mirror of
https://github.com/Raymo111/i3lock-color.git
synced 2024-12-02 14:05:43 -05:00
Made clock position freely modifiable
This commit is contained in:
parent
2193acef3b
commit
e64f9adedc
4 changed files with 877 additions and 57 deletions
14
i3lock.c
14
i3lock.c
|
@ -85,6 +85,8 @@ char time_format[32] = "%H:%M:%S\0";
|
|||
char date_format[32] = "%A, %m %Y\0";
|
||||
char time_font[32] = "sans-serif\0";
|
||||
char date_font[32] = "sans-serif\0";
|
||||
char clock_x_expr[32] = "ix\0";
|
||||
char clock_y_expr[32] = "iy+20\0";
|
||||
|
||||
/* opts for blurring */
|
||||
bool blur = false;
|
||||
|
@ -905,6 +907,7 @@ int main(int argc, char *argv[]) {
|
|||
{"datestr", required_argument, NULL, 0},
|
||||
{"timefont", required_argument, NULL, 0},
|
||||
{"datefont", required_argument, NULL, 0},
|
||||
{"clockpos", required_argument, NULL, 0},
|
||||
|
||||
{"blur", required_argument, NULL, 'B'},
|
||||
|
||||
|
@ -1143,6 +1146,17 @@ int main(int argc, char *argv[]) {
|
|||
}
|
||||
strcpy(date_font,optarg);
|
||||
}
|
||||
else if (strcmp(longopts[optind].name, "clockpos") == 0) {
|
||||
//read in to clock_x_expr and clock_y_expr
|
||||
if (strlen(optarg) > 31) {
|
||||
// this is overly restrictive since both the x and y string buffers have size 32, but it's easier to check.
|
||||
errx(1, "date position string can be at most 31 characters");
|
||||
}
|
||||
char* arg = optarg;
|
||||
if (sscanf(arg, "%30[^:]:%30[^:]", &clock_x_expr, &clock_y_expr) != 2) {
|
||||
errx(1, "clockpos must be of the form x:y");
|
||||
}
|
||||
}
|
||||
break;
|
||||
case 'f':
|
||||
show_failed_attempts = true;
|
||||
|
|
653
tinyexpr.c
Executable file
653
tinyexpr.c
Executable file
|
@ -0,0 +1,653 @@
|
|||
/*
|
||||
* TINYEXPR - Tiny recursive descent parser and evaluation engine in C
|
||||
*
|
||||
* Copyright (c) 2015, 2016 Lewis Van Winkle
|
||||
*
|
||||
* http://CodePlea.com
|
||||
*
|
||||
* This software is provided 'as-is', without any express or implied
|
||||
* warranty. In no event will the authors be held liable for any damages
|
||||
* arising from the use of this software.
|
||||
*
|
||||
* Permission is granted to anyone to use this software for any purpose,
|
||||
* including commercial applications, and to alter it and redistribute it
|
||||
* freely, subject to the following restrictions:
|
||||
*
|
||||
* 1. The origin of this software must not be misrepresented; you must not
|
||||
* claim that you wrote the original software. If you use this software
|
||||
* in a product, an acknowledgement in the product documentation would be
|
||||
* appreciated but is not required.
|
||||
* 2. Altered source versions must be plainly marked as such, and must not be
|
||||
* misrepresented as being the original software.
|
||||
* 3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
/* COMPILE TIME OPTIONS */
|
||||
|
||||
/* Exponentiation associativity:
|
||||
For a^b^c = (a^b)^c and -a^b = (-a)^b do nothing.
|
||||
For a^b^c = a^(b^c) and -a^b = -(a^b) uncomment the next line.*/
|
||||
/* #define TE_POW_FROM_RIGHT */
|
||||
|
||||
/* Logarithms
|
||||
For log = base 10 log do nothing
|
||||
For log = natural log uncomment the next line. */
|
||||
/* #define TE_NAT_LOG */
|
||||
|
||||
#include "tinyexpr.h"
|
||||
#include <stdlib.h>
|
||||
#include <math.h>
|
||||
#include <string.h>
|
||||
#include <stdio.h>
|
||||
#include <limits.h>
|
||||
|
||||
#ifndef NAN
|
||||
#define NAN (0.0/0.0)
|
||||
#endif
|
||||
|
||||
#ifndef INFINITY
|
||||
#define INFINITY (1.0/0.0)
|
||||
#endif
|
||||
|
||||
|
||||
typedef double (*te_fun2)(double, double);
|
||||
|
||||
enum {
|
||||
TOK_NULL = TE_CLOSURE7+1, TOK_ERROR, TOK_END, TOK_SEP,
|
||||
TOK_OPEN, TOK_CLOSE, TOK_NUMBER, TOK_VARIABLE, TOK_INFIX
|
||||
};
|
||||
|
||||
|
||||
enum {TE_CONSTANT = 1};
|
||||
|
||||
|
||||
typedef struct state {
|
||||
const char *start;
|
||||
const char *next;
|
||||
int type;
|
||||
union {double value; const double *bound; const void *function;};
|
||||
void *context;
|
||||
|
||||
const te_variable *lookup;
|
||||
int lookup_len;
|
||||
} state;
|
||||
|
||||
|
||||
#define TYPE_MASK(TYPE) ((TYPE)&0x0000001F)
|
||||
|
||||
#define IS_PURE(TYPE) (((TYPE) & TE_FLAG_PURE) != 0)
|
||||
#define IS_FUNCTION(TYPE) (((TYPE) & TE_FUNCTION0) != 0)
|
||||
#define IS_CLOSURE(TYPE) (((TYPE) & TE_CLOSURE0) != 0)
|
||||
#define ARITY(TYPE) ( ((TYPE) & (TE_FUNCTION0 | TE_CLOSURE0)) ? ((TYPE) & 0x00000007) : 0 )
|
||||
#define NEW_EXPR(type, ...) new_expr((type), (const te_expr*[]){__VA_ARGS__})
|
||||
|
||||
static te_expr *new_expr(const int type, const te_expr *parameters[]) {
|
||||
const int arity = ARITY(type);
|
||||
const int psize = sizeof(void*) * arity;
|
||||
const int size = (sizeof(te_expr) - sizeof(void*)) + psize + (IS_CLOSURE(type) ? sizeof(void*) : 0);
