1
0
Fork 0
mirror of https://github.com/yshui/picom.git synced 2024-11-11 13:51:02 -05:00
picom/src/backend/gl/blur.c

905 lines
29 KiB
C
Raw Normal View History

#include <locale.h>
#include <stdbool.h>
#include <backend/backend.h>
#include <backend/backend_common.h>
#include "gl_common.h"
struct gl_blur_context {
enum blur_method method;
gl_blur_shader_t *blur_shader;
/// Temporary textures used for blurring
GLuint *blur_textures;
int blur_texture_count;
/// Temporary fbos used for blurring
GLuint *blur_fbos;
int blur_fbo_count;
/// Cached dimensions of each blur_texture. They are the same size as the target,
/// so they are always big enough without resizing.
/// Turns out calling glTexImage to resize is expensive, so we avoid that.
struct texture_size {
int width;
int height;
} * texture_sizes;
/// Cached dimensions of the offscreen framebuffer. It's the same size as the
/// target but is expanded in either direction by resize_width / resize_height.
int fb_width, fb_height;
/// How much do we need to resize the damaged region for blurring.
int resize_width, resize_height;
int npasses;
};
/**
* Blur contents in a particular region.
*/
bool gl_kernel_blur(double opacity, struct gl_blur_context *bctx, const rect_t *extent,
struct backend_image *mask, coord_t mask_dst, const GLuint vao[2],
const int vao_nelems[2], GLuint source_texture,
geometry_t source_size, GLuint target_fbo, GLuint default_mask) {
int dst_y_fb_coord = bctx->fb_height - extent->y2;
int curr = 0;
for (int i = 0; i < bctx->npasses; ++i) {
const gl_blur_shader_t *p = &bctx->blur_shader[i];
assert(p->prog);
assert(bctx->blur_textures[curr]);
// The origin to use when sampling from the source texture
GLint texorig_x = extent->x1, texorig_y = dst_y_fb_coord;
GLint tex_width, tex_height;
GLuint src_texture;
if (i == 0) {
src_texture = source_texture;
tex_width = source_size.width;
tex_height = source_size.height;
} else {
src_texture = bctx->blur_textures[curr];
auto src_size = bctx->texture_sizes[curr];
tex_width = src_size.width;
tex_height = src_size.height;
}
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, src_texture);
glUseProgram(p->prog);
glUniform2f(p->uniform_pixel_norm, 1.0F / (GLfloat)tex_width,
1.0F / (GLfloat)tex_height);
glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_2D, default_mask);
glUniform1i(p->uniform_mask_tex, 1);
glUniform2f(p->uniform_mask_offset, 0.0F, 0.0F);
glUniform1i(p->uniform_mask_inverted, 0);
glUniform1f(p->uniform_mask_corner_radius, 0.0F);
// The number of indices in the selected vertex array
GLsizei nelems;
if (i < bctx->npasses - 1) {
assert(bctx->blur_fbos[0]);
assert(bctx->blur_textures[!curr]);
// not last pass, draw into framebuffer, with resized regions
glBindVertexArray(vao[1]);
nelems = vao_nelems[1];
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, bctx->blur_fbos[0]);
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,
GL_TEXTURE_2D, bctx->blur_textures[!curr], 0);
glDrawBuffer(GL_COLOR_ATTACHMENT0);
if (!gl_check_fb_complete(GL_FRAMEBUFFER)) {
return false;
}
glUniform1f(p->uniform_opacity, 1.0F);
} else {
// last pass, draw directly into the back buffer, with origin
// regions. And apply mask if requested
if (mask) {
auto inner = (struct gl_texture *)mask->inner;
glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_2D, inner->texture);
glUniform1i(p->uniform_mask_inverted, mask->color_inverted);
glUniform1f(p->uniform_mask_corner_radius,
(float)mask->corner_radius);
glUniform2f(
p->uniform_mask_offset, (float)(mask_dst.x),
(float)(bctx->fb_height - mask_dst.y - inner->height));
}
glBindVertexArray(vao[0]);
nelems = vao_nelems[0];
glBindFramebuffer(GL_FRAMEBUFFER, target_fbo);
glUniform1f(p->uniform_opacity, (float)opacity);
}
glUniform2f(p->texorig_loc, (GLfloat)texorig_x, (GLfloat)texorig_y);
glDrawElements(GL_TRIANGLES, nelems, GL_UNSIGNED_INT, NULL);
// XXX use multiple draw calls is probably going to be slow than
// just simply blur the whole area.
