1
0
Fork 0
mirror of https://github.com/Raymo111/i3lock-color.git synced 2024-12-02 14:05:43 -05:00

Made clock position freely modifiable

This commit is contained in:
Aline 2017-05-19 15:52:29 +02:00
parent 2193acef3b
commit e64f9adedc
4 changed files with 877 additions and 57 deletions

View file

@ -85,6 +85,8 @@ char time_format[32] = "%H:%M:%S\0";
char date_format[32] = "%A, %m %Y\0"; char date_format[32] = "%A, %m %Y\0";
char time_font[32] = "sans-serif\0"; char time_font[32] = "sans-serif\0";
char date_font[32] = "sans-serif\0"; char date_font[32] = "sans-serif\0";
char clock_x_expr[32] = "ix\0";
char clock_y_expr[32] = "iy+20\0";
/* opts for blurring */ /* opts for blurring */
bool blur = false; bool blur = false;
@ -905,6 +907,7 @@ int main(int argc, char *argv[]) {
{"datestr", required_argument, NULL, 0}, {"datestr", required_argument, NULL, 0},
{"timefont", required_argument, NULL, 0}, {"timefont", required_argument, NULL, 0},
{"datefont", required_argument, NULL, 0}, {"datefont", required_argument, NULL, 0},
{"clockpos", required_argument, NULL, 0},
{"blur", required_argument, NULL, 'B'}, {"blur", required_argument, NULL, 'B'},
@ -1143,6 +1146,17 @@ int main(int argc, char *argv[]) {
} }
strcpy(date_font,optarg); strcpy(date_font,optarg);
} }
else if (strcmp(longopts[optind].name, "clockpos") == 0) {
//read in to clock_x_expr and clock_y_expr
if (strlen(optarg) > 31) {
// this is overly restrictive since both the x and y string buffers have size 32, but it's easier to check.
errx(1, "date position string can be at most 31 characters");
}
char* arg = optarg;
if (sscanf(arg, "%30[^:]:%30[^:]", &clock_x_expr, &clock_y_expr) != 2) {
errx(1, "clockpos must be of the form x:y");
}
}
break; break;
case 'f': case 'f':
show_failed_attempts = true; show_failed_attempts = true;

653
tinyexpr.c Executable file
View file

@ -0,0 +1,653 @@
/*
* TINYEXPR - Tiny recursive descent parser and evaluation engine in C
*
* Copyright (c) 2015, 2016 Lewis Van Winkle
*
* http://CodePlea.com
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
*
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgement in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
/* COMPILE TIME OPTIONS */
/* Exponentiation associativity:
For a^b^c = (a^b)^c and -a^b = (-a)^b do nothing.
For a^b^c = a^(b^c) and -a^b = -(a^b) uncomment the next line.*/
/* #define TE_POW_FROM_RIGHT */
/* Logarithms
For log = base 10 log do nothing
For log = natural log uncomment the next line. */
/* #define TE_NAT_LOG */
#include "tinyexpr.h"
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include <stdio.h>
#include <limits.h>
#ifndef NAN
#define NAN (0.0/0.0)
#endif
#ifndef INFINITY
#define INFINITY (1.0/0.0)
#endif
typedef double (*te_fun2)(double, double);
enum {
TOK_NULL = TE_CLOSURE7+1, TOK_ERROR, TOK_END, TOK_SEP,
TOK_OPEN, TOK_CLOSE, TOK_NUMBER, TOK_VARIABLE, TOK_INFIX
};
enum {TE_CONSTANT = 1};
typedef struct state {
const char *start;
const char *next;
int type;
union {double value; const double *bound; const void *function;};
void *context;
const te_variable *lookup;
int lookup_len;
} state;
#define TYPE_MASK(TYPE) ((TYPE)&0x0000001F)
#define IS_PURE(TYPE) (((TYPE) & TE_FLAG_PURE) != 0)
#define IS_FUNCTION(TYPE) (((TYPE) & TE_FUNCTION0) != 0)
#define IS_CLOSURE(TYPE) (((TYPE) & TE_CLOSURE0) != 0)
#define ARITY(TYPE) ( ((TYPE) & (TE_FUNCTION0 | TE_CLOSURE0)) ? ((TYPE) & 0x00000007) : 0 )
#define NEW_EXPR(type, ...) new_expr((type), (const te_expr*[]){__VA_ARGS__})
static te_expr *new_expr(const int type, const te_expr *parameters[]) {
const int arity = ARITY(type);
const int psize = sizeof(void*) * arity;
const int size = (sizeof(te_expr) - sizeof(void*)) + psize + (IS_CLOSURE(type) ? sizeof(void*) : 0);
te_expr *ret = malloc(size);
memset(ret, 0, size);
if (arity && parameters) {
memcpy(ret->parameters, parameters, psize);
}
ret->type = type;
ret->bound = 0;
return ret;
}
void te_free_parameters(te_expr *n) {
if (!n) return;
switch (TYPE_MASK(n->type)) {
case TE_FUNCTION7: case TE_CLOSURE7: te_free(n->parameters[6]);