|
||||
te_expr *ret = malloc(size);
|
||||
memset(ret, 0, size);
|
||||
if (arity && parameters) {
|
||||
memcpy(ret->parameters, parameters, psize);
|
||||
}
|
||||
ret->type = type;
|
||||
ret->bound = 0;
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
||||
void te_free_parameters(te_expr *n) {
|
||||
if (!n) return;
|
||||
switch (TYPE_MASK(n->type)) {
|
||||
case TE_FUNCTION7: case TE_CLOSURE7: te_free(n->parameters[6]);
|
||||
case TE_FUNCTION6: case TE_CLOSURE6: te_free(n->parameters[5]);
|
||||
case TE_FUNCTION5: case TE_CLOSURE5: te_free(n->parameters[4]);
|
||||
case TE_FUNCTION4: case TE_CLOSURE4: te_free(n->parameters[3]);
|
||||
case TE_FUNCTION3: case TE_CLOSURE3: te_free(n->parameters[2]);
|
||||
case TE_FUNCTION2: case TE_CLOSURE2: te_free(n->parameters[1]);
|
||||
case TE_FUNCTION1: case TE_CLOSURE1: te_free(n->parameters[0]);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void te_free(te_expr *n) {
|
||||
if (!n) return;
|
||||
te_free_parameters(n);
|
||||
free(n);
|
||||
}
|
||||
|
||||
|
||||
static double pi() {return 3.14159265358979323846;}
|
||||
static double e() {return 2.71828182845904523536;}
|
||||
static double fac(double a) {/* simplest version of fac */
|
||||
if (a < 0.0)
|
||||
return NAN;
|
||||
if (a > UINT_MAX)
|
||||
return INFINITY;
|
||||
unsigned int ua = (unsigned int)(a);
|
||||
unsigned long int result = 1, i;
|
||||
for (i = 1; i <= ua; i++) {
|
||||
if (i > ULONG_MAX / result)
|
||||
return INFINITY;
|
||||
result *= i;
|
||||
}
|
||||
return (double)result;
|
||||
}
|
||||
static double ncr(double n, double r) {
|
||||
if (n < 0.0 || r < 0.0 || n < r) return NAN;
|
||||
if (n > UINT_MAX || r > UINT_MAX) return INFINITY;
|
||||
unsigned long int un = (unsigned int)(n), ur = (unsigned int)(r), i;
|
||||
unsigned long int result = 1;
|
||||
if (ur > un / 2) ur = un - ur;
|
||||
for (i = 1; i <= ur; i++) {
|
||||
if (result > ULONG_MAX / (un - ur + i))
|
||||
return INFINITY;
|
||||
result *= un - ur + i;
|
||||
result /= i;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
static double npr(double n, double r) {return ncr(n, r) * fac(r);}
|
||||
|
||||
static const te_variable functions[] = {
|
||||
/* must be in alphabetical order */
|
||||
{"abs", fabs, TE_FUNCTION1 | TE_FLAG_PURE, 0},
|
||||
{"acos", acos, TE_FUNCTION1 | TE_FLAG_PURE, 0},
|
||||
{"asin", asin, TE_FUNCTION1 | TE_FLAG_PURE, 0},
|
||||
{"atan", atan, TE_FUNCTION1 | TE_FLAG_PURE, 0},
|
||||
{"atan2", atan2, TE_FUNCTION2 | TE_FLAG_PURE, 0},
|
||||
{"ceil", ceil, TE_FUNCTION1 | TE_FLAG_PURE, 0},
|
||||
{"cos", cos, TE_FUNCTION1 | TE_FLAG_PURE, 0},
|
||||
{"cosh", cosh, TE_FUNCTION1 | TE_FLAG_PURE, 0},
|
||||
{"e", e, TE_FUNCTION0 | TE_FLAG_PURE, 0},
|
||||
{"exp", exp, TE_FUNCTION1 | TE_FLAG_PURE, 0},
|
||||
{"fac", fac, TE_FUNCTION1 | TE_FLAG_PURE, 0},
|
||||
{"floor", floor, TE_FUNCTION1 | TE_FLAG_PURE, 0},
|
||||
{"ln", log, TE_FUNCTION1 | TE_FLAG_PURE, 0},
|
||||
#ifdef TE_NAT_LOG
|
||||
{"log", log, TE_FUNCTION1 | TE_FLAG_PURE, 0},
|
||||
#else
|
||||
{"log", log10, TE_FUNCTION1 | TE_FLAG_PURE, 0},
|
||||
#endif
|
||||
{"log10", log10, TE_FUNCTION1 | TE_FLAG_PURE, 0},
|
||||
{"ncr", ncr, TE_FUNCTION2 | TE_FLAG_PURE, 0},
|
||||
{"npr", npr, TE_FUNCTION2 | TE_FLAG_PURE, 0},
|
||||
{"pi", pi, TE_FUNCTION0 | TE_FLAG_PURE, 0},
|
||||
{"pow", pow, TE_FUNCTION2 | TE_FLAG_PURE, 0},
|
||||
{"sin", sin, TE_FUNCTION1 | TE_FLAG_PURE, 0},
|
||||
{"sinh", sinh, TE_FUNCTION1 | TE_FLAG_PURE, 0},
|
||||
{"sqrt", sqrt, TE_FUNCTION1 | TE_FLAG_PURE, 0},
|
||||
{"tan", tan, TE_FUNCTION1 | TE_FLAG_PURE, 0},
|
||||
{"tanh", tanh, TE_FUNCTION1 | TE_FLAG_PURE, 0},
|
||||
{0, 0, 0, 0}
|
||||
};
|
||||
|
||||
static const te_variable *find_builtin(const char *name, int len) {
|
||||
int imin = 0;
|
||||
int imax = sizeof(functions) / sizeof(te_variable) - 2;
|
||||
|
||||
/*Binary search.*/
|
||||
while (imax >= imin) {
|
||||
const int i = (imin + ((imax-imin)/2));
|
||||
int c = strncmp(name, functions[i].name, len);
|
||||
if (!c) c = '\0' - functions[i].name[len];
|
||||
if (c == 0) {
|
||||
return functions + i;
|
||||
} else if (c > 0) {
|
||||
imin = i + 1;
|
||||
} else {
|
||||
imax = i - 1;
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static const te_variable *find_lookup(const state *s, const char *name, int len) {
|
||||
int iters;
|
||||
const te_variable *var;
|
||||
if (!s->lookup) return 0;
|
||||
|
||||
for (var = s->lookup, iters = s->lookup_len; iters; ++var, --iters) {
|
||||
if (strncmp(name, var->name, len) == 0 && var->name[len] == '\0') {
|
||||
return var;
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
|
||||
static double add(double a, double b) {return a + b;}
|
||||
static double sub(double a, double b) {return a - b;}
