}
|
||||
d[j] = (x / a << 24) | (y / a << 16) | (z / a << 8) | w / a;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
|
13
blur.h
13
blur.h
|
@ -4,13 +4,12 @@
|
|||
#include <stdint.h>
|
||||
#include <cairo.h>
|
||||
|
||||
#define KERNEL_SIZE 7
|
||||
#define SIGMA_AV 2
|
||||
#define HALF_KERNEL KERNEL_SIZE / 2
|
||||
|
||||
void blur_image_surface(cairo_surface_t *surface, int sigma);
|
||||
void blur_impl_horizontal_pass_sse2(uint32_t *src, uint32_t *dst, int width, int height);
|
||||
void blur_impl_horizontal_pass_generic(uint32_t *src, uint32_t *dst, int width, int height);
|
||||
void blur_image_surface (cairo_surface_t *surface, int radius);
|
||||
void blur_impl_naive(uint32_t* src, uint32_t* dst, int width, int height, int src_stride, int dst_stride, int radius);
|
||||
void blur_impl_sse2(uint32_t* src, uint32_t* dst, int width, int height, float sigma);
|
||||
void blur_impl_horizontal_pass_sse2(uint32_t *src, uint32_t *dst, float *kernel, int width, int height);
|
||||
void blur_impl_ssse3(uint32_t* src, uint32_t* dst, int width, int height, float sigma);
|
||||
void blur_impl_horizontal_pass_ssse3(uint32_t *src, uint32_t *dst, int8_t *kernel, int width, int height);
|
||||
|
||||
#endif
|
||||
|
||||
|
|
279
blur_simd.c
279
blur_simd.c
|
@ -8,76 +8,261 @@
|
|||
*/
|
||||
|
||||
#include "blur.h"
|
||||
#include <math.h>
|
||||
#include <xmmintrin.h>
|
||||
#include <tmmintrin.h>
|
||||
|
||||
#include <stdio.h>
|
||||
|
||||
// number of xmm registers needed to store input pixels for given kernel size
|
||||
#define ALIGN16 __attribute__((aligned(16)))
|
||||
#define KERNEL_SIZE 15
|
||||
#define HALF_KERNEL KERNEL_SIZE / 2
|
||||
|
||||
// number of xmm registers needed to store
|
||||
// input pixels for given kernel size
|
||||
#define REGISTERS_CNT (KERNEL_SIZE + 4/2) / 4
|
||||
|
||||
void blur_impl_horizontal_pass_sse2(uint32_t *src, uint32_t *dst, int width, int height) {
|
||||
printf("height %d by width %d\n", height, width);
|
||||
// scaling factor for kernel coefficients.
|
||||
// higher values cause desaturation.
|
||||
// used in SSSE3 implementation.
|
||||
#define SCALE_FACTOR 7
|
||||
|
||||
void blur_impl_sse2(uint32_t *src, uint32_t *dst, int width, int height, float sigma) {
|
||||
// prepare kernel
|
||||
float kernel[KERNEL_SIZE];
|
||||
float coeff = 1.0 / sqrtf(2 * M_PI * sigma * sigma), sum = 0;
|
||||
|
||||
for (int i = 0; i < KERNEL_SIZE; i++) {
|
||||
float x = HALF_KERNEL - i;
|
||||
kernel[i] = coeff * expf(-x * x / (2.0 * sigma * sigma));
|
||||
sum += kernel[i];
|
||||
}
|
||||
|
||||
// normalize kernel
|
||||
for (int i = 0; i < KERNEL_SIZE; i++)
|
||||
kernel[i] /= sum;
|
||||
|
||||
// horizontal pass includes image transposition:
|
||||
// instead of writing pixel src[x] to dst[x],
|
||||
// we write it to transposed location.