case TE_FUNCTION6: case TE_CLOSURE6: te_free(n->parameters[5]);
case TE_FUNCTION5: case TE_CLOSURE5: te_free(n->parameters[4]);
case TE_FUNCTION4: case TE_CLOSURE4: te_free(n->parameters[3]);
case TE_FUNCTION3: case TE_CLOSURE3: te_free(n->parameters[2]);
case TE_FUNCTION2: case TE_CLOSURE2: te_free(n->parameters[1]);
case TE_FUNCTION1: case TE_CLOSURE1: te_free(n->parameters[0]);
}
}
void te_free(te_expr *n) {
if (!n) return;
te_free_parameters(n);
free(n);
}
static double pi() {return 3.14159265358979323846;}
static double e() {return 2.71828182845904523536;}
static double fac(double a) {/* simplest version of fac */
if (a < 0.0)
return NAN;
if (a > UINT_MAX)
return INFINITY;
unsigned int ua = (unsigned int)(a);
unsigned long int result = 1, i;
for (i = 1; i <= ua; i++) {
if (i > ULONG_MAX / result)
return INFINITY;
result *= i;
}
return (double)result;
}
static double ncr(double n, double r) {
if (n < 0.0 || r < 0.0 || n < r) return NAN;
if (n > UINT_MAX || r > UINT_MAX) return INFINITY;
unsigned long int un = (unsigned int)(n), ur = (unsigned int)(r), i;
unsigned long int result = 1;
if (ur > un / 2) ur = un - ur;
for (i = 1; i <= ur; i++) {
if (result > ULONG_MAX / (un - ur + i))
return INFINITY;
result *= un - ur + i;
result /= i;
}
return result;
}
static double npr(double n, double r) {return ncr(n, r) * fac(r);}
static const te_variable functions[] = {
/* must be in alphabetical order */
{"abs", fabs, TE_FUNCTION1 | TE_FLAG_PURE, 0},
{"acos", acos, TE_FUNCTION1 | TE_FLAG_PURE, 0},
{"asin", asin, TE_FUNCTION1 | TE_FLAG_PURE, 0},
{"atan", atan, TE_FUNCTION1 | TE_FLAG_PURE, 0},
{"atan2", atan2, TE_FUNCTION2 | TE_FLAG_PURE, 0},
{"ceil", ceil, TE_FUNCTION1 | TE_FLAG_PURE, 0},
{"cos", cos, TE_FUNCTION1 | TE_FLAG_PURE, 0},
{"cosh", cosh, TE_FUNCTION1 | TE_FLAG_PURE, 0},
{"e", e, TE_FUNCTION0 | TE_FLAG_PURE, 0},
{"exp", exp, TE_FUNCTION1 | TE_FLAG_PURE, 0},
{"fac", fac, TE_FUNCTION1 | TE_FLAG_PURE, 0},
{"floor", floor, TE_FUNCTION1 | TE_FLAG_PURE, 0},
{"ln", log, TE_FUNCTION1 | TE_FLAG_PURE, 0},
#ifdef TE_NAT_LOG
{"log", log, TE_FUNCTION1 | TE_FLAG_PURE, 0},
#else
{"log", log10, TE_FUNCTION1 | TE_FLAG_PURE, 0},
#endif
{"log10", log10, TE_FUNCTION1 | TE_FLAG_PURE, 0},
{"ncr", ncr, TE_FUNCTION2 | TE_FLAG_PURE, 0},
{"npr", npr, TE_FUNCTION2 | TE_FLAG_PURE, 0},
{"pi", pi, TE_FUNCTION0 | TE_FLAG_PURE, 0},
{"pow", pow, TE_FUNCTION2 | TE_FLAG_PURE, 0},
{"sin", sin, TE_FUNCTION1 | TE_FLAG_PURE, 0},
{"sinh", sinh, TE_FUNCTION1 | TE_FLAG_PURE, 0},
{"sqrt", sqrt, TE_FUNCTION1 | TE_FLAG_PURE, 0},
{"tan", tan, TE_FUNCTION1 | TE_FLAG_PURE, 0},
{"tanh", tanh, TE_FUNCTION1 | TE_FLAG_PURE, 0},
{0, 0, 0, 0}
};
static const te_variable *find_builtin(const char *name, int len) {
int imin = 0;
int imax = sizeof(functions) / sizeof(te_variable) - 2;
/*Binary search.*/
while (imax >= imin) {
const int i = (imin + ((imax-imin)/2));
int c = strncmp(name, functions[i].name, len);
if (!c) c = '\0' - functions[i].name[len];
if (c == 0) {
return functions + i;
} else if (c > 0) {
imin = i + 1;
} else {
imax = i - 1;
}
}
return 0;
}
static const te_variable *find_lookup(const state *s, const char *name, int len) {
int iters;
const te_variable *var;
if (!s->lookup) return 0;
for (var = s->lookup, iters = s->lookup_len; iters; ++var, --iters) {
if (strncmp(name, var->name, len) == 0 && var->name[len] == '\0') {
return var;
}
}
return 0;
}
static double add(double a, double b) {return a + b;}
static double sub(double a, double b) {return a - b;}
static double mul(double a, double b) {return a * b;}
static double divide(double a, double b) {return a / b;}
static double negate(double a) {return -a;}
static double comma(double a, double b) {(void)a; return b;}
void next_token(state *s) {
s->type = TOK_NULL;
do {
if (!*s->next){
s->type = TOK_END;
return;
}
/* Try reading a number. */
if ((s->next[0] >= '0' && s->next[0] <= '9') || s->next[0] == '.') {
s->value = strtod(s->next, (char**)&s->next);
s->type = TOK_NUMBER;
} else {
/* Look for a variable or builtin function call. */
if (s->next[0] >= 'a' && s->next[0] <= 'z') {