|
||||
static double mul(double a, double b) {return a * b;}
|
||||
static double divide(double a, double b) {return a / b;}
|
||||
static double negate(double a) {return -a;}
|
||||
static double comma(double a, double b) {(void)a; return b;}
|
||||
|
||||
|
||||
void next_token(state *s) {
|
||||
s->type = TOK_NULL;
|
||||
|
||||
do {
|
||||
|
||||
if (!*s->next){
|
||||
s->type = TOK_END;
|
||||
return;
|
||||
}
|
||||
|
||||
/* Try reading a number. */
|
||||
if ((s->next[0] >= '0' && s->next[0] <= '9') || s->next[0] == '.') {
|
||||
s->value = strtod(s->next, (char**)&s->next);
|
||||
s->type = TOK_NUMBER;
|
||||
} else {
|
||||
/* Look for a variable or builtin function call. */
|
||||
if (s->next[0] >= 'a' && s->next[0] <= 'z') {
|
||||
const char *start;
|
||||
start = s->next;
|
||||
while ((s->next[0] >= 'a' && s->next[0] <= 'z') || (s->next[0] >= '0' && s->next[0] <= '9') || (s->next[0] == '_')) s->next++;
|
||||
|
||||
const te_variable *var = find_lookup(s, start, s->next - start);
|
||||
if (!var) var = find_builtin(start, s->next - start);
|
||||
|
||||
if (!var) {
|
||||
s->type = TOK_ERROR;
|
||||
} else {
|
||||
switch(TYPE_MASK(var->type))
|
||||
{
|
||||
case TE_VARIABLE:
|
||||
s->type = TOK_VARIABLE;
|
||||
s->bound = var->address;
|
||||
break;
|
||||
|
||||
case TE_CLOSURE0: case TE_CLOSURE1: case TE_CLOSURE2: case TE_CLOSURE3:
|
||||
case TE_CLOSURE4: case TE_CLOSURE5: case TE_CLOSURE6: case TE_CLOSURE7:
|
||||
s->context = var->context;
|
||||
|
||||
case TE_FUNCTION0: case TE_FUNCTION1: case TE_FUNCTION2: case TE_FUNCTION3:
|
||||
case TE_FUNCTION4: case TE_FUNCTION5: case TE_FUNCTION6: case TE_FUNCTION7:
|
||||
s->type = var->type;
|
||||
s->function = var->address;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
} else {
|
||||
/* Look for an operator or special character. */
|
||||
switch (s->next++[0]) {
|
||||
case '+': s->type = TOK_INFIX; s->function = add; break;
|
||||
case '-': s->type = TOK_INFIX; s->function = sub; break;
|
||||
case '*': s->type = TOK_INFIX; s->function = mul; break;
|
||||
case '/': s->type = TOK_INFIX; s->function = divide; break;
|
||||
case '^': s->type = TOK_INFIX; s->function = pow; break;
|
||||
case '%': s->type = TOK_INFIX; s->function = fmod; break;
|
||||
case '(': s->type = TOK_OPEN; break;
|
||||
case ')': s->type = TOK_CLOSE; break;
|
||||
case ',': s->type = TOK_SEP; break;
|
||||
case ' ': case '\t': case '\n': case '\r': break;
|
||||
default: s->type = TOK_ERROR; break;
|
||||
}
|
||||
}
|
||||
}
|
||||
} while (s->type == TOK_NULL);
|
||||
}
|
||||
|
||||
|
||||
static te_expr *list(state *s);
|
||||
static te_expr *expr(state *s);
|
||||
static te_expr *power(state *s);
|
||||
|
||||
static te_expr *base(state *s) {
|
||||
/* <base> = <constant> | <variable> | <function-0> {"(" ")"} | <function-1> <power> | <function-X> "(" <expr> {"," <expr>} ")" | "(" <list> ")" */
|
||||
te_expr *ret;
|
||||
int arity;
|
||||
|
||||
switch (TYPE_MASK(s->type)) {
|
||||
case TOK_NUMBER:
|
||||
ret = new_expr(TE_CONSTANT, 0);
|
||||
ret->value = s->value;
|
||||
next_token(s);
|
||||
break;
|
||||
|
||||
case TOK_VARIABLE:
|
||||
ret = new_expr(TE_VARIABLE, 0);
|
||||
ret->bound = s->bound;
|
||||
next_token(s);
|
||||
break;
|
||||
|
||||
case TE_FUNCTION0:
|
||||
case TE_CLOSURE0:
|
||||
ret = new_expr(s->type, 0);
|
||||
ret->function = s->function;
|
||||
if (IS_CLOSURE(s->type)) ret->parameters[0] = s->context;
|
||||
next_token(s);
|
||||
if (s->type == TOK_OPEN) {
|
||||
next_token(s);
|
||||
if (s->type != TOK_CLOSE) {
|
||||
s->type = TOK_ERROR;
|
||||
} else {
|
||||
next_token(s);
|
||||
}
|
||||
}
|
||||
break;
|
||||
|
||||
case TE_FUNCTION1:
|
||||
case TE_CLOSURE1:
|
||||
ret = new_expr(s->type, 0);
|
||||
ret->function = s->function;
|
||||
if (IS_CLOSURE(s->type)) ret->parameters[1] = s->context;
|
||||
next_token(s);
|
||||
ret->parameters[0] = power(s);
|
||||
break;
|
||||
|
||||
case TE_FUNCTION2: case TE_FUNCTION3: case TE_FUNCTION4:
|
||||
case TE_FUNCTION5: case TE_FUNCTION6: case TE_FUNCTION7:
|
||||
case TE_CLOSURE2: case TE_CLOSURE3: case TE_CLOSURE4:
|
||||
case TE_CLOSURE5: case TE_CLOSURE6: case TE_CLOSURE7:
|
||||
arity = ARITY(s->type);
|
||||
|
||||
ret = new_expr(s->type, 0);
|
||||
ret->function = s->function;
|
||||
if (IS_CLOSURE(s->type)) ret->parameters[arity] = s->context;
|
||||
next_token(s);
|
||||
|
||||
if (s->type != TOK_OPEN) {
|
||||
s->type = TOK_ERROR;
|
||||
} else {
|
||||
int i;
|
||||
for(i = 0; i < arity; i++) {
|
||||
next_token(s);
|
||||
ret->parameters[i] = expr(s);
|
||||
if(s->type != TOK_SEP) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
if(s->type != TOK_CLOSE || i != arity - 1) {
|
||||
s->type = TOK_ERROR;
|
||||
} else {
|
||||
