mirror of
https://github.com/Raymo111/i3lock-color.git
synced 2024-11-11 13:50:52 -05:00
211 lines
8.7 KiB
C
211 lines
8.7 KiB
C
/*
|
|
* vim:ts=4:sw=4:expandtab
|
|
*
|
|
* © 2016 Sebastian Frysztak
|
|
*
|
|
* See LICENSE for licensing information
|
|
*
|
|
*/
|
|
|
|
#include "blur.h"
|
|
#include <math.h>
|
|
#include <xmmintrin.h>
|
|
#include <immintrin.h>
|
|
|
|
#define ALIGN16 __attribute__((aligned(16)))
|
|
#define KERNEL_SIZE 7
|
|
#define HALF_KERNEL KERNEL_SIZE / 2
|
|
|
|
// number of xmm registers needed to store
|
|
// input pixels for given kernel size
|
|
#define REGISTERS_CNT (KERNEL_SIZE + 4/2) / 4
|
|
|
|
// AVX intrinsics missing in GCC
|
|
#define _mm256_set_m128i(v0, v1) _mm256_insertf128_si256(_mm256_castsi128_si256(v1), (v0), 1)
|
|
#define _mm256_setr_m128i(v0, v1) _mm256_set_m128i((v1), (v0))
|
|
#define _mm256_set_m128(v0, v1) _mm256_insertf128_ps(_mm256_castps128_ps256(v1), (v0), 1)
|
|
#define _mm256_setr_m128(v0, v1) _mm256_set_m128((v1), (v0))
|
|
|
|
void blur_impl_sse2(uint32_t *src, uint32_t *dst, int width, int height, float sigma) {
|
|
// prepare kernel
|
|
float kernel[KERNEL_SIZE];
|
|
float coeff = 1.0 / sqrtf(2 * M_PI * sigma * sigma), sum = 0;
|
|
|
|
for (int i = 0; i < KERNEL_SIZE; i++) {
|
|
float x = HALF_KERNEL - i;
|
|
kernel[i] = coeff * expf(-x * x / (2.0 * sigma * sigma));
|
|
sum += kernel[i];
|
|
}
|
|
|
|
// normalize kernel
|
|
for (int i = 0; i < KERNEL_SIZE; i++)
|
|
kernel[i] /= sum;
|
|
|
|
// horizontal pass includes image transposition:
|
|
// instead of writing pixel src[x] to dst[x],
|
|
// we write it to transposed location.
|
|
// (to be exact: dst[height * current_column + current_row])
|
|
blur_impl_horizontal_pass_sse2(src, dst, kernel, width, height);
|
|
blur_impl_horizontal_pass_sse2(dst, src, kernel, height, width);
|
|
}
|
|
|
|
void blur_impl_horizontal_pass_sse2(uint32_t *src, uint32_t *dst, float *kernel, int width, int height) {
|
|
for (int row = 0; row < height; row++) {
|
|
for (int column = 0; column < width; column++, src++) {
|
|
__m128i rgbaIn[REGISTERS_CNT];
|
|
|
|
// handle borders
|
|
int leftBorder = column < HALF_KERNEL;
|
|
int rightBorder = column > width - HALF_KERNEL;
|
|
uint32_t _rgbaIn[KERNEL_SIZE] ALIGN16;
|
|
int i = 0;
|
|
if (leftBorder) {
|
|