curr = !curr;
}
return true;
}
bool gl_dual_kawase_blur(double opacity, struct gl_blur_context *bctx, const rect_t *extent,
struct backend_image *mask, coord_t mask_dst, const GLuint vao[2],
const int vao_nelems[2], GLuint source_texture,
geometry_t source_size, GLuint target_fbo, GLuint default_mask) {
int dst_y_fb_coord = bctx->fb_height - extent->y2;
int iterations = bctx->blur_texture_count;
int scale_factor = 1;
// Kawase downsample pass
const gl_blur_shader_t *down_pass = &bctx->blur_shader[0];
assert(down_pass->prog);
glUseProgram(down_pass->prog);
glUniform2f(down_pass->texorig_loc, (GLfloat)extent->x1, (GLfloat)dst_y_fb_coord);
for (int i = 0; i < iterations; ++i) {
// Scale output width / height by half in each iteration
scale_factor <<= 1;
GLuint src_texture;
int tex_width, tex_height;
if (i == 0) {
// first pass: copy from back buffer
src_texture = source_texture;
tex_width = source_size.width;
tex_height = source_size.height;
} else {
// copy from previous pass
src_texture = bctx->blur_textures[i - 1];
auto src_size = bctx->texture_sizes[i - 1];
tex_width = src_size.width;
tex_height = src_size.height;
}
assert(src_texture);
assert(bctx->blur_fbos[i]);
glBindTexture(GL_TEXTURE_2D, src_texture);
glBindVertexArray(vao[1]);
auto nelems = vao_nelems[1];
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, bctx->blur_fbos[i]);
glDrawBuffer(GL_COLOR_ATTACHMENT0);
glUniform1f(down_pass->scale_loc, (GLfloat)scale_factor);
glUniform2f(down_pass->uniform_pixel_norm, 1.0F / (GLfloat)tex_width,
1.0F / (GLfloat)tex_height);
glDrawElements(GL_TRIANGLES, nelems, GL_UNSIGNED_INT, NULL);
}
// Kawase upsample pass
const gl_blur_shader_t *up_pass = &bctx->blur_shader[1];
assert(up_pass->prog);
glUseProgram(up_pass->prog);
glUniform2f(up_pass->texorig_loc, (GLfloat)extent->x1, (GLfloat)dst_y_fb_coord);
for (int i = iterations - 1; i >= 0; --i) {
// Scale output width / height back by two in each iteration
scale_factor >>= 1;
const GLuint src_texture = bctx->blur_textures[i];
assert(src_texture);
// Calculate normalized half-width/-height of a src pixel
auto src_size = bctx->texture_sizes[i];
int tex_width = src_size.width;
int tex_height = src_size.height;
// The number of indices in the selected vertex array
GLsizei nelems;
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, src_texture);
glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_2D, default_mask);
glUniform1i(up_pass->uniform_mask_tex, 1);
glUniform2f(up_pass->uniform_mask_offset, 0.0F, 0.0F);
glUniform1i(up_pass->uniform_mask_inverted, 0);
glUniform1f(up_pass->uniform_mask_corner_radius, 0.0F);
if (i > 0) {
assert(bctx->blur_fbos[i - 1]);
// not last pass, draw into next framebuffer
glBindVertexArray(vao[1]);
nelems = vao_nelems[1];
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, bctx->blur_fbos[i - 1]);
glDrawBuffer(GL_COLOR_ATTACHMENT0);
glUniform1f(up_pass->uniform_opacity, (GLfloat)1);
} else {
// last pass, draw directly into the back buffer
if (mask) {
auto inner = (struct gl_texture *)mask->inner;
glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_2D, inner->texture);
glUniform1i(up_pass->uniform_mask_inverted,
mask->color_inverted);
glUniform1f(up_pass->uniform_mask_corner_radius,
(float)mask->corner_radius);
glUniform2f(
up_pass->uniform_mask_offset, (float)(mask_dst.x),
(float)(bctx->fb_height - mask_dst.y - inner->height));
}
glBindVertexArray(vao[0]);