next_token(s);
|
||||
}
|
||||
}
|
||||
|
||||
break;
|
||||
|
||||
case TOK_OPEN:
|
||||
next_token(s);
|
||||
ret = list(s);
|
||||
if (s->type != TOK_CLOSE) {
|
||||
s->type = TOK_ERROR;
|
||||
} else {
|
||||
next_token(s);
|
||||
}
|
||||
break;
|
||||
|
||||
default:
|
||||
ret = new_expr(0, 0);
|
||||
s->type = TOK_ERROR;
|
||||
ret->value = NAN;
|
||||
break;
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
||||
static te_expr *power(state *s) {
|
||||
/* <power> = {("-" | "+")} <base> */
|
||||
int sign = 1;
|
||||
while (s->type == TOK_INFIX && (s->function == add || s->function == sub)) {
|
||||
if (s->function == sub) sign = -sign;
|
||||
next_token(s);
|
||||
}
|
||||
|
||||
te_expr *ret;
|
||||
|
||||
if (sign == 1) {
|
||||
ret = base(s);
|
||||
} else {
|
||||
ret = NEW_EXPR(TE_FUNCTION1 | TE_FLAG_PURE, base(s));
|
||||
ret->function = negate;
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
#ifdef TE_POW_FROM_RIGHT
|
||||
static te_expr *factor(state *s) {
|
||||
/* <factor> = <power> {"^" <power>} */
|
||||
te_expr *ret = power(s);
|
||||
|
||||
int neg = 0;
|
||||
te_expr *insertion = 0;
|
||||
|
||||
if (ret->type == (TE_FUNCTION1 | TE_FLAG_PURE) && ret->function == negate) {
|
||||
te_expr *se = ret->parameters[0];
|
||||
free(ret);
|
||||
ret = se;
|
||||
neg = 1;
|
||||
}
|
||||
|
||||
while (s->type == TOK_INFIX && (s->function == pow)) {
|
||||
te_fun2 t = s->function;
|
||||
next_token(s);
|
||||
|
||||
if (insertion) {
|
||||
/* Make exponentiation go right-to-left. */
|
||||
te_expr *insert = NEW_EXPR(TE_FUNCTION2 | TE_FLAG_PURE, insertion->parameters[1], power(s));
|
||||
insert->function = t;
|
||||
insertion->parameters[1] = insert;
|
||||
insertion = insert;
|
||||
} else {
|
||||
ret = NEW_EXPR(TE_FUNCTION2 | TE_FLAG_PURE, ret, power(s));
|
||||
ret->function = t;
|
||||
insertion = ret;
|
||||
}
|
||||
}
|
||||
|
||||
if (neg) {
|
||||
ret = NEW_EXPR(TE_FUNCTION1 | TE_FLAG_PURE, ret);
|
||||
ret->function = negate;
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
#else
|
||||
static te_expr *factor(state *s) {
|
||||
/* <factor> = <power> {"^" <power>} */
|
||||
te_expr *ret = power(s);
|
||||
|
||||
while (s->type == TOK_INFIX && (s->function == pow)) {
|
||||
te_fun2 t = s->function;
|
||||
next_token(s);
|
||||
ret = NEW_EXPR(TE_FUNCTION2 | TE_FLAG_PURE, ret, power(s));
|
||||
ret->function = t;
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
static te_expr *term(state *s) {
|
||||
/* <term> = <factor> {("*" | "/" | "%") <factor>} */
|
||||
te_expr *ret = factor(s);
|
||||
|
||||
while (s->type == TOK_INFIX && (s->function == mul || s->function == divide || s->function == fmod)) {
|
||||
te_fun2 t = s->function;
|
||||
next_token(s);
|
||||
ret = NEW_EXPR(TE_FUNCTION2 | TE_FLAG_PURE, ret, factor(s));
|
||||
ret->function = t;
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
||||
static te_expr *expr(state *s) {
|
||||
/* <expr> = <term> {("+" | "-") <term>} */
|
||||
te_expr *ret = term(s);
|
||||
|
||||
while (s->type == TOK_INFIX && (s->function == add || s->function == sub)) {
|
||||
te_fun2 t = s->function;
|
||||
next_token(s);
|
||||
ret = NEW_EXPR(TE_FUNCTION2 | TE_FLAG_PURE, ret, term(s));
|
||||
ret->function = t;
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
||||
static te_expr *list(state *s) {
|
||||
/* <list> = <expr> {"," <expr>} */
|
||||
te_expr *ret = expr(s);
|
||||
|
||||
while (s->type == TOK_SEP) {
|
||||
next_token(s);
|
||||
ret = NEW_EXPR(TE_FUNCTION2 | TE_FLAG_PURE, ret, expr(s));
|
||||
ret->function = comma;
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
||||
#define TE_FUN(...) ((double(*)(__VA_ARGS__))n->function)
|
||||
#define M(e) te_eval(n->parameters[e])
|
||||
|
||||
|
||||
double te_eval(const te_expr *n) {
|
||||
if (!n) return NAN;
|
||||
|
||||
switch(TYPE_MASK(n->type)) {
|
||||
case TE_CONSTANT: return n->value;
|
||||
case TE_VARIABLE: return *n->bound;
|
||||
|
||||
case TE_FUNCTION0: case TE_FUNCTION1: case TE_FUNCTION2: case TE_FUNCTION3:
|
||||
case TE_FUNCTION4: case TE_FUNCTION5: case TE_FUNCTION6: case TE_FUNCTION7:
|
||||
switch(ARITY(n->type)) {
|
||||
case 0: return TE_FUN(void)();
|
||||
case 1: return TE_FUN(double)(M(0));
|
||||
case 2: return TE_FUN(double, double)(M(0), M(1));
|
||||
case 3: return TE_FUN(double, double, double)(M(0), M(1), M(2));
|
||||
case 4: return TE_FUN(double, double, double, double)(M(0), M(1), M(2), M(3));
|
||||
case 5: return TE_FUN(double, double, double, double, double)(M(0), M(1), M(2), M(3), M(4));
|
||||
case 6: return TE_FUN(double, double, double, double, double, double)(M(0), M(1), M(2), M(3), M(4), M(5));
|
||||
case 7: return TE_FUN(double, double, double, double, double, double, double)(M(0), M(1), M(2), M(3), M(4), M(5), M(6));