const char *start;
start = s->next;
while ((s->next[0] >= 'a' && s->next[0] <= 'z') || (s->next[0] >= '0' && s->next[0] <= '9') || (s->next[0] == '_')) s->next++;
const te_variable *var = find_lookup(s, start, s->next - start);
if (!var) var = find_builtin(start, s->next - start);
if (!var) {
s->type = TOK_ERROR;
} else {
switch(TYPE_MASK(var->type))
{
case TE_VARIABLE:
s->type = TOK_VARIABLE;
s->bound = var->address;
break;
case TE_CLOSURE0: case TE_CLOSURE1: case TE_CLOSURE2: case TE_CLOSURE3:
case TE_CLOSURE4: case TE_CLOSURE5: case TE_CLOSURE6: case TE_CLOSURE7:
s->context = var->context;
case TE_FUNCTION0: case TE_FUNCTION1: case TE_FUNCTION2: case TE_FUNCTION3:
case TE_FUNCTION4: case TE_FUNCTION5: case TE_FUNCTION6: case TE_FUNCTION7:
s->type = var->type;
s->function = var->address;
break;
}
}
} else {
/* Look for an operator or special character. */
switch (s->next++[0]) {
case '+': s->type = TOK_INFIX; s->function = add; break;
case '-': s->type = TOK_INFIX; s->function = sub; break;
case '*': s->type = TOK_INFIX; s->function = mul; break;
case '/': s->type = TOK_INFIX; s->function = divide; break;
case '^': s->type = TOK_INFIX; s->function = pow; break;
case '%': s->type = TOK_INFIX; s->function = fmod; break;
case '(': s->type = TOK_OPEN; break;
case ')': s->type = TOK_CLOSE; break;
case ',': s->type = TOK_SEP; break;
case ' ': case '\t': case '\n': case '\r': break;
default: s->type = TOK_ERROR; break;
}
}
}
} while (s->type == TOK_NULL);
}
static te_expr *list(state *s);
static te_expr *expr(state *s);
static te_expr *power(state *s);
static te_expr *base(state *s) {
/* <base> = <constant> | <variable> | <function-0> {"(" ")"} | <function-1> <power> | <function-X> "(" <expr> {"," <expr>} ")" | "(" <list> ")" */
te_expr *ret;
int arity;
switch (TYPE_MASK(s->type)) {
case TOK_NUMBER:
ret = new_expr(TE_CONSTANT, 0);
ret->value = s->value;
next_token(s);
break;
case TOK_VARIABLE:
ret = new_expr(TE_VARIABLE, 0);
ret->bound = s->bound;
next_token(s);
break;
case TE_FUNCTION0:
case TE_CLOSURE0:
ret = new_expr(s->type, 0);
ret->function = s->function;
if (IS_CLOSURE(s->type)) ret->parameters[0] = s->context;
next_token(s);
if (s->type == TOK_OPEN) {
next_token(s);
if (s->type != TOK_CLOSE) {
s->type = TOK_ERROR;
} else {
next_token(s);
}
}
break;
case TE_FUNCTION1:
case TE_CLOSURE1:
ret = new_expr(s->type, 0);
ret->function = s->function;
if (IS_CLOSURE(s->type)) ret->parameters[1] = s->context;
next_token(s);
ret->parameters[0] = power(s);
break;
case TE_FUNCTION2: case TE_FUNCTION3: case TE_FUNCTION4:
case TE_FUNCTION5: case TE_FUNCTION6: case TE_FUNCTION7:
case TE_CLOSURE2: case TE_CLOSURE3: case TE_CLOSURE4:
case TE_CLOSURE5: case TE_CLOSURE6: case TE_CLOSURE7:
arity = ARITY(s->type);
ret = new_expr(s->type, 0);
ret->function = s->function;
if (IS_CLOSURE(s->type)) ret->parameters[arity] = s->context;
next_token(s);
if (s->type != TOK_OPEN) {
s->type = TOK_ERROR;
} else {
int i;
for(i = 0; i < arity; i++) {
next_token(s);
ret->parameters[i] = expr(s);
if(s->type != TOK_SEP) {
break;
}
}
if(s->type != TOK_CLOSE || i != arity - 1) {
s->type = TOK_ERROR;
} else {
next_token(s);
}
}
break;
case TOK_OPEN:
next_token(s);
ret = list(s);
if (s->type != TOK_CLOSE) {
s->type = TOK_ERROR;
} else {
next_token(s);
}
break;
default:
ret = new_expr(0, 0);
s->type = TOK_ERROR;
ret->value = NAN;
break;
}
return ret;
}
static te_expr *power(state *s) {
/* <power> = {("-" | "+")} <base> */
int sign = 1;
while (s->type == TOK_INFIX && (s->function == add || s->function == sub)) {
if (s->function == sub) sign = -sign;
next_token(s);
}
te_expr *ret;
if (sign == 1) {
ret = base(s);
} else {
ret = NEW_EXPR(TE_FUNCTION1 | TE_FLAG_PURE, base(s));
ret->function = negate;
}
return ret;
}
#ifdef TE_POW_FROM_RIGHT
static te_expr *factor(state *s) {
/* <factor> = <power> {"^" <power>} */
te_expr *ret = power(s);
int neg = 0;
te_expr *insertion = 0;
if (ret->type == (TE_FUNCTION1 | TE_FLAG_PURE) && ret->function == negate) {
te_expr *se = ret->parameters[0];
free(ret);
ret = se;