nelems = vao_nelems[0];
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, target_fbo);
glUniform1f(up_pass->uniform_opacity, (GLfloat)opacity);
}
glUniform1f(up_pass->scale_loc, (GLfloat)scale_factor);
glUniform2f(up_pass->uniform_pixel_norm, 1.0F / (GLfloat)tex_width,
1.0F / (GLfloat)tex_height);
glDrawElements(GL_TRIANGLES, nelems, GL_UNSIGNED_INT, NULL);
}
return true;
}
bool gl_blur_impl(double opacity, struct gl_blur_context *bctx, void *mask, coord_t mask_dst,
const region_t *reg_blur, const region_t *reg_visible attr_unused,
GLuint source_texture, geometry_t source_size, GLuint target_fbo,
GLuint default_mask, bool high_precision) {
bool ret = false;
if (source_size.width != bctx->fb_width || source_size.height != bctx->fb_height) {
// Resize the temporary textures used for blur in case the root
// size changed
bctx->fb_width = source_size.width;
bctx->fb_height = source_size.height;
for (int i = 0; i < bctx->blur_texture_count; ++i) {
auto tex_size = bctx->texture_sizes + i;
if (bctx->method == BLUR_METHOD_DUAL_KAWASE) {
// Use smaller textures for each iteration (quarter of the
// previous texture)
tex_size->width = 1 + ((bctx->fb_width - 1) >> (i + 1));
tex_size->height = 1 + ((bctx->fb_height - 1) >> (i + 1));
} else {
tex_size->width = bctx->fb_width;
tex_size->height = bctx->fb_height;
}
glBindTexture(GL_TEXTURE_2D, bctx->blur_textures[i]);
GLint format = GL_RGBA8;
if (high_precision) {
format = GL_RGBA16;
}
glTexImage2D(GL_TEXTURE_2D, 0, format, tex_size->width,
tex_size->height, 0, GL_BGRA, GL_UNSIGNED_BYTE, NULL);
if (bctx->method == BLUR_METHOD_DUAL_KAWASE) {
// Attach texture to FBO target
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, bctx->blur_fbos[i]);
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER,
GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D,
bctx->blur_textures[i], 0);
if (!gl_check_fb_complete(GL_FRAMEBUFFER)) {
glBindFramebuffer(GL_FRAMEBUFFER, 0);
return false;
}
}
}
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0);
}
// Remainder: regions are in Xorg coordinates
auto reg_blur_resized =
resize_region(reg_blur, bctx->resize_width, bctx->resize_height);
const rect_t *extent = pixman_region32_extents((region_t *)reg_blur),
*extent_resized = pixman_region32_extents(&reg_blur_resized);
int width = extent->x2 - extent->x1, height = extent->y2 - extent->y1;
if (width == 0 || height == 0) {
return true;
}
int nrects, nrects_resized;
const rect_t *rects = pixman_region32_rectangles((region_t *)reg_blur, &nrects),
*rects_resized =
pixman_region32_rectangles(&reg_blur_resized, &nrects_resized);
if (!nrects || !nrects_resized) {
return true;
}
auto coord = ccalloc(nrects * 16, GLint);
auto indices = ccalloc(nrects * 6, GLuint);
auto extent_height = extent_resized->y2 - extent_resized->y1;
x_rect_to_coords(
nrects, rects, (coord_t){.x = extent_resized->x1, .y = extent_resized->y1},
extent_height, bctx->fb_height, source_size.height, false, coord, indices);
auto coord_resized = ccalloc(nrects_resized * 16, GLint);
auto indices_resized = ccalloc(nrects_resized * 6, GLuint);
x_rect_to_coords(nrects_resized, rects_resized,
(coord_t){.x = extent_resized->x1, .y = extent_resized->y1},
extent_height, bctx->fb_height, bctx->fb_height, false,
coord_resized, indices_resized);
pixman_region32_fini(&reg_blur_resized);
GLuint vao[2];
glGenVertexArrays(2, vao);
GLuint bo[4];
glGenBuffers(4, bo);