|
||||
default: return NAN;
|
||||
}
|
||||
|
||||
case TE_CLOSURE0: case TE_CLOSURE1: case TE_CLOSURE2: case TE_CLOSURE3:
|
||||
case TE_CLOSURE4: case TE_CLOSURE5: case TE_CLOSURE6: case TE_CLOSURE7:
|
||||
switch(ARITY(n->type)) {
|
||||
case 0: return TE_FUN(void*)(n->parameters[0]);
|
||||
case 1: return TE_FUN(void*, double)(n->parameters[1], M(0));
|
||||
case 2: return TE_FUN(void*, double, double)(n->parameters[2], M(0), M(1));
|
||||
case 3: return TE_FUN(void*, double, double, double)(n->parameters[3], M(0), M(1), M(2));
|
||||
case 4: return TE_FUN(void*, double, double, double, double)(n->parameters[4], M(0), M(1), M(2), M(3));
|
||||
case 5: return TE_FUN(void*, double, double, double, double, double)(n->parameters[5], M(0), M(1), M(2), M(3), M(4));
|
||||
case 6: return TE_FUN(void*, double, double, double, double, double, double)(n->parameters[6], M(0), M(1), M(2), M(3), M(4), M(5));
|
||||
case 7: return TE_FUN(void*, double, double, double, double, double, double, double)(n->parameters[7], M(0), M(1), M(2), M(3), M(4), M(5), M(6));
|
||||
default: return NAN;
|
||||
}
|
||||
|
||||
default: return NAN;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#undef TE_FUN
|
||||
#undef M
|
||||
|
||||
static void optimize(te_expr *n) {
|
||||
/* Evaluates as much as possible. */
|
||||
if (n->type == TE_CONSTANT) return;
|
||||
if (n->type == TE_VARIABLE) return;
|
||||
|
||||
/* Only optimize out functions flagged as pure. */
|
||||
if (IS_PURE(n->type)) {
|
||||
const int arity = ARITY(n->type);
|
||||
int known = 1;
|
||||
int i;
|
||||
for (i = 0; i < arity; ++i) {
|
||||
optimize(n->parameters[i]);
|
||||
if (((te_expr*)(n->parameters[i]))->type != TE_CONSTANT) {
|
||||
known = 0;
|
||||
}
|
||||
}
|
||||
if (known) {
|
||||
const double value = te_eval(n);
|
||||
te_free_parameters(n);
|
||||
n->type = TE_CONSTANT;
|
||||
n->value = value;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
te_expr *te_compile(const char *expression, const te_variable *variables, int var_count, int *error) {
|
||||
state s;
|
||||
s.start = s.next = expression;
|
||||
s.lookup = variables;
|
||||
s.lookup_len = var_count;
|
||||
|
||||
next_token(&s);
|
||||
te_expr *root = list(&s);
|
||||
|
||||
if (s.type != TOK_END) {
|
||||
te_free(root);
|
||||
if (error) {
|
||||
*error = (s.next - s.start);
|
||||
if (*error == 0) *error = 1;
|
||||
}
|
||||
return 0;
|
||||
} else {
|
||||
optimize(root);
|
||||
if (error) *error = 0;
|
||||
return root;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
double te_interp(const char *expression, int *error) {
|
||||
te_expr *n = te_compile(expression, 0, 0, error);
|
||||
double ret;
|
||||
if (n) {
|
||||
ret = te_eval(n);
|
||||
te_free(n);
|
||||
} else {
|
||||
ret = NAN;
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
static void pn (const te_expr *n, int depth) {
|
||||
int i, arity;
|
||||
printf("%*s", depth, "");
|
||||
|
||||
switch(TYPE_MASK(n->type)) {
|
||||
case TE_CONSTANT: printf("%f\n", n->value); break;
|
||||
case TE_VARIABLE: printf("bound %p\n", n->bound); break;
|
||||
|
||||
case TE_FUNCTION0: case TE_FUNCTION1: case TE_FUNCTION2: case TE_FUNCTION3:
|
||||
case TE_FUNCTION4: case TE_FUNCTION5: case TE_FUNCTION6: case TE_FUNCTION7:
|
||||
case TE_CLOSURE0: case TE_CLOSURE1: case TE_CLOSURE2: case TE_CLOSURE3:
|
||||
case TE_CLOSURE4: case TE_CLOSURE5: case TE_CLOSURE6: case TE_CLOSURE7:
|
||||
arity = ARITY(n->type);
|
||||
printf("f%d", arity);
|
||||
for(i = 0; i < arity; i++) {
|
||||
printf(" %p", n->parameters[i]);
|
||||
}
|
||||
printf("\n");
|
||||
for(i = 0; i < arity; i++) {
|
||||
pn(n->parameters[i], depth + 1);
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void te_print(const te_expr *n) {
|
||||
pn(n, 0);
|
||||
}
|
86
tinyexpr.h
Normal file
86
tinyexpr.h
Normal file
|
@ -0,0 +1,86 @@
|
|||
/*
|
||||
* TINYEXPR - Tiny recursive descent parser and evaluation engine in C
|
||||
*
|
||||
* Copyright (c) 2015, 2016 Lewis Van Winkle
|
||||
*
|
||||
* http://CodePlea.com
|
||||
*
|
||||
* This software is provided 'as-is', without any express or implied
|
||||
* warranty. In no event will the authors be held liable for any damages
|
||||
* arising from the use of this software.
|
||||
*
|
||||
* Permission is granted to anyone to use this software for any purpose,
|
||||
* including commercial applications, and to alter it and redistribute it
|
||||
* freely, subject to the following restrictions:
|
||||
*
|
||||
* 1. The origin of this software must not be misrepresented; you must not
|
||||
* claim that you wrote the original software. If you use this software
|
||||
* in a product, an acknowledgement in the product documentation would be
|
||||
* appreciated but is not required.