// for kernel size 7x7 and column == 0, we have:
|
|
// x x x P0 P1 P2 P3
|
|
// first loop mirrors P{0..3} to fill x's,
|
|
// second one loads P{0..3}
|
|
for (; i < HALF_KERNEL - column; i++)
|
|
_rgbaIn[i] = *(src + (HALF_KERNEL - i));
|
|
for (; i < KERNEL_SIZE; i++)
|
|
_rgbaIn[i] = *(src - (HALF_KERNEL - i));
|
|
|
|
for (int k = 0; k < REGISTERS_CNT; k++)
|
|
rgbaIn[k] = _mm_load_si128((__m128i*)(_rgbaIn + 4*k));
|
|
} else if (rightBorder) {
|
|
for (; i < width - column; i++)
|
|
_rgbaIn[i] = *(src + i);
|
|
for (int k = 0; i < KERNEL_SIZE; i++, k++)
|
|
_rgbaIn[i] = *(src - k);
|
|
|
|
for (int k = 0; k < REGISTERS_CNT; k++)
|
|
rgbaIn[k] = _mm_load_si128((__m128i*)(_rgbaIn + 4*k));
|
|
} else {
|
|
for (int k = 0; k < REGISTERS_CNT; k++)
|
|
rgbaIn[k] = _mm_loadu_si128((__m128i*)(src + 4*k - HALF_KERNEL));
|
|
}
|
|
|
|
__m128i zero = _mm_setzero_si128();
|
|
__m128i acc = _mm_setzero_si128();
|
|
|
|
acc = _mm_add_epi16(acc, _mm_unpacklo_epi8(rgbaIn[0], zero));
|
|
acc = _mm_add_epi16(acc, _mm_unpackhi_epi8(rgbaIn[0], zero));
|
|
acc = _mm_add_epi16(acc, _mm_unpacklo_epi8(rgbaIn[1], zero));
|
|
|
|
// kernel size equals to 7, but we can only load multiples of 4 pixels
|
|
// we have to set 8th pixel to zero
|
|
acc = _mm_add_epi16(acc, _mm_andnot_si128(_mm_set_epi32(0xFFFFFFFF, 0xFFFFFFFF, 0, 0),
|
|
_mm_unpackhi_epi8(rgbaIn[1], zero)));
|
|
acc = _mm_add_epi32(_mm_unpacklo_epi16(acc, zero),
|
|
_mm_unpackhi_epi16(acc, zero));
|
|
|
|
acc = _mm_cvtps_epi32(_mm_mul_ps(_mm_cvtepi32_ps(acc),
|
|
_mm_set1_ps(1/((float)KERNEL_SIZE))));
|
|
|
|
*(dst + height * column + row) =
|
|
_mm_cvtsi128_si32(_mm_packus_epi16(_mm_packs_epi32(acc, zero), zero));
|
|
}
|
|
}
|
|
}
|
|
|
|
void blur_impl_avx(uint32_t *src, uint32_t *dst, int width, int height, float sigma) {
|
|
// prepare kernel
|
|
float kernel[KERNEL_SIZE];
|
|
float coeff = 1.0 / sqrtf(2 * M_PI * sigma * sigma), sum = 0;
|
|
|
|
for (int i = 0; i < KERNEL_SIZE; i++) {
|
|
float x = HALF_KERNEL - i;
|
|
kernel[i] = coeff * expf(-x * x / (2.0 * sigma * sigma));
|
|
sum += kernel[i];
|
|
}
|
|
|
|
// normalize kernel
|
|
for (int i = 0; i < KERNEL_SIZE; i++)
|
|
kernel[i] /= sum;
|
|
|
|
// horizontal pass includes image transposition:
|
|
// instead of writing pixel src[x] to dst[x],
|
|
// we write it to transposed location.