glBindVertexArray(vao[0]);
glBindBuffer(GL_ARRAY_BUFFER, bo[0]);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, bo[1]);
glBufferData(GL_ARRAY_BUFFER, (long)sizeof(*coord) * nrects * 16, coord, GL_STATIC_DRAW);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, (long)sizeof(*indices) * nrects * 6,
indices, GL_STATIC_DRAW);
glEnableVertexAttribArray(vert_coord_loc);
glEnableVertexAttribArray(vert_in_texcoord_loc);
glVertexAttribPointer(vert_coord_loc, 2, GL_INT, GL_FALSE, sizeof(GLint) * 4, NULL);
glVertexAttribPointer(vert_in_texcoord_loc, 2, GL_INT, GL_FALSE,
sizeof(GLint) * 4, (void *)(sizeof(GLint) * 2));
glBindVertexArray(vao[1]);
glBindBuffer(GL_ARRAY_BUFFER, bo[2]);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, bo[3]);
glBufferData(GL_ARRAY_BUFFER, (long)sizeof(*coord_resized) * nrects_resized * 16,
coord_resized, GL_STATIC_DRAW);
glBufferData(GL_ELEMENT_ARRAY_BUFFER,
(long)sizeof(*indices_resized) * nrects_resized * 6, indices_resized,
GL_STATIC_DRAW);
glEnableVertexAttribArray(vert_coord_loc);
glEnableVertexAttribArray(vert_in_texcoord_loc);
glVertexAttribPointer(vert_coord_loc, 2, GL_INT, GL_FALSE, sizeof(GLint) * 4, NULL);
glVertexAttribPointer(vert_in_texcoord_loc, 2, GL_INT, GL_FALSE,
sizeof(GLint) * 4, (void *)(sizeof(GLint) * 2));
int vao_nelems[2] = {nrects * 6, nrects_resized * 6};
if (bctx->method == BLUR_METHOD_DUAL_KAWASE) {
ret = gl_dual_kawase_blur(opacity, bctx, extent_resized, mask, mask_dst,
vao, vao_nelems, source_texture, source_size,
target_fbo, default_mask);
} else {
ret = gl_kernel_blur(opacity, bctx, extent_resized, mask, mask_dst, vao,
vao_nelems, source_texture, source_size, target_fbo,
default_mask);
}
glBindFramebuffer(GL_FRAMEBUFFER, 0);
glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_2D, 0);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, 0);
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
glDeleteBuffers(4, bo);
glBindVertexArray(0);
glDeleteVertexArrays(2, vao);
glUseProgram(0);
free(indices);
free(coord);
free(indices_resized);
free(coord_resized);
gl_check_err();
return ret;
}
bool gl_blur(backend_t *base, double opacity, void *ctx, void *mask, coord_t mask_dst,
const region_t *reg_blur, const region_t *reg_visible attr_unused) {
auto gd = (struct gl_data *)base;
auto bctx = (struct gl_blur_context *)ctx;
return gl_blur_impl(opacity, bctx, mask, mask_dst, reg_blur, reg_visible,
gd->back_texture,
(geometry_t){.width = gd->width, .height = gd->height},
gd->back_fbo, gd->default_mask_texture, gd->dithered_present);
}
static inline void gl_free_blur_shader(gl_blur_shader_t *shader) {
if (shader->prog) {
glDeleteProgram(shader->prog);
}
shader->prog = 0;
}
void gl_destroy_blur_context(backend_t *base attr_unused, void *ctx) {
auto bctx = (struct gl_blur_context *)ctx;
// Free GLSL shaders/programs
for (int i = 0; i < bctx->npasses; ++i) {
gl_free_blur_shader(&bctx->blur_shader[i]);
}
free(bctx->blur_shader);
if (bctx->blur_texture_count && bctx->blur_textures) {
glDeleteTextures(bctx->blur_texture_count, bctx->blur_textures);
free(bctx->blur_textures);
}
if (bctx->blur_texture_count && bctx->texture_sizes) {
free(bctx->texture_sizes);
}
if (bctx->blur_fbo_count && bctx->blur_fbos) {
glDeleteFramebuffers(bctx->blur_fbo_count, bctx->blur_fbos);
free(bctx->blur_fbos);
}
bctx->blur_texture_count = 0;
bctx->blur_fbo_count = 0;
free(bctx);
gl_check_err();
}
/**
* Initialize GL blur filters.