neg = 1;
}
while (s->type == TOK_INFIX && (s->function == pow)) {
te_fun2 t = s->function;
next_token(s);
if (insertion) {
/* Make exponentiation go right-to-left. */
te_expr *insert = NEW_EXPR(TE_FUNCTION2 | TE_FLAG_PURE, insertion->parameters[1], power(s));
insert->function = t;
insertion->parameters[1] = insert;
insertion = insert;
} else {
ret = NEW_EXPR(TE_FUNCTION2 | TE_FLAG_PURE, ret, power(s));
ret->function = t;
insertion = ret;
}
}
if (neg) {
ret = NEW_EXPR(TE_FUNCTION1 | TE_FLAG_PURE, ret);
ret->function = negate;
}
return ret;
}
#else
static te_expr *factor(state *s) {
/* <factor> = <power> {"^" <power>} */
te_expr *ret = power(s);
while (s->type == TOK_INFIX && (s->function == pow)) {
te_fun2 t = s->function;
next_token(s);
ret = NEW_EXPR(TE_FUNCTION2 | TE_FLAG_PURE, ret, power(s));
ret->function = t;
}
return ret;
}
#endif
static te_expr *term(state *s) {
/* <term> = <factor> {("*" | "/" | "%") <factor>} */
te_expr *ret = factor(s);
while (s->type == TOK_INFIX && (s->function == mul || s->function == divide || s->function == fmod)) {
te_fun2 t = s->function;
next_token(s);
ret = NEW_EXPR(TE_FUNCTION2 | TE_FLAG_PURE, ret, factor(s));
ret->function = t;
}
return ret;
}
static te_expr *expr(state *s) {
/* <expr> = <term> {("+" | "-") <term>} */
te_expr *ret = term(s);
while (s->type == TOK_INFIX && (s->function == add || s->function == sub)) {
te_fun2 t = s->function;
next_token(s);
ret = NEW_EXPR(TE_FUNCTION2 | TE_FLAG_PURE, ret, term(s));
ret->function = t;
}
return ret;
}
static te_expr *list(state *s) {
/* <list> = <expr> {"," <expr>} */
te_expr *ret = expr(s);
while (s->type == TOK_SEP) {
next_token(s);
ret = NEW_EXPR(TE_FUNCTION2 | TE_FLAG_PURE, ret, expr(s));
ret->function = comma;
}
return ret;
}
#define TE_FUN(...) ((double(*)(__VA_ARGS__))n->function)
#define M(e) te_eval(n->parameters[e])
double te_eval(const te_expr *n) {
if (!n) return NAN;
switch(TYPE_MASK(n->type)) {
case TE_CONSTANT: return n->value;
case TE_VARIABLE: return *n->bound;
case TE_FUNCTION0: case TE_FUNCTION1: case TE_FUNCTION2: case TE_FUNCTION3:
case TE_FUNCTION4: case TE_FUNCTION5: case TE_FUNCTION6: case TE_FUNCTION7:
switch(ARITY(n->type)) {
case 0: return TE_FUN(void)();
case 1: return TE_FUN(double)(M(0));
case 2: return TE_FUN(double, double)(M(0), M(1));
case 3: return TE_FUN(double, double, double)(M(0), M(1), M(2));
case 4: return TE_FUN(double, double, double, double)(M(0), M(1), M(2), M(3));
case 5: return TE_FUN(double, double, double, double, double)(M(0), M(1), M(2), M(3), M(4));
case 6: return TE_FUN(double, double, double, double, double, double)(M(0), M(1), M(2), M(3), M(4), M(5));
case 7: return TE_FUN(double, double, double, double, double, double, double)(M(0), M(1), M(2), M(3), M(4), M(5), M(6));
default: return NAN;
}
case TE_CLOSURE0: case TE_CLOSURE1: case TE_CLOSURE2: case TE_CLOSURE3:
case TE_CLOSURE4: case TE_CLOSURE5: case TE_CLOSURE6: case TE_CLOSURE7:
switch(ARITY(n->type)) {
case 0: return TE_FUN(void*)(n->parameters[0]);
case 1: return TE_FUN(void*, double)(n->parameters[1], M(0));
case 2: return TE_FUN(void*, double, double)(n->parameters[2], M(0), M(1));
case 3: return TE_FUN(void*, double, double, double)(n->parameters[3], M(0), M(1), M(2));
case 4: return TE_FUN(void*, double, double, double, double)(n->parameters[4], M(0), M(1), M(2), M(3));
case 5: return TE_FUN(void*, double, double, double, double, double)(n->parameters[5], M(0), M(1), M(2), M(3), M(4));
case 6: return TE_FUN(void*, double, double, double, double, double, double)(n->parameters[6], M(0), M(1), M(2), M(3), M(4), M(5));
case 7: return TE_FUN(void*, double, double, double, double, double, double, double)(n->parameters[7], M(0), M(1), M(2), M(3), M(4), M(5), M(6));
default: return NAN;
}
default: return NAN;
}
}
#undef TE_FUN
#undef M
static void optimize(te_expr *n) {
/* Evaluates as much as possible. */
if (n->type == TE_CONSTANT) return;
if (n->type == TE_VARIABLE) return;
/* Only optimize out functions flagged as pure. */
if (IS_PURE(n->type)) {
const int arity = ARITY(n->type);