|
||||
* 2. Altered source versions must be plainly marked as such, and must not be
|
||||
* misrepresented as being the original software.
|
||||
* 3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
#ifndef __TINYEXPR_H__
|
||||
#define __TINYEXPR_H__
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
typedef struct te_expr {
|
||||
int type;
|
||||
union {double value; const double *bound; const void *function;};
|
||||
void *parameters[1];
|
||||
} te_expr;
|
||||
|
||||
|
||||
enum {
|
||||
TE_VARIABLE = 0,
|
||||
|
||||
TE_FUNCTION0 = 8, TE_FUNCTION1, TE_FUNCTION2, TE_FUNCTION3,
|
||||
TE_FUNCTION4, TE_FUNCTION5, TE_FUNCTION6, TE_FUNCTION7,
|
||||
|
||||
TE_CLOSURE0 = 16, TE_CLOSURE1, TE_CLOSURE2, TE_CLOSURE3,
|
||||
TE_CLOSURE4, TE_CLOSURE5, TE_CLOSURE6, TE_CLOSURE7,
|
||||
|
||||
TE_FLAG_PURE = 32
|
||||
};
|
||||
|
||||
typedef struct te_variable {
|
||||
const char *name;
|
||||
const void *address;
|
||||
int type;
|
||||
void *context;
|
||||
} te_variable;
|
||||
|
||||
|
||||
|
||||
/* Parses the input expression, evaluates it, and frees it. */
|
||||
/* Returns NaN on error. */
|
||||
double te_interp(const char *expression, int *error);
|
||||
|
||||
/* Parses the input expression and binds variables. */
|
||||
/* Returns NULL on error. */
|
||||
te_expr *te_compile(const char *expression, const te_variable *variables, int var_count, int *error);
|
||||
|
||||
/* Evaluates the expression. */
|
||||
double te_eval(const te_expr *n);
|
||||
|
||||
/* Prints debugging information on the syntax tree. */
|
||||
void te_print(const te_expr *n);
|
||||
|
||||
/* Frees the expression. */
|
||||
/* This is safe to call on NULL pointers. */
|
||||
void te_free(te_expr *n);
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /*__TINYEXPR_H__*/
|
|
@ -20,6 +20,7 @@
|
|||
#include "xcb.h"
|
||||
#include "unlock_indicator.h"
|
||||
#include "xinerama.h"
|
||||
#include "tinyexpr.h"
|
||||
|
||||
/* clock stuff */
|
||||
#include <time.h>
|
||||
|
@ -28,6 +29,8 @@
|
|||
#define BUTTON_SPACE (BUTTON_RADIUS + 5)
|
||||
#define BUTTON_CENTER (BUTTON_RADIUS + 5)
|
||||
#define BUTTON_DIAMETER (2 * BUTTON_SPACE)
|
||||
#define CLOCK_WIDTH 400
|
||||
#define CLOCK_HEIGHT 200
|
||||
|
||||
/*******************************************************************************
|
||||
* Variables defined in i3lock.c.
|
||||
|
@ -80,6 +83,8 @@ extern char time_format[32];
|
|||
extern char date_format[32];
|
||||
extern char time_font[32];
|
||||
extern char date_font[32];
|
||||
extern char clock_x_expr[32];
|
||||
extern char clock_y_expr[32];
|
||||
/* Whether the failed attempts should be displayed. */
|
||||
extern bool show_failed_attempts;
|
||||
/* Number of failed unlock attempts. */
|
||||
|
@ -126,6 +131,8 @@ static double scaling_factor(void) {
|
|||
xcb_pixmap_t draw_image(uint32_t *resolution) {
|
||||
xcb_pixmap_t bg_pixmap = XCB_NONE;
|
||||
int button_diameter_physical = ceil(scaling_factor() * BUTTON_DIAMETER);
|
||||
int clock_width_physical = ceil(scaling_factor() * CLOCK_WIDTH);
|
||||
int clock_height_physical = ceil(scaling_factor() * CLOCK_HEIGHT);
|
||||
DEBUG("scaling_factor is %.f, physical diameter is %d px\n",
|
||||
scaling_factor(), button_diameter_physical);
|
||||
|
||||
|
@ -134,10 +141,15 @@ xcb_pixmap_t draw_image(uint32_t *resolution) {
|
|||
bg_pixmap = create_bg_pixmap(conn, screen, resolution, color);
|
||||
/* Initialize cairo: Create one in-memory surface to render the unlock
|
||||
* indicator on, create one XCB surface to actually draw (one or more,
|
||||
* depending on the amount of screens) unlock indicators on. */
|
||||
* depending on the amount of screens) unlock indicators on.