|
||||
// (to be exact: dst[height * current_column + current_row])
|
||||
blur_impl_horizontal_pass_sse2(src, dst, kernel, width, height);
|
||||
blur_impl_horizontal_pass_sse2(dst, src, kernel, height, width);
|
||||
}
|
||||
|
||||
void blur_impl_horizontal_pass_sse2(uint32_t *src, uint32_t *dst, float *kernel, int width, int height) {
|
||||
for (int row = 0; row < height; row++) {
|
||||
printf("row %d\n", row);
|
||||
for (int column = 0; column < width; column++, src++) {
|
||||
printf("\tcol %d\n", column);
|
||||
__m128i rgbaIn[REGISTERS_CNT];
|
||||
|
||||
// handle borders
|
||||
int leftBorder = column < HALF_KERNEL;
|
||||
int rightBorder = column > (width - HALF_KERNEL);
|
||||
// +1 to make memory checkers not complain
|
||||
uint32_t _rgbaIn[KERNEL_SIZE + 1] __attribute__((aligned(16)));
|
||||
int i = 0;
|
||||
if (leftBorder) {
|
||||
// for kernel size 8x8 and column == 0, we have:
|
||||
// x x x x P0 P1 P2 P3
|
||||
// first loop mirrors P{0..4} to fill x's,
|
||||
// second one loads P{0..4}
|
||||
for (; i < HALF_KERNEL - column; i++)
|
||||
_rgbaIn[i] = *(src + (HALF_KERNEL - i));
|
||||
for (; i < KERNEL_SIZE; i++)
|
||||
_rgbaIn[i] = *(src - (HALF_KERNEL - i));
|
||||
|
||||
for (int k = 0; k < REGISTERS_CNT; k++)
|
||||
rgbaIn[k] = _mm_load_si128((__m128i*)(_rgbaIn + 4*k));
|
||||
} else if (rightBorder) {
|
||||
for (; i < width - column; i++)
|
||||
_rgbaIn[i] = *(src + i);
|
||||
for (int k = 0; i < KERNEL_SIZE; i++, k++)
|
||||
_rgbaIn[i] = *(src - k);
|
||||
int rightBorder = column > width - HALF_KERNEL;
|
||||
if (leftBorder || rightBorder) {
|
||||
uint32_t _rgbaIn[KERNEL_SIZE] ALIGN16;
|
||||
int i = 0;
|
||||
if (leftBorder) {
|
||||
// for kernel size 7x7 and column == 0, we have:
|
||||
// x x x P0 P1 P2 P3
|
||||
// first loop mirrors P{0..3} to fill x's,
|
||||
// second one loads P{0..3}
|
||||
for (; i < HALF_KERNEL - column; i++)
|
||||
_rgbaIn[i] = *(src + (HALF_KERNEL - i));
|
||||
for (; i < KERNEL_SIZE; i++)
|
||||
_rgbaIn[i] = *(src - (HALF_KERNEL - i));
|
||||
} else {
|
||||
for (; i < width - column; i++)
|
||||
_rgbaIn[i] = *(src + i);
|
||||
for (int k = 0; i < KERNEL_SIZE; i++, k++)
|
||||
_rgbaIn[i] = *(src - k);
|
||||
}
|
||||
|
||||
for (int k = 0; k < REGISTERS_CNT; k++)
|
||||
rgbaIn[k] = _mm_load_si128((__m128i*)(_rgbaIn + 4*k));
|
||||
} else {
|
||||
for (int k = 0; k < REGISTERS_CNT; k++) {
|
||||
printf("\t\tk: %d %p\n", k, src);
|
||||
rgbaIn[k] = _mm_load_si128((__m128i*)(src + 4*k - HALF_KERNEL));
|
||||
}
|
||||
for (int k = 0; k < REGISTERS_CNT; k++)
|
||||
rgbaIn[k] = _mm_loadu_si128((__m128i*)(src + 4*k - HALF_KERNEL));
|
||||
}
|
||||
|
||||
// unpack each pixel, convert to float,
|
||||
// multiply by corresponding kernel value
|
||||
// and add to accumulator
|
||||
__m128i tmp;
|
||||
__m128i zero = _mm_setzero_si128();
|
||||
__m128i acc = _mm_setzero_si128();
|
||||
__m128 rgba_ps;
|
||||
__m128 acc = _mm_setzero_ps();
|
||||
int counter = 0;
|
||||
|
||||
acc = _mm_add_epi16(acc, _mm_unpacklo_epi8(rgbaIn[0], zero));
|
||||
acc = _mm_add_epi16(acc, _mm_unpackhi_epi8(rgbaIn[0], zero));
|
||||
acc = _mm_add_epi16(acc, _mm_unpacklo_epi8(rgbaIn[1], zero));