*/
bool gl_create_kernel_blur_context(void *blur_context, GLfloat *projection,
enum blur_method method, void *args) {
bool success = false;
auto ctx = (struct gl_blur_context *)blur_context;
struct conv **kernels;
int nkernels;
ctx->method = BLUR_METHOD_KERNEL;
if (method == BLUR_METHOD_KERNEL) {
nkernels = ((struct kernel_blur_args *)args)->kernel_count;
kernels = ((struct kernel_blur_args *)args)->kernels;
} else {
kernels = generate_blur_kernel(method, args, &nkernels);
}
if (!nkernels) {
ctx->method = BLUR_METHOD_NONE;
return true;
}
// Specify required textures and FBOs
ctx->blur_texture_count = 2;
ctx->blur_fbo_count = 1;
ctx->blur_shader = ccalloc(max2(2, nkernels), gl_blur_shader_t);
char *lc_numeric_old = strdup(setlocale(LC_NUMERIC, NULL));
// Enforce LC_NUMERIC locale "C" here to make sure decimal point is sane
// Thanks to hiciu for reporting.
setlocale(LC_NUMERIC, "C");
// clang-format off
static const char *FRAG_SHADER_BLUR = GLSL(330,
%s\n // other extension pragmas
uniform sampler2D tex_src;
uniform vec2 pixel_norm;
uniform float opacity;
in vec2 texcoord;
out vec4 out_color;
float mask_factor();
void main() {
vec2 uv = texcoord * pixel_norm;
vec4 sum = vec4(0.0, 0.0, 0.0, 0.0);
%s //body of the convolution
out_color = sum / float(%.7g) * opacity * mask_factor();
}
);
static const char *FRAG_SHADER_BLUR_ADD = QUOTE(
sum += float(%.7g) * texture2D(tex_src, uv + pixel_norm * vec2(%.7g, %.7g));
);
// clang-format on
const char *shader_add = FRAG_SHADER_BLUR_ADD;
char *extension = strdup("");
for (int i = 0; i < nkernels; i++) {
auto kern = kernels[i];
// Build shader
int width = kern->w, height = kern->h;
int nele = width * height;
// '%.7g' is at most 14 characters, inserted 3 times
size_t body_len = (strlen(shader_add) + 42) * (uint)nele;
char *shader_body = ccalloc(body_len, char);
char *pc = shader_body;
// Make use of the linear interpolation hardware by sampling 2 pixels with
// one texture access by sampling between both pixels based on their
// relative weight. Easiest done in a single dimension as 2D bilinear
// filtering would raise additional constraints on the kernels. Therefore
// only use interpolation along the larger dimension.