|
|
// (to be exact: dst[height * current_column + current_row])
|
|
blur_impl_horizontal_pass_avx(src, dst, kernel, width, height);
|
|
blur_impl_horizontal_pass_avx(dst, src, kernel, height, width);
|
|
}
|
|
|
|
void blur_impl_horizontal_pass_avx(uint32_t *src, uint32_t *dst, float *kernel, int width, int height) {
|
|
__m256 kernels[HALF_KERNEL];
|
|
for (int i = 0, k = 0; i < HALF_KERNEL; i++, k += 2)
|
|
kernels[i] = _mm256_setr_m128(_mm_set1_ps(kernel[k]), _mm_set1_ps(kernel[k+1]));
|
|
|
|
for (int row = 0; row < height; row++) {
|
|
for (int column = 0; column < width; column++, src++) {
|
|
__m128i rgbaIn[REGISTERS_CNT];
|
|
|
|
// handle borders
|
|
int leftBorder = column < HALF_KERNEL;
|
|
int rightBorder = column > width - HALF_KERNEL;
|
|
uint32_t _rgbaIn[KERNEL_SIZE] ALIGN16;
|
|
int i = 0;
|
|
if (leftBorder) {
|
|
// for kernel size 7x7 and column == 0, we have:
|
|
// x x x P0 P1 P2 P3
|
|
// first loop mirrors P{0..3} to fill x's,
|
|
// second one loads P{0..3}
|
|
for (; i < HALF_KERNEL - column; i++)
|
|
_rgbaIn[i] = *(src + (HALF_KERNEL - i));
|
|
for (; i < KERNEL_SIZE; i++)
|
|
_rgbaIn[i] = *(src - (HALF_KERNEL - i));
|
|
|
|
for (int k = 0; k < REGISTERS_CNT; k++)
|
|
rgbaIn[k] = _mm_load_si128((__m128i*)(_rgbaIn + 4*k));
|
|
} else if (rightBorder) {
|
|
for (; i < width - column; i++)
|
|
_rgbaIn[i] = *(src + i);
|
|
for (int k = 0; i < KERNEL_SIZE; i++, k++)
|
|
_rgbaIn[i] = *(src - k);
|
|
|
|
for (int k = 0; k < REGISTERS_CNT; k++)
|
|
rgbaIn[k] = _mm_load_si128((__m128i*)(_rgbaIn + 4*k));
|
|
} else {
|
|
for (int k = 0; k < REGISTERS_CNT; k++)
|
|
rgbaIn[k] = _mm_loadu_si128((__m128i*)(src + 4*k - HALF_KERNEL));
|
|
}
|
|
|
|
// unpack each pixel, convert to float,
|
|
// multiply by corresponding kernel value
|
|
// and add to accumulator
|
|
__m128i tmp;
|
|
__m128i zero = _mm_setzero_si128();
|
|
__m128 rgba_ps_128;
|
|
__m256 rgba_ps;
|
|
__m256 acc = _mm256_setzero_ps();
|
|
int counter = 0;
|
|
|
|
for (int i = 0; i < 3; i++)
|
|
{
|
|
tmp = _mm_unpacklo_epi8(rgbaIn[i], zero);
|
|
rgba_ps = _mm256_cvtepi32_ps(_mm256_setr_m128i(_mm_unpacklo_epi16(tmp, zero),
|
|
_mm_unpackhi_epi16(tmp, zero)));
|
|
acc = _mm256_add_ps(acc, _mm256_mul_ps(rgba_ps, kernels[counter++]));
|
|
|
|
tmp = _mm_unpackhi_epi8(rgbaIn[i], zero);
|
|
rgba_ps = _mm256_cvtepi32_ps(_mm256_setr_m128i(_mm_unpacklo_epi16(tmp, zero),
|
|
_mm_unpackhi_epi16(tmp, zero)));
|
|
acc = _mm256_add_ps(acc, _mm256_mul_ps(rgba_ps, kernels[counter++]));
|
|
}
|
|
|
|
tmp = _mm_unpacklo_epi8(rgbaIn[3], zero);
|
|
rgba_ps = _mm256_cvtepi32_ps(_mm256_setr_m128i(_mm_unpacklo_epi16(tmp, zero),
|
|
_mm_unpackhi_epi16(tmp, zero)));
|
|
acc = _mm256_add_ps(acc, _mm256_mul_ps(rgba_ps, kernels[counter]));
|
|
|
|
tmp = _mm_unpackhi_epi8(rgbaIn[3], zero);
|
|
rgba_ps_128 = _mm_cvtepi32_ps(_mm_unpacklo_epi16(tmp, zero));
|
|
rgba_ps_128 = _mm_mul_ps(rgba_ps_128, _mm_set1_ps(kernel[KERNEL_SIZE-1]));
|
|
rgba_ps_128 = _mm_add_ps(rgba_ps_128, _mm_add_ps(_mm256_extractf128_ps(acc, 0),
|
|
_mm256_extractf128_ps(acc, 1)));
|
|
|
|
__m128i rgbaOut = _mm_packs_epi32(_mm_cvtps_epi32(rgba_ps_128), zero);
|
|
rgbaOut = _mm_packus_epi16(rgbaOut, zero);
|
|
*(dst + height * column + row) = _mm_cvtsi128_si32(rgbaOut);
|
|
}
|
|
}
|
|
}
|