|
||||
for (int i = 0; i < 3; i++)
|
||||
{
|
||||
tmp = _mm_unpacklo_epi8(rgbaIn[i], zero);
|
||||
rgba_ps = _mm_cvtepi32_ps(_mm_unpacklo_epi16(tmp, zero));
|
||||
acc = _mm_add_ps(acc, _mm_mul_ps(rgba_ps, _mm_set1_ps(kernel[counter++])));
|
||||
rgba_ps = _mm_cvtepi32_ps(_mm_unpackhi_epi16(tmp, zero));
|
||||
acc = _mm_add_ps(acc, _mm_mul_ps(rgba_ps, _mm_set1_ps(kernel[counter++])));
|
||||
|
||||
// kernel size equals to 7, but we can only load multiples of 4 pixels
|
||||
// we have to set 8th pixel to zero
|
||||
/*
|
||||
acc = _mm_add_epi16(acc, _mm_andnot_si128(_mm_set_epi32(0xFFFFFFFF, 0xFFFFFFFF, 0, 0),
|
||||
_mm_unpackhi_epi8(rgbaIn[1], zero)));
|
||||
acc = _mm_add_epi32(_mm_unpacklo_epi16(acc, zero),
|
||||
_mm_unpackhi_epi16(acc, zero));
|
||||
*/
|
||||
tmp = _mm_unpackhi_epi8(rgbaIn[i], zero);
|
||||
rgba_ps = _mm_cvtepi32_ps(_mm_unpacklo_epi16(tmp, zero));
|
||||
acc = _mm_add_ps(acc, _mm_mul_ps(rgba_ps, _mm_set1_ps(kernel[counter++])));
|
||||
rgba_ps = _mm_cvtepi32_ps(_mm_unpackhi_epi16(tmp, zero));
|
||||
acc = _mm_add_ps(acc, _mm_mul_ps(rgba_ps, _mm_set1_ps(kernel[counter++])));
|
||||
}
|
||||
|
||||
// multiplication is significantly faster than division
|
||||
acc = _mm_cvtps_epi32(_mm_mul_ps(_mm_cvtepi32_ps(acc),
|
||||
_mm_set1_ps(1.0/KERNEL_SIZE)));
|
||||
tmp = _mm_unpacklo_epi8(rgbaIn[3], zero);
|
||||
rgba_ps = _mm_cvtepi32_ps(_mm_unpacklo_epi16(tmp, zero));
|
||||
acc = _mm_add_ps(acc, _mm_mul_ps(rgba_ps, _mm_set1_ps(kernel[counter++])));
|
||||
rgba_ps = _mm_cvtepi32_ps(_mm_unpackhi_epi16(tmp, zero));
|
||||
acc = _mm_add_ps(acc, _mm_mul_ps(rgba_ps, _mm_set1_ps(kernel[counter++])));
|
||||
|
||||
*(dst + height * column + row) =
|
||||
_mm_cvtsi128_si32(_mm_packus_epi16(_mm_packs_epi32(acc, zero), zero));
|
||||
tmp = _mm_unpackhi_epi8(rgbaIn[3], zero);
|
||||
rgba_ps = _mm_cvtepi32_ps(_mm_unpacklo_epi16(tmp, zero));
|
||||
acc = _mm_add_ps(acc, _mm_mul_ps(rgba_ps, _mm_set1_ps(kernel[counter++])));
|
||||
|
||||
__m128i rgbaOut = _mm_cvtps_epi32(acc);
|
||||
rgbaOut = _mm_packs_epi32(rgbaOut, zero);
|
||||
rgbaOut = _mm_packus_epi16(rgbaOut, zero);
|
||||
*(dst + height * column + row) = _mm_cvtsi128_si32(rgbaOut);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void blur_impl_ssse3(uint32_t *src, uint32_t *dst, int width, int height, float sigma) {
|
||||
// prepare kernel
|
||||
float kernelf[KERNEL_SIZE];
|
||||
int8_t kernel[KERNEL_SIZE + 1];
|
||||
float coeff = 1.0 / sqrtf(2 * M_PI * sigma * sigma), sum = 0;
|
||||
|
||||
for (int i = 0; i < KERNEL_SIZE; i++) {
|
||||
float x = HALF_KERNEL - i;
|
||||
kernelf[i] = coeff * expf(-x * x / (2.0 * sigma * sigma));
|
||||
sum += kernelf[i];
|
||||
}
|
||||
|
||||
// normalize kernel
|
||||
for (int i = 0; i < KERNEL_SIZE; i++)
|
||||
kernelf[i] /= sum;
|
||||
|
||||
// round to nearest integer and convert to int
|
||||
for (int i = 0; i < KERNEL_SIZE; i++)
|
||||
kernel[i] = (int8_t)rintf(kernelf[i] * (1 << SCALE_FACTOR));
|
||||
kernel[KERNEL_SIZE] = 0;
|
||||
|
||||
// horizontal pass includes image transposition:
|
||||
// instead of writing pixel src[x] to dst[x],
|
||||
// we write it to transposed location.
