// SPDX-License-Identifier: MPL-2.0 // Copyright (c) Yuxuan Shui #include #include #include "compiler.h" #include "kernel.h" #include "log.h" #include "utils.h" /// Sum a region convolution kernel. Region is defined by a width x height rectangle whose /// top left corner