int known = 1;
int i;
for (i = 0; i < arity; ++i) {
optimize(n->parameters[i]);
if (((te_expr*)(n->parameters[i]))->type != TE_CONSTANT) {
known = 0;
}
}
if (known) {
const double value = te_eval(n);
te_free_parameters(n);
n->type = TE_CONSTANT;
n->value = value;
}
}
}
te_expr *te_compile(const char *expression, const te_variable *variables, int var_count, int *error) {
state s;
s.start = s.next = expression;
s.lookup = variables;
s.lookup_len = var_count;
next_token(&s);
te_expr *root = list(&s);
if (s.type != TOK_END) {
te_free(root);
if (error) {
*error = (s.next - s.start);
if (*error == 0) *error = 1;
}
return 0;
} else {
optimize(root);
if (error) *error = 0;
return root;
}
}
double te_interp(const char *expression, int *error) {
te_expr *n = te_compile(expression, 0, 0, error);
double ret;
if (n) {
ret = te_eval(n);
te_free(n);
} else {
ret = NAN;
}
return ret;
}
static void pn (const te_expr *n, int depth) {
int i, arity;
printf("%*s", depth, "");
switch(TYPE_MASK(n->type)) {
case TE_CONSTANT: printf("%f\n", n->value); break;
case TE_VARIABLE: printf("bound %p\n", n->bound); break;
case TE_FUNCTION0: case TE_FUNCTION1: case TE_FUNCTION2: case TE_FUNCTION3:
case TE_FUNCTION4: case TE_FUNCTION5: case TE_FUNCTION6: case TE_FUNCTION7:
case TE_CLOSURE0: case TE_CLOSURE1: case TE_CLOSURE2: case TE_CLOSURE3:
case TE_CLOSURE4: case TE_CLOSURE5: case TE_CLOSURE6: case TE_CLOSURE7:
arity = ARITY(n->type);
printf("f%d", arity);
for(i = 0; i < arity; i++) {
printf(" %p", n->parameters[i]);
}
printf("\n");
for(i = 0; i < arity; i++) {
pn(n->parameters[i], depth + 1);
}
break;
}
}
void te_print(const te_expr *n) {
pn(n, 0);
}

86
tinyexpr.h Normal file
View file

@ -0,0 +1,86 @@
/*
* TINYEXPR - Tiny recursive descent parser and evaluation engine in C
*
* Copyright (c) 2015, 2016 Lewis Van Winkle
*
* http://CodePlea.com
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
*
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgement in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#ifndef __TINYEXPR_H__
#define __TINYEXPR_H__
#ifdef __cplusplus
extern "C" {
#endif
typedef struct te_expr {
int type;
union {double value; const double *bound; const void *function;};
void *parameters[1];
} te_expr;
enum {
TE_VARIABLE = 0,
TE_FUNCTION0 = 8, TE_FUNCTION1, TE_FUNCTION2, TE_FUNCTION3,
TE_FUNCTION4, TE_FUNCTION5, TE_FUNCTION6, TE_FUNCTION7,
TE_CLOSURE0 = 16, TE_CLOSURE1, TE_CLOSURE2, TE_CLOSURE3,
TE_CLOSURE4, TE_CLOSURE5, TE_CLOSURE6, TE_CLOSURE7,
TE_FLAG_PURE = 32
};
typedef struct te_variable {
const char *name;
const void *address;
int type;
void *context;
} te_variable;
/* Parses the input expression, evaluates it, and frees it. */
/* Returns NaN on error. */
double te_interp(const char *expression, int *error);
/* Parses the input expression and binds variables. */
/* Returns NULL on error. */
te_expr *te_compile(const char *expression, const te_variable *variables, int var_count, int *error);
/* Evaluates the expression. */
double te_eval(const te_expr *n);
/* Prints debugging information on the syntax tree. */
void te_print(const te_expr *n);
/* Frees the expression. */
/* This is safe to call on NULL pointers. */
void te_free(te_expr *n);
#ifdef __cplusplus
}
#endif
#endif /*__TINYEXPR_H__*/

View file

@ -20,6 +20,7 @@
#include "xcb.h" #include "xcb.h"
#include "unlock_indicator.h" #include "unlock_indicator.h"
#include "xinerama.h" #include "xinerama.h"
#include "tinyexpr.h"
/* clock stuff */ /* clock stuff */
#include <time.h> #include <time.h>
@ -28,6 +29,8 @@
#define BUTTON_SPACE (BUTTON_RADIUS + 5) #define BUTTON_SPACE (BUTTON_RADIUS + 5)
#define BUTTON_CENTER (BUTTON_RADIUS + 5) #define BUTTON_CENTER (BUTTON_RADIUS + 5)
#define BUTTON_DIAMETER (2 * BUTTON_SPACE) #define BUTTON_DIAMETER (2 * BUTTON_SPACE)
#define CLOCK_WIDTH 400
#define CLOCK_HEIGHT 200
/******************************************************************************* /*******************************************************************************
* Variables defined in i3lock.c. * Variables defined in i3lock.c.