|
||||
// (to be exact: dst[height * current_column + current_row])
|
||||
blur_impl_horizontal_pass_ssse3(src, dst, kernel, width, height);
|
||||
blur_impl_horizontal_pass_ssse3(dst, src, kernel, height, width);
|
||||
}
|
||||
|
||||
|
||||
void blur_impl_horizontal_pass_ssse3(uint32_t *src, uint32_t *dst, int8_t *kernel, int width, int height) {
|
||||
uint32_t* o_src = src;
|
||||
__m128i _kern = _mm_loadu_si128((__m128i*)kernel);
|
||||
__m128i rgbaIn[REGISTERS_CNT];
|
||||
|
||||
for (int row = 0; row < height; row++) {
|
||||
for (int column = 0; column < width; column++, src++) {
|
||||
uint32_t _rgbaIn[KERNEL_SIZE + 1] ALIGN16;
|
||||
#if 0
|
||||
for (int j = 0; j < KERNEL_SIZE; ++j) {
|
||||
printf("_rgbaIn[%d]: %p->%p\n", j, &_rgbaIn[j], &_rgbaIn[j] + 1);
|
||||
}
|
||||
#endif
|
||||
// handle borders
|
||||
int leftBorder = column < HALF_KERNEL;
|
||||
int rightBorder = column > width - HALF_KERNEL;
|
||||
if (leftBorder || rightBorder) {
|
||||
int i = 0;
|
||||
if (leftBorder) {
|
||||
// for kernel size 7x7 and column == 0, we have:
|
||||
// x x x P0 P1 P2 P3
|
||||
// first loop mirrors P{0..3} to fill x's,
|
||||
// second one loads P{0..3}
|
||||
for (; i < HALF_KERNEL - column; i++)
|
||||
_rgbaIn[i] = *(src + (HALF_KERNEL - i));
|
||||
for (; i < KERNEL_SIZE; i++)
|
||||
_rgbaIn[i] = *(src - (HALF_KERNEL - i));
|
||||
} else {
|
||||
for (; i < width - column; i++)
|
||||
_rgbaIn[i] = *(src + i);
|
||||
for (int k = 0; i < KERNEL_SIZE; i++, k++)
|
||||
_rgbaIn[i] = *(src - k);
|
||||
}
|
||||
|
||||
for (int k = 0; k < REGISTERS_CNT; k++) {
|
||||
#if 0
|
||||
printf("K: %d; p: %p, p+4*k: %p, end of p: %p\n", k, _rgbaIn, _rgbaIn+4*k, ((__m128i*) (_rgbaIn +4*k)) + 1);
|
||||
#endif
|
||||
rgbaIn[k] = _mm_load_si128((__m128i*)(_rgbaIn + 4*k));
|
||||
}
|
||||
} else {
|
||||
for (int k = 0; k < REGISTERS_CNT; k++) {
|
||||
if ((long long)(((__m128i*) src + 4*k - HALF_KERNEL) + 1) > (long long)((o_src + (width * height)))) break;
|
||||
#if 0
|
||||
printf("K: %d; p: %p -> %p\n", k, src+4*k - HALF_KERNEL, ((__m128i*) (src +4*k - HALF_KERNEL)) + 1);
|
||||
printf("%p->%p, %p->%p (%ld)\n", (__m128i*) src + 4*k - HALF_KERNEL, ((__m128i*) src + 4*k - HALF_KERNEL) + 1, o_src, o_src + (width * height), o_src + (width * height) - src);
|
||||
#endif
|
||||
rgbaIn[k] = _mm_loadu_si128((__m128i*)(src + 4*k - HALF_KERNEL));
|
||||
}
|
||||
}
|
||||
|
||||
// basis of this implementation is _mm_maddubs_epi16 (aka pmaddubsw).
|
||||
// 'rgba' holds 16 unsigned bytes, so 4 pixels.
|
||||
// 'kern' holds 16 signed bytes kernel values multiplied by (1 << SCALE_FACTOR).