double sum = 0.0;
if (width > height) {
// use interpolation in x dimension (width)
for (int j = 0; j < height; ++j) {
for (int k = 0; k < width; k += 2) {
double val1, val2;
val1 = kern->data[j * width + k];
val2 = (k + 1 < width)
? kern->data[j * width + k + 1]
: 0;
double combined_weight = val1 + val2;
if (combined_weight == 0) {
continue;
}
sum += combined_weight;
double offset_x =
k + (val2 / combined_weight) - (width / 2);
double offset_y = j - (height / 2);
pc += snprintf(
pc, body_len - (ulong)(pc - shader_body),
shader_add, combined_weight, offset_x, offset_y);
assert(pc < shader_body + body_len);
}
}
} else {
// use interpolation in y dimension (height)
for (int j = 0; j < height; j += 2) {
for (int k = 0; k < width; ++k) {
double val1, val2;
val1 = kern->data[j * width + k];
val2 = (j + 1 < height)
? kern->data[(j + 1) * width + k]
: 0;
double combined_weight = val1 + val2;
if (combined_weight == 0) {
continue;
}
sum += combined_weight;
double offset_x = k - (width / 2);
double offset_y =
j + (val2 / combined_weight) - (height / 2);
pc += snprintf(
pc, body_len - (ulong)(pc - shader_body),
shader_add, combined_weight, offset_x, offset_y);
assert(pc < shader_body + body_len);
}
}
}
auto pass = ctx->blur_shader + i;
size_t shader_len = strlen(FRAG_SHADER_BLUR) + strlen(extension) +
strlen(shader_body) + 10 /* sum */ +
1 /* null terminator */;
char *shader_str = ccalloc(shader_len, char);
auto real_shader_len = snprintf(shader_str, shader_len, FRAG_SHADER_BLUR,
extension, shader_body, sum);
CHECK(real_shader_len >= 0);
CHECK((size_t)real_shader_len < shader_len);
free(shader_body);
// Build program
pass->prog = gl_create_program_from_strv(
(const char *[]){vertex_shader, NULL},
(const char *[]){shader_str, masking_glsl, NULL});
free(shader_str);
if (!pass->prog) {
log_error("Failed to create GLSL program.");
success = false;
goto out;
}
glBindFragDataLocation(pass->prog, 0, "out_color");
// Get uniform addresses
bind_uniform(pass, pixel_norm);
bind_uniform(pass, opacity);
bind_uniform(pass, mask_tex);
bind_uniform(pass, mask_offset);
bind_uniform(pass, mask_inverted);
bind_uniform(pass, mask_corner_radius);
log_info("Uniform locations: %d %d %d %d %d", pass->uniform_mask_tex,
pass->uniform_mask_offset, pass->uniform_mask_inverted,
pass->uniform_mask_corner_radius, pass->uniform_opacity);
pass->texorig_loc = glGetUniformLocationChecked(pass->prog, "texorig");
// Setup projection matrix
glUseProgram(pass->prog);
int pml = glGetUniformLocationChecked(pass->prog, "projection");
glUniformMatrix4fv(pml, 1, false, projection);
glUseProgram(0);
ctx->resize_width += kern->w / 2;
ctx->resize_height += kern->h / 2;
}
if (nkernels == 1) {
// Generate an extra null pass so we don't need special code path for
// the single pass case
auto pass = &ctx->blur_shader[1];
pass->prog = gl_create_program_from_strv(
(const char *[]){vertex_shader, NULL},
(const char *[]){copy_with_mask_frag, masking_glsl, NULL});
pass->uniform_pixel_norm = -1;
pass->uniform_opacity = -1;
pass->texorig_loc = glGetUniformLocationChecked(pass->prog, "texorig");
bind_uniform(pass, mask_tex);
bind_uniform(pass, mask_offset);
bind_uniform(pass, mask_inverted);
bind_uniform(pass, mask_corner_radius);
// Setup projection matrix
glUseProgram(pass->prog);
int pml = glGetUniformLocationChecked(pass->prog, "projection");
glUniformMatrix4fv(pml, 1, false, projection);
glUseProgram(0);
ctx->npasses = 2;
} else {
ctx->npasses = nkernels;
}
success = true;
out:
if (method != BLUR_METHOD_KERNEL) {
// We generated the blur kernels, so we need to free them
for (int i = 0; i < nkernels; i++) {
free(kernels[i]);
}
free(kernels);
}
free(extension);
// Restore LC_NUMERIC
setlocale(LC_NUMERIC, lc_numeric_old);
free(lc_numeric_old);
return success;
}
bool gl_create_dual_kawase_blur_context(void *blur_context, GLfloat *projection,
enum blur_method method, void *args) {
bool success = false;
auto ctx = (struct gl_blur_context *)blur_context;
ctx->method = method;
auto blur_params = generate_dual_kawase_params(args);
// Specify required textures and FBOs
ctx->blur_texture_count = blur_params->iterations;
ctx->blur_fbo_count = blur_params->iterations;
ctx->resize_width += blur_params->expand;
ctx->resize_height += blur_params->expand;
ctx->npasses = 2;
ctx->blur_shader = ccalloc(ctx->npasses, gl_blur_shader_t);
char *lc_numeric_old = strdup(setlocale(LC_NUMERIC, NULL));
// Enforce LC_NUMERIC locale "C" here to make sure decimal point is sane
// Thanks to hiciu for reporting.