@ -80,6 +83,8 @@ extern char time_format[32];
extern char date_format[32]; extern char date_format[32];
extern char time_font[32]; extern char time_font[32];
extern char date_font[32]; extern char date_font[32];
extern char clock_x_expr[32];
extern char clock_y_expr[32];
/* Whether the failed attempts should be displayed. */ /* Whether the failed attempts should be displayed. */
extern bool show_failed_attempts; extern bool show_failed_attempts;
/* Number of failed unlock attempts. */ /* Number of failed unlock attempts. */
@ -126,6 +131,8 @@ static double scaling_factor(void) {
xcb_pixmap_t draw_image(uint32_t *resolution) { xcb_pixmap_t draw_image(uint32_t *resolution) {
xcb_pixmap_t bg_pixmap = XCB_NONE; xcb_pixmap_t bg_pixmap = XCB_NONE;
int button_diameter_physical = ceil(scaling_factor() * BUTTON_DIAMETER); int button_diameter_physical = ceil(scaling_factor() * BUTTON_DIAMETER);
int clock_width_physical = ceil(scaling_factor() * CLOCK_WIDTH);
int clock_height_physical = ceil(scaling_factor() * CLOCK_HEIGHT);
DEBUG("scaling_factor is %.f, physical diameter is %d px\n", DEBUG("scaling_factor is %.f, physical diameter is %d px\n",
scaling_factor(), button_diameter_physical); scaling_factor(), button_diameter_physical);
@ -134,10 +141,15 @@ xcb_pixmap_t draw_image(uint32_t *resolution) {
bg_pixmap = create_bg_pixmap(conn, screen, resolution, color); bg_pixmap = create_bg_pixmap(conn, screen, resolution, color);
/* Initialize cairo: Create one in-memory surface to render the unlock /* Initialize cairo: Create one in-memory surface to render the unlock
* indicator on, create one XCB surface to actually draw (one or more, * indicator on, create one XCB surface to actually draw (one or more,
* depending on the amount of screens) unlock indicators on. */ * depending on the amount of screens) unlock indicators on.
* A third surface for the clock display is created as well
*/
cairo_surface_t *output = cairo_image_surface_create(CAIRO_FORMAT_ARGB32, button_diameter_physical, button_diameter_physical); cairo_surface_t *output = cairo_image_surface_create(CAIRO_FORMAT_ARGB32, button_diameter_physical, button_diameter_physical);
cairo_t *ctx = cairo_create(output); cairo_t *ctx = cairo_create(output);
cairo_surface_t *clock_output = cairo_image_surface_create(CAIRO_FORMAT_ARGB32, clock_width_physical, clock_height_physical);
cairo_t *clock_ctx = cairo_create(clock_output);
cairo_surface_t *xcb_output = cairo_xcb_surface_create(conn, bg_pixmap, vistype, resolution[0], resolution[1]); cairo_surface_t *xcb_output = cairo_xcb_surface_create(conn, bg_pixmap, vistype, resolution[0], resolution[1]);
cairo_t *xcb_ctx = cairo_create(xcb_output); cairo_t *xcb_ctx = cairo_create(xcb_output);
@ -272,7 +284,7 @@ xcb_pixmap_t draw_image(uint32_t *resolution) {
timeinfo = localtime(&rawtime); timeinfo = localtime(&rawtime);
if (unlock_indicator && if (unlock_indicator &&
(unlock_state >= STATE_KEY_PRESSED || auth_state > STATE_AUTH_IDLE || show_clock)) { (unlock_state >= STATE_KEY_PRESSED || auth_state > STATE_AUTH_IDLE)) {
cairo_scale(ctx, scaling_factor(), scaling_factor()); cairo_scale(ctx, scaling_factor(), scaling_factor());
/* Draw a (centered) circle with transparent background. */ /* Draw a (centered) circle with transparent background. */
cairo_set_line_width(ctx, 7.0); cairo_set_line_width(ctx, 7.0);
@ -348,13 +360,8 @@ xcb_pixmap_t draw_image(uint32_t *resolution) {
cairo_set_line_width(ctx, 10.0); cairo_set_line_width(ctx, 10.0);
/* Display a (centered) text of the current PAM state. */
char *text = NULL; char *text = NULL;
char *date = NULL;
char time_text[40] = {0};
char date_text[40] = {0};
/* We don't want to show more than a 3-digit number. */ /* We don't want to show more than a 3-digit number. */
char buf[4]; char buf[4];
@ -383,52 +390,10 @@ xcb_pixmap_t draw_image(uint32_t *resolution) {
text = buf; text = buf;
} }
cairo_set_font_size(ctx, 32.0); cairo_set_font_size(ctx, 32.0);
} else if (show_clock) {
strftime(time_text, 40, time_format, timeinfo);