|
||||
// before multiplication takes place, vectors need to be prepared:
|
||||
// 'rgba' is shuffled from R1B1G1A1...R4B4G4A4 to R1R2R3R4...A1A2A3A4
|
||||
// 'kern' is shuffled from w1w2w3w4...w13w14w15w16 to w1w2w3w4 repeated 4 times
|
||||
// then we call _mm_maddubs_epi16 and we get:
|
||||
// --------------------------------------------------------------------------------------
|
||||
// | R1*w1 + R2*w2 | R3*w3 + R4*w4 | G1*w1 + G2*w2 | G3*w3 + G4*w4 | repeat for B and A |
|
||||
// --------------------------------------------------------------------------------------
|
||||
// each 'rectangle' is a 16-byte signed int.
|
||||
// then we repeat the process for the rest of input pixels,
|
||||
// call _mm_hadds_epi16 to add adjacent ints and shift right to scale by SCALE_FACTOR.
|
||||
|
||||
__m128i rgba, kern;
|
||||
__m128i zero = _mm_setzero_si128();
|
||||
__m128i acc = _mm_setzero_si128();
|
||||
|
||||
const __m128i rgba_shuf_mask = _mm_setr_epi8(0, 4, 8, 12,
|
||||
1, 5, 9, 13,
|
||||
2, 6, 10, 14,
|
||||
3, 7, 11, 15);
|
||||
|
||||
const __m128i kern_shuf_mask = _mm_setr_epi8(0, 1, 2, 3,
|
||||
0, 1, 2, 3,
|
||||
0, 1, 2, 3,
|
||||
0, 1, 2, 3);
|
||||
|
||||
rgba = _mm_shuffle_epi8(rgbaIn[0], rgba_shuf_mask);
|
||||
kern = _mm_shuffle_epi8(_kern, kern_shuf_mask);
|
||||
acc = _mm_adds_epi16(acc, _mm_maddubs_epi16(rgba, kern));
|
||||
|
||||
rgba = _mm_shuffle_epi8(rgbaIn[1], rgba_shuf_mask);
|
||||
kern = _mm_shuffle_epi8(_mm_srli_si128(_kern, 4), kern_shuf_mask);
|
||||
acc = _mm_adds_epi16(acc, _mm_maddubs_epi16(rgba, kern));
|
||||
|
||||
rgba = _mm_shuffle_epi8(rgbaIn[2], rgba_shuf_mask);
|
||||
kern = _mm_shuffle_epi8(_mm_srli_si128(_kern, 8), kern_shuf_mask);
|
||||
acc = _mm_adds_epi16(acc, _mm_maddubs_epi16(rgba, kern));
|
||||
|
||||
rgba = _mm_shuffle_epi8(rgbaIn[3], rgba_shuf_mask);
|
||||
kern = _mm_shuffle_epi8(_mm_srli_si128(_kern, 12), kern_shuf_mask);
|
||||
acc = _mm_adds_epi16(acc, _mm_maddubs_epi16(rgba, kern));
|
||||
|
||||
acc = _mm_hadds_epi16(acc, zero);
|
||||
acc = _mm_srai_epi16(acc, SCALE_FACTOR);
|
||||
|
||||
// Cairo sets alpha channel to 255
|
||||
// (or -1, depending how you look at it)
|
||||
// this quickly overflows accumulator,
|
||||
// and alpha is calculated completely wrong.
|
||||
// I assume most people don't use semi-transparent
|
||||
// lock screen images, so no one will mind if we
|
||||
// 'correct it' by setting alpha to 255.
|
||||
*(dst + height * column + row) =
|
||||
_mm_cvtsi128_si32(_mm_packus_epi16(acc, zero)) | 0xFF000000;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -89,7 +89,6 @@ PKG_CHECK_MODULES([XKBCOMMON], [xkbcommon xkbcommon-x11])
|
|||
PKG_CHECK_MODULES([CAIRO], [cairo])
|
||||
PKG_CHECK_MODULES([X11], [x11])
|
||||
|
||||
SIMD_CFLAGS=" -funroll-loops -msse2 -std=c99 -pipe -O2"