setlocale(LC_NUMERIC, "C");
// Dual-kawase downsample shader / program
auto down_pass = ctx->blur_shader;
{
// clang-format off
static const char *FRAG_SHADER_DOWN = GLSL(330,
uniform sampler2D tex_src;
uniform float scale = 1.0;
uniform vec2 pixel_norm;
in vec2 texcoord;
out vec4 out_color;
void main() {
vec2 offset = %.7g * pixel_norm;
vec2 uv = texcoord * pixel_norm * (2.0 / scale);
vec4 sum = texture2D(tex_src, uv) * 4.0;
sum += texture2D(tex_src, uv - vec2(0.5, 0.5) * offset);
sum += texture2D(tex_src, uv + vec2(0.5, 0.5) * offset);
sum += texture2D(tex_src, uv + vec2(0.5, -0.5) * offset);
sum += texture2D(tex_src, uv - vec2(0.5, -0.5) * offset);
out_color = sum / 8.0;
}
);
// clang-format on
// Build shader
size_t shader_len =
strlen(FRAG_SHADER_DOWN) + 10 /* offset */ + 1 /* null terminator */;
char *shader_str = ccalloc(shader_len, char);
auto real_shader_len =
snprintf(shader_str, shader_len, FRAG_SHADER_DOWN, blur_params->offset);
CHECK(real_shader_len >= 0);
CHECK((size_t)real_shader_len < shader_len);
// Build program
down_pass->prog = gl_create_program_from_str(vertex_shader, shader_str);
free(shader_str);
if (!down_pass->prog) {
log_error("Failed to create GLSL program.");
success = false;
goto out;
}
glBindFragDataLocation(down_pass->prog, 0, "out_color");
// Get uniform addresses
bind_uniform(down_pass, pixel_norm);
down_pass->texorig_loc =
glGetUniformLocationChecked(down_pass->prog, "texorig");
down_pass->scale_loc =
glGetUniformLocationChecked(down_pass->prog, "scale");
// Setup projection matrix
glUseProgram(down_pass->prog);
int pml = glGetUniformLocationChecked(down_pass->prog, "projection");
glUniformMatrix4fv(pml, 1, false, projection);
glUseProgram(0);
}
// Dual-kawase upsample shader / program
auto up_pass = ctx->blur_shader + 1;
{
// clang-format off
static const char *FRAG_SHADER_UP = GLSL(330,
uniform sampler2D tex_src;
uniform float scale = 1.0;
uniform vec2 pixel_norm;
uniform float opacity;
in vec2 texcoord;
out vec4 out_color;
float mask_factor();
void main() {
vec2 offset = %.7g * pixel_norm;
vec2 uv = texcoord * pixel_norm / (2 * scale);
vec4 sum = texture2D(tex_src, uv + vec2(-1.0, 0.0) * offset);
sum += texture2D(tex_src, uv + vec2(-0.5, 0.5) * offset) * 2.0;
sum += texture2D(tex_src, uv + vec2(0.0, 1.0) * offset);
sum += texture2D(tex_src, uv + vec2(0.5, 0.5) * offset) * 2.0;
sum += texture2D(tex_src, uv + vec2(1.0, 0.0) * offset);
sum += texture2D(tex_src, uv + vec2(0.5, -0.5) * offset) * 2.0;
sum += texture2D(tex_src, uv + vec2(0.0, -1.0) * offset);
sum += texture2D(tex_src, uv + vec2(-0.5, -0.5) * offset) * 2.0;
out_color = sum / 12.0 * opacity * mask_factor();
}
);
// clang-format on
// Build shader
size_t shader_len =
strlen(FRAG_SHADER_UP) + 10 /* offset */ + 1 /* null terminator */;
char *shader_str = ccalloc(shader_len, char);
auto real_shader_len =
snprintf(shader_str, shader_len, FRAG_SHADER_UP, blur_params->offset);
CHECK(real_shader_len >= 0);
CHECK((size_t)real_shader_len < shader_len);
// Build program