|
||||
* A third surface for the clock display is created as well
|
||||
*/
|
||||
cairo_surface_t *output = cairo_image_surface_create(CAIRO_FORMAT_ARGB32, button_diameter_physical, button_diameter_physical);
|
||||
cairo_t *ctx = cairo_create(output);
|
||||
|
||||
cairo_surface_t *clock_output = cairo_image_surface_create(CAIRO_FORMAT_ARGB32, clock_width_physical, clock_height_physical);
|
||||
cairo_t *clock_ctx = cairo_create(clock_output);
|
||||
|
||||
cairo_surface_t *xcb_output = cairo_xcb_surface_create(conn, bg_pixmap, vistype, resolution[0], resolution[1]);
|
||||
cairo_t *xcb_ctx = cairo_create(xcb_output);
|
||||
|
||||
|
@ -272,7 +284,7 @@ xcb_pixmap_t draw_image(uint32_t *resolution) {
|
|||
timeinfo = localtime(&rawtime);
|
||||
|
||||
if (unlock_indicator &&
|
||||
(unlock_state >= STATE_KEY_PRESSED || auth_state > STATE_AUTH_IDLE || show_clock)) {
|
||||
(unlock_state >= STATE_KEY_PRESSED || auth_state > STATE_AUTH_IDLE)) {
|
||||
cairo_scale(ctx, scaling_factor(), scaling_factor());
|
||||
/* Draw a (centered) circle with transparent background. */
|
||||
cairo_set_line_width(ctx, 7.0);
|
||||
|
@ -348,13 +360,8 @@ xcb_pixmap_t draw_image(uint32_t *resolution) {
|
|||
|
||||
cairo_set_line_width(ctx, 10.0);
|
||||
|
||||
/* Display a (centered) text of the current PAM state. */
|
||||
char *text = NULL;
|
||||
|
||||
char *date = NULL;
|
||||
char time_text[40] = {0};
|
||||
char date_text[40] = {0};
|
||||
|
||||
/* We don't want to show more than a 3-digit number. */
|
||||
char buf[4];
|
||||
|
||||
|
@ -383,52 +390,10 @@ xcb_pixmap_t draw_image(uint32_t *resolution) {
|
|||
text = buf;
|
||||
}
|
||||
cairo_set_font_size(ctx, 32.0);
|
||||
} else if (show_clock) {
|
||||
strftime(time_text, 40, time_format, timeinfo);
|
||||
strftime(date_text, 40, date_format, timeinfo);
|
||||
text = time_text;
|
||||
date = date_text;
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
if (text) {
|
||||
cairo_text_extents_t extents;
|
||||
double x, y;
|
||||
|
||||
cairo_select_font_face(ctx, time_font, CAIRO_FONT_SLANT_NORMAL, CAIRO_FONT_WEIGHT_NORMAL);
|
||||
cairo_set_source_rgba(ctx, (double)clock16[0]/255, (double)clock16[1]/255, (double)clock16[2]/255, (double)clock16[3]/255);
|
||||
cairo_text_extents(ctx, text, &extents);
|
||||
x = BUTTON_CENTER - ((extents.width / 2) + extents.x_bearing);
|
||||
if (date) {
|
||||
y = BUTTON_CENTER - ((extents.height / 2) + extents.y_bearing) - 6;
|
||||
} else {
|
||||
y = BUTTON_CENTER - ((extents.height / 2) + extents.y_bearing);
|
||||
}
|
||||
|
||||
cairo_move_to(ctx, x, y);
|
||||
cairo_show_text(ctx, text);
|
||||
cairo_close_path(ctx);
|
||||
}
|
||||
|
||||
if (date) {
|
||||
cairo_text_extents_t extents;
|
||||
double x, y;
|
||||
|
||||
cairo_select_font_face(ctx, date_font, CAIRO_FONT_SLANT_NORMAL, CAIRO_FONT_WEIGHT_NORMAL);
|
||||
cairo_set_source_rgba(ctx, (double)clock16[0]/255, (double)clock16[1]/255, (double)clock16[2]/255, (double)clock16[3]/255);
|
||||
cairo_set_font_size(ctx, 14.0);
|
||||
|
||||
cairo_text_extents(ctx, date, &extents);
|
||||
x = BUTTON_CENTER - ((extents.width / 2) + extents.x_bearing);
|
||||
y = BUTTON_CENTER - ((extents.height / 2) + extents.y_bearing) + 14;
|
||||
|
||||
cairo_move_to(ctx, x, y);
|
||||
cairo_show_text(ctx, date);
|
||||
cairo_close_path(ctx);
|
||||
}
|
||||
|
||||
|
||||
if (auth_state == STATE_AUTH_WRONG && (modifier_string != NULL)) {
|
||||
cairo_text_extents_t extents;
|
||||
double x, y;
|
||||
|
@ -487,39 +452,141 @@ xcb_pixmap_t draw_image(uint32_t *resolution) {
|
|||
cairo_stroke(ctx);
|
||||
}
|
||||
}
|
||||
if (show_clock) {
|
||||
char *text = NULL;
|
||||
char *date = NULL;
|
||||
char time_text[40] = {0};
|
||||
char date_text[40] = {0};
|
||||
|
||||
strftime(time_text, 40, time_format, timeinfo);
|
||||
strftime(date_text, 40, date_format, timeinfo);
|
||||
text = time_text;
|
||||
date = date_text;
|
||||
|
||||
double width = 0;
|
||||
double height = 0;
|
||||
|
||||
if (text) {
|
||||
double x, y;
|
||||
cairo_text_extents_t extents;
|
||||
cairo_set_font_size(clock_ctx, 32.0);
|
||||
cairo_select_font_face(clock_ctx, time_font, CAIRO_FONT_SLANT_NORMAL, CAIRO_FONT_WEIGHT_NORMAL);
|
||||
cairo_set_source_rgba(clock_ctx, (double)clock16[0]/255, (double)clock16[1]/255, (double)clock16[2]/255, (double)clock16[3]/255);
|
||||
cairo_text_extents(clock_ctx, text, &extents);
|
||||
x = CLOCK_WIDTH/2 - ((extents.width / 2) + extents.x_bearing);
|
||||
y = CLOCK_HEIGHT/2 - extents.height;
|
||||
|
||||
cairo_move_to(clock_ctx, x, y);
|
||||
cairo_show_text(clock_ctx, text);
|
||||
cairo_close_path(clock_ctx);
|
||||
}
|
||||
|
||||
if (date) {
|
||||
double x, y;
|
||||
cairo_text_extents_t extents;
|
||||
|
||||
cairo_select_font_face(clock_ctx, date_font, CAIRO_FONT_SLANT_NORMAL, CAIRO_FONT_WEIGHT_NORMAL);
|
||||
cairo_set_source_rgba(clock_ctx, (double)clock16[0]/255, (double)clock16[1]/255, (double)clock16[2]/255, (double)clock16[3]/255);
|
||||
cairo_set_font_size(clock_ctx, 14.0);
|
||||
|
||||
cairo_text_extents(clock_ctx, date, &extents);
|
||||
x = CLOCK_WIDTH/2 - ((extents.width / 2) + extents.x_bearing);
|
||||