|
||||
|
||||
# Checks for programs.
|
||||
AC_PROG_AWK
|
||||
|
@ -102,6 +101,10 @@ AC_PROG_LN_S
|
|||
AM_PROG_AR
|
||||
|
||||
AX_FLAGS_WARN_ALL
|
||||
AX_APPEND_FLAG([-msse4.1], [AM_CFLAGS])
|
||||
AX_APPEND_FLAG([-O2], [AM_CFLAGS])
|
||||
AX_APPEND_FLAG([-funroll-loops], [AM_CFLAGS])
|
||||
AX_APPEND_FLAG([-std=gnu99], [AM_CFLAGS])
|
||||
AX_CHECK_COMPILE_FLAG([-Wunused-value], [AX_APPEND_FLAG([-Wunused-value], [AM_CFLAGS])])
|
||||
AC_SUBST(AM_CFLAGS)
|
||||
|
||||
|
|
4
i3lock.c
4
i3lock.c
|
@ -1199,7 +1199,7 @@ int main(int argc, char *argv[]) {
|
|||
arg++;
|
||||
|
||||
if (strlen(arg) != 8 || sscanf(arg, "%08[0-9a-fA-F]", ringwrongcolor) != 1)
|
||||
errx(1, "ringwrongcolor is invalid, color must be given in r-byte format: rrggbb\n");
|
||||
errx(1, "ringwrongcolor is invalid, color must be given in 4-byte format: rrggbb\n");
|
||||
}
|
||||
else if (strcmp(longopts[longoptind].name, "ringcolor") == 0) {
|
||||
char *arg = optarg;
|
||||
|
@ -1570,6 +1570,7 @@ int main(int argc, char *argv[]) {
|
|||
if (!load_keymap())
|
||||
errx(EXIT_FAILURE, "Could not load keymap");
|
||||
|
||||
|
||||
const char *locale = getenv("LC_ALL");
|
||||
if (!locale || !*locale)
|
||||
locale = getenv("LC_CTYPE");
|
||||
|
@ -1587,6 +1588,7 @@ int main(int argc, char *argv[]) {
|
|||
load_compose_table(locale);
|
||||
#endif
|
||||
|
||||
|
||||
screen = xcb_setup_roots_iterator(xcb_get_setup(conn)).data;
|
||||
|
||||
randr_init(&randr_base, screen->root);
|
||||
|
|
|
@ -76,11 +76,11 @@ AC_DEFUN([AX_CHECK_ENABLE_DEBUG],[
|
|||
AS_CASE([$enable_debug],
|
||||
[yes],[
|
||||
AC_MSG_RESULT(yes)
|
||||
CFLAGS="${CFLAGS} -g -O0"
|
||||
CXXFLAGS="${CXXFLAGS} -g -O0"
|
||||
FFLAGS="${FFLAGS} -g -O0"
|
||||
FCFLAGS="${FCFLAGS} -g -O0"
|
||||
OBJCFLAGS="${OBJCFLAGS} -g -O0"
|
||||
CFLAGS="${CFLAGS} -g -O2"
|
||||
CXXFLAGS="${CXXFLAGS} -g -O2"
|
||||
FFLAGS="${FFLAGS} -g -O2"
|
||||
FCFLAGS="${FCFLAGS} -g -O2"
|
||||
OBJCFLAGS="${OBJCFLAGS} -g -O2"
|
||||
],
|
||||
[info],[
|
||||
AC_MSG_RESULT(info)
|
||||
|
|
|
@ -141,8 +141,8 @@ AC_DEFUN([AX_CODE_COVERAGE],[
|
|||
|
||||
dnl Build the code coverage flags
|
||||
CODE_COVERAGE_CPPFLAGS="-DNDEBUG"
|
||||
CODE_COVERAGE_CFLAGS="-O0 -g -fprofile-arcs -ftest-coverage"
|
||||
CODE_COVERAGE_CXXFLAGS="-O0 -g -fprofile-arcs -ftest-coverage"
|
||||
CODE_COVERAGE_CFLAGS="-O2 -g -fprofile-arcs -ftest-coverage"
|
||||
CODE_COVERAGE_CXXFLAGS="-O2 -g -fprofile-arcs -ftest-coverage"
|
||||
CODE_COVERAGE_LDFLAGS="-lgcov"
|
||||
|
||||
AC_SUBST([CODE_COVERAGE_CPPFLAGS])
|
||||
|
|
|
@ -830,3 +830,4 @@ void start_time_redraw_tick(struct ev_loop* main_loop) {
|
|||
ev_periodic_start(main_loop, time_redraw_tick);
|
||||
}
|
||||
}
|
||||
|
||||
|
|
Loading…
Reference in a new issue