strftime(date_text, 40, date_format, timeinfo);
text = time_text;
date = date_text;
} }
break; break;
} }
if (text) {
cairo_text_extents_t extents;
double x, y;
cairo_select_font_face(ctx, time_font, CAIRO_FONT_SLANT_NORMAL, CAIRO_FONT_WEIGHT_NORMAL);
cairo_set_source_rgba(ctx, (double)clock16[0]/255, (double)clock16[1]/255, (double)clock16[2]/255, (double)clock16[3]/255);
cairo_text_extents(ctx, text, &extents);
x = BUTTON_CENTER - ((extents.width / 2) + extents.x_bearing);
if (date) {
y = BUTTON_CENTER - ((extents.height / 2) + extents.y_bearing) - 6;
} else {
y = BUTTON_CENTER - ((extents.height / 2) + extents.y_bearing);
}
cairo_move_to(ctx, x, y);
cairo_show_text(ctx, text);
cairo_close_path(ctx);
}
if (date) {
cairo_text_extents_t extents;
double x, y;
cairo_select_font_face(ctx, date_font, CAIRO_FONT_SLANT_NORMAL, CAIRO_FONT_WEIGHT_NORMAL);
cairo_set_source_rgba(ctx, (double)clock16[0]/255, (double)clock16[1]/255, (double)clock16[2]/255, (double)clock16[3]/255);
cairo_set_font_size(ctx, 14.0);
cairo_text_extents(ctx, date, &extents);
x = BUTTON_CENTER - ((extents.width / 2) + extents.x_bearing);
y = BUTTON_CENTER - ((extents.height / 2) + extents.y_bearing) + 14;
cairo_move_to(ctx, x, y);
cairo_show_text(ctx, date);
cairo_close_path(ctx);
}
if (auth_state == STATE_AUTH_WRONG && (modifier_string != NULL)) { if (auth_state == STATE_AUTH_WRONG && (modifier_string != NULL)) {
cairo_text_extents_t extents; cairo_text_extents_t extents;
double x, y; double x, y;
@ -487,39 +452,141 @@ xcb_pixmap_t draw_image(uint32_t *resolution) {
cairo_stroke(ctx); cairo_stroke(ctx);
} }
} }
if (show_clock) {
char *text = NULL;
char *date = NULL;
char time_text[40] = {0};
char date_text[40] = {0};
strftime(time_text, 40, time_format, timeinfo);
strftime(date_text, 40, date_format, timeinfo);
text = time_text;
date = date_text;
double width = 0;
double height = 0;
if (text) {
double x, y;
cairo_text_extents_t extents;
cairo_set_font_size(clock_ctx, 32.0);
cairo_select_font_face(clock_ctx, time_font, CAIRO_FONT_SLANT_NORMAL, CAIRO_FONT_WEIGHT_NORMAL);
cairo_set_source_rgba(clock_ctx, (double)clock16[0]/255, (double)clock16[1]/255, (double)clock16[2]/255, (double)clock16[3]/255);
cairo_text_extents(clock_ctx, text, &extents);
x = CLOCK_WIDTH/2 - ((extents.width / 2) + extents.x_bearing);
y = CLOCK_HEIGHT/2 - extents.height;
cairo_move_to(clock_ctx, x, y);
cairo_show_text(clock_ctx, text);
cairo_close_path(clock_ctx);
}
if (date) {
double x, y;
cairo_text_extents_t extents;
cairo_select_font_face(clock_ctx, date_font, CAIRO_FONT_SLANT_NORMAL, CAIRO_FONT_WEIGHT_NORMAL);
cairo_set_source_rgba(clock_ctx, (double)clock16[0]/255, (double)clock16[1]/255, (double)clock16[2]/255, (double)clock16[3]/255);
cairo_set_font_size(clock_ctx, 14.0);
cairo_text_extents(clock_ctx, date, &extents);
x = CLOCK_WIDTH/2 - ((extents.width / 2) + extents.x_bearing);
y = CLOCK_HEIGHT/2;
cairo_move_to(clock_ctx, x, y);
cairo_show_text(clock_ctx, date);
cairo_close_path(clock_ctx);
}
}
double ix, iy;
double x, y;
double w, h;
int te_x_err;
int te_y_err;
// variable mapping for evaluating the clock position expression
te_variable vars[] = {{"ix", &ix}, {"iy", &iy}, {"w", &w}, {"h", &h}};
te_expr *x_expr = te_compile(clock_x_expr, vars, 4, &te_x_err);
te_expr *y_expr = te_compile(clock_y_expr, vars, 4, &te_y_err);
if (xr_screens > 0) { if (xr_screens > 0) {
/* Composite the unlock indicator in the middle of each screen. */ /* Composite the unlock indicator in the middle of each screen. */
// excuse me, just gonna hack something in right here // excuse me, just gonna hack something in right here
if (screen_number != -1 && screen_number < xr_screens) { if (screen_number != -1 && screen_number < xr_screens) {
int x = (xr_resolutions[screen_number].x + ((xr_resolutions[screen_number].width / 2) - (button_diameter_physical / 2))); w = xr_resolutions[screen_number].width;
int y = (xr_resolutions[screen_number].y + ((xr_resolutions[screen_number].height / 2) - (button_diameter_physical / 2))); h = xr_resolutions[screen_number].height;
ix = xr_resolutions[screen_number].x + (xr_resolutions[screen_number].width / 2);
iy = xr_resolutions[screen_number].y + (xr_resolutions[screen_number].height / 2);
x = ix - (button_diameter_physical / 2);
y = iy - (button_diameter_physical / 2);
cairo_set_source_surface(xcb_ctx, output, x, y); cairo_set_source_surface(xcb_ctx, output, x, y);
cairo_rectangle(xcb_ctx, x, y, button_diameter_physical, button_diameter_physical); cairo_rectangle(xcb_ctx, x, y, button_diameter_physical, button_diameter_physical);
cairo_fill(xcb_ctx); } cairo_fill(xcb_ctx);
if (x_expr && y_expr) {
double clock_x = xr_resolutions[screen_number].x + te_eval(x_expr) - CLOCK_WIDTH / 2;
double clock_y = xr_resolutions[screen_number].y + te_eval(y_expr) - CLOCK_HEIGHT / 2;
cairo_set_source_surface(xcb_ctx, clock_output, clock_x, clock_y);
cairo_rectangle(xcb_ctx, clock_x, clock_y, CLOCK_WIDTH, CLOCK_HEIGHT);
cairo_fill(xcb_ctx);
}
}
else { else {
for (int screen = 0; screen < xr_screens; screen++) { for (int screen = 0; screen < xr_screens; screen++) {
int x = (xr_resolutions[screen].x + ((xr_resolutions[screen].width / 2) - (button_diameter_physical / 2))); w = xr_resolutions[screen].width;
int y = (xr_resolutions[screen].y + ((xr_resolutions[screen].height / 2) - (button_diameter_physical / 2))); h = xr_resolutions[screen].height;
ix = xr_resolutions[screen].x + (xr_resolutions[screen].width / 2);
iy = xr_resolutions[screen].y + (xr_resolutions[screen].height / 2);
x = ix - (button_diameter_physical / 2);
y = iy - (button_diameter_physical / 2);
cairo_set_source_surface(xcb_ctx, output, x, y); cairo_set_source_surface(xcb_ctx, output, x, y);
cairo_rectangle(xcb_ctx, x, y, button_diameter_physical, button_diameter_physical); cairo_rectangle(xcb_ctx, x, y, button_diameter_physical, button_diameter_physical);
cairo_fill(xcb_ctx); cairo_fill(xcb_ctx);
if (x_expr && y_expr) {
double clock_x = xr_resolutions[screen].x + te_eval(x_expr) - CLOCK_WIDTH / 2;
double clock_y = xr_resolutions[screen].y + te_eval(y_expr) - CLOCK_HEIGHT / 2;
cairo_set_source_surface(xcb_ctx, clock_output, clock_x, clock_y);
cairo_rectangle(xcb_ctx, clock_x, clock_y, CLOCK_WIDTH, CLOCK_HEIGHT);
cairo_fill(xcb_ctx);
}
else {
DEBUG("error codes for exprs are %d, %d\n", te_x_err, te_y_err);
DEBUG("exprs: %s, %s\n", clock_x_expr, clock_y_expr);
}
} }
} }
} else { } else {
/* We have no information about the screen sizes/positions, so we just /* We have no information about the screen sizes/positions, so we just
* place the unlock indicator in the middle of the X root window and * place the unlock indicator in the middle of the X root window and
* hope for the best. */ * hope for the best. */
int x = (last_resolution[0] / 2) - (button_diameter_physical / 2); w = last_resolution[0];
int y = (last_resolution[1] / 2) - (button_diameter_physical / 2); h = last_resolution[1];
ix = last_resolution[0] / 2;
iy = last_resolution[1] / 2;
x = ix - (button_diameter_physical / 2);
y = iy - (button_diameter_physical / 2);
cairo_set_source_surface(xcb_ctx, output, x, y); cairo_set_source_surface(xcb_ctx, output, x, y);
cairo_rectangle(xcb_ctx, x, y, button_diameter_physical, button_diameter_physical); cairo_rectangle(xcb_ctx, x, y, button_diameter_physical, button_diameter_physical);
cairo_fill(xcb_ctx); cairo_fill(xcb_ctx);
if (x_expr && y_expr) {
double clock_x = te_eval(x_expr) - CLOCK_WIDTH / 2;
double clock_y = te_eval(y_expr) - CLOCK_HEIGHT / 2;
DEBUG("Placing clock at %f, %f\n", clock_x, clock_y);
cairo_set_source_surface(xcb_ctx, clock_output, clock_x, clock_y);
cairo_rectangle(xcb_ctx, clock_x, clock_y, CLOCK_WIDTH, CLOCK_HEIGHT);
cairo_fill(xcb_ctx);
}
} }
cairo_surface_destroy(xcb_output); cairo_surface_destroy(xcb_output);
cairo_surface_destroy(clock_output);
cairo_surface_destroy(output); cairo_surface_destroy(output);
cairo_destroy(ctx); cairo_destroy(ctx);
cairo_destroy(clock_ctx);
cairo_destroy(xcb_ctx); cairo_destroy(xcb_ctx);
return bg_pixmap; return bg_pixmap;
} }