y = CLOCK_HEIGHT/2;
|
||||
|
||||
cairo_move_to(clock_ctx, x, y);
|
||||
cairo_show_text(clock_ctx, date);
|
||||
cairo_close_path(clock_ctx);
|
||||
}
|
||||
}
|
||||
|
||||
double ix, iy;
|
||||
double x, y;
|
||||
double w, h;
|
||||
|
||||
int te_x_err;
|
||||
int te_y_err;
|
||||
// variable mapping for evaluating the clock position expression
|
||||
te_variable vars[] = {{"ix", &ix}, {"iy", &iy}, {"w", &w}, {"h", &h}};
|
||||
|
||||
te_expr *x_expr = te_compile(clock_x_expr, vars, 4, &te_x_err);
|
||||
te_expr *y_expr = te_compile(clock_y_expr, vars, 4, &te_y_err);
|
||||
|
||||
|
||||
|
||||
if (xr_screens > 0) {
|
||||
/* Composite the unlock indicator in the middle of each screen. */
|
||||
// excuse me, just gonna hack something in right here
|
||||
if (screen_number != -1 && screen_number < xr_screens) {
|
||||
int x = (xr_resolutions[screen_number].x + ((xr_resolutions[screen_number].width / 2) - (button_diameter_physical / 2)));
|
||||
int y = (xr_resolutions[screen_number].y + ((xr_resolutions[screen_number].height / 2) - (button_diameter_physical / 2)));
|
||||
cairo_set_source_surface(xcb_ctx, output, x, y);
|
||||
cairo_rectangle(xcb_ctx, x, y, button_diameter_physical, button_diameter_physical);
|
||||
cairo_fill(xcb_ctx); }
|
||||
else {
|
||||
for (int screen = 0; screen < xr_screens; screen++) {
|
||||
int x = (xr_resolutions[screen].x + ((xr_resolutions[screen].width / 2) - (button_diameter_physical / 2)));
|
||||
int y = (xr_resolutions[screen].y + ((xr_resolutions[screen].height / 2) - (button_diameter_physical / 2)));
|
||||
w = xr_resolutions[screen_number].width;
|
||||
h = xr_resolutions[screen_number].height;
|
||||
ix = xr_resolutions[screen_number].x + (xr_resolutions[screen_number].width / 2);
|
||||
iy = xr_resolutions[screen_number].y + (xr_resolutions[screen_number].height / 2);
|
||||
x = ix - (button_diameter_physical / 2);
|
||||
y = iy - (button_diameter_physical / 2);
|
||||
cairo_set_source_surface(xcb_ctx, output, x, y);
|
||||
cairo_rectangle(xcb_ctx, x, y, button_diameter_physical, button_diameter_physical);
|
||||
cairo_fill(xcb_ctx);
|
||||
|
||||
if (x_expr && y_expr) {
|
||||
double clock_x = xr_resolutions[screen_number].x + te_eval(x_expr) - CLOCK_WIDTH / 2;
|
||||
double clock_y = xr_resolutions[screen_number].y + te_eval(y_expr) - CLOCK_HEIGHT / 2;
|
||||
cairo_set_source_surface(xcb_ctx, clock_output, clock_x, clock_y);
|
||||
cairo_rectangle(xcb_ctx, clock_x, clock_y, CLOCK_WIDTH, CLOCK_HEIGHT);
|
||||
cairo_fill(xcb_ctx);
|
||||
}
|
||||
}
|
||||
else {
|
||||
for (int screen = 0; screen < xr_screens; screen++) {
|
||||
w = xr_resolutions[screen].width;
|
||||
h = xr_resolutions[screen].height;
|
||||
ix = xr_resolutions[screen].x + (xr_resolutions[screen].width / 2);
|
||||
iy = xr_resolutions[screen].y + (xr_resolutions[screen].height / 2);
|
||||
x = ix - (button_diameter_physical / 2);
|
||||
y = iy - (button_diameter_physical / 2);
|
||||
cairo_set_source_surface(xcb_ctx, output, x, y);
|
||||
cairo_rectangle(xcb_ctx, x, y, button_diameter_physical, button_diameter_physical);
|
||||
cairo_fill(xcb_ctx);
|
||||
if (x_expr && y_expr) {
|
||||
double clock_x = xr_resolutions[screen].x + te_eval(x_expr) - CLOCK_WIDTH / 2;
|
||||
double clock_y = xr_resolutions[screen].y + te_eval(y_expr) - CLOCK_HEIGHT / 2;
|
||||
cairo_set_source_surface(xcb_ctx, clock_output, clock_x, clock_y);
|
||||
cairo_rectangle(xcb_ctx, clock_x, clock_y, CLOCK_WIDTH, CLOCK_HEIGHT);
|
||||
cairo_fill(xcb_ctx);
|
||||
}
|
||||
else {
|
||||
DEBUG("error codes for exprs are %d, %d\n", te_x_err, te_y_err);
|
||||
DEBUG("exprs: %s, %s\n", clock_x_expr, clock_y_expr);
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
/* We have no information about the screen sizes/positions, so we just
|
||||
* place the unlock indicator in the middle of the X root window and
|
||||
* hope for the best. */
|
||||
int x = (last_resolution[0] / 2) - (button_diameter_physical / 2);
|
||||
int y = (last_resolution[1] / 2) - (button_diameter_physical / 2);
|
||||
w = last_resolution[0];
|
||||
h = last_resolution[1];
|
||||
ix = last_resolution[0] / 2;
|
||||
iy = last_resolution[1] / 2;
|
||||
x = ix - (button_diameter_physical / 2);
|
||||
y = iy - (button_diameter_physical / 2);
|
||||
cairo_set_source_surface(xcb_ctx, output, x, y);
|
||||
cairo_rectangle(xcb_ctx, x, y, button_diameter_physical, button_diameter_physical);
|
||||
cairo_fill(xcb_ctx);
|
||||
if (x_expr && y_expr) {
|
||||
double clock_x = te_eval(x_expr) - CLOCK_WIDTH / 2;
|
||||
double clock_y = te_eval(y_expr) - CLOCK_HEIGHT / 2;
|
||||
DEBUG("Placing clock at %f, %f\n", clock_x, clock_y);
|
||||
cairo_set_source_surface(xcb_ctx, clock_output, clock_x, clock_y);
|
||||
cairo_rectangle(xcb_ctx, clock_x, clock_y, CLOCK_WIDTH, CLOCK_HEIGHT);
|
||||
cairo_fill(xcb_ctx);
|
||||
}
|
||||
}
|
||||
|
||||
cairo_surface_destroy(xcb_output);
|
||||
cairo_surface_destroy(clock_output);
|
||||
cairo_surface_destroy(output);
|
||||
cairo_destroy(ctx);
|
||||
cairo_destroy(clock_ctx);
|
||||
cairo_destroy(xcb_ctx);
|
||||
return bg_pixmap;
|
||||
}
|
||||
|
|
Loading…
Reference in a new issue