up_pass->prog = gl_create_program_from_strv(
(const char *[]){vertex_shader, NULL},
(const char *[]){shader_str, masking_glsl, NULL});
free(shader_str);
if (!up_pass->prog) {
log_error("Failed to create GLSL program.");
success = false;
goto out;
}
glBindFragDataLocation(up_pass->prog, 0, "out_color");
// Get uniform addresses
bind_uniform(up_pass, pixel_norm);
bind_uniform(up_pass, opacity);
bind_uniform(up_pass, mask_tex);
bind_uniform(up_pass, mask_offset);
bind_uniform(up_pass, mask_inverted);
bind_uniform(up_pass, mask_corner_radius);
up_pass->texorig_loc =
glGetUniformLocationChecked(up_pass->prog, "texorig");
up_pass->scale_loc = glGetUniformLocationChecked(up_pass->prog, "scale");
// Setup projection matrix
glUseProgram(up_pass->prog);
int pml = glGetUniformLocationChecked(up_pass->prog, "projection");
glUniformMatrix4fv(pml, 1, false, projection);
glUseProgram(0);
}
success = true;
out:
free(blur_params);
if (!success) {
ctx = NULL;
}
// Restore LC_NUMERIC
setlocale(LC_NUMERIC, lc_numeric_old);
free(lc_numeric_old);
return success;
}
void *gl_create_blur_context(backend_t *base, enum blur_method method, void *args) {
bool success;
auto gd = (struct gl_data *)base;
auto ctx = ccalloc(1, struct gl_blur_context);
if (!method || method >= BLUR_METHOD_INVALID) {
ctx->method = BLUR_METHOD_NONE;
return ctx;
}
// Set projection matrix to gl viewport dimensions so we can use screen
// coordinates for all vertices
// Note: OpenGL matrices are column major
GLint viewport_dimensions[2];
glGetIntegerv(GL_MAX_VIEWPORT_DIMS, viewport_dimensions);
GLfloat projection_matrix[4][4] = {{2.0F / (GLfloat)viewport_dimensions[0], 0, 0, 0},
{0, 2.0F / (GLfloat)viewport_dimensions[1], 0, 0},
{0, 0, 0, 0},
{-1, -1, 0, 1}};
if (method == BLUR_METHOD_DUAL_KAWASE) {
success = gl_create_dual_kawase_blur_context(ctx, projection_matrix[0],
method, args);
} else {
success =
gl_create_kernel_blur_context(ctx, projection_matrix[0], method, args);
}
if (!success || ctx->method == BLUR_METHOD_NONE) {
goto out;
}
// Texture size will be defined by gl_blur
ctx->blur_textures = ccalloc(ctx->blur_texture_count, GLuint);
ctx->texture_sizes = ccalloc(ctx->blur_texture_count, struct texture_size);
glGenTextures(ctx->blur_texture_count, ctx->blur_textures);
for (int i = 0; i < ctx->blur_texture_count; ++i) {
glBindTexture(GL_TEXTURE_2D, ctx->blur_textures[i]);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
}
// Generate FBO and textures when needed
ctx->blur_fbos = ccalloc(ctx->blur_fbo_count, GLuint);
glGenFramebuffers(ctx->blur_fbo_count, ctx->blur_fbos);
for (int i = 0; i < ctx->blur_fbo_count; ++i) {
if (!ctx->blur_fbos[i]) {
log_error("Failed to generate framebuffer objects for blur");
success = false;
goto out;
}
}
out:
if (!success) {
gl_destroy_blur_context(&gd->base, ctx);
ctx = NULL;
}
gl_check_err();
return ctx;
}
void gl_get_blur_size(void *blur_context, int *width, int *height) {
auto ctx = (struct gl_blur_context *)blur_context;
*width = ctx->resize_width;
*height = ctx->resize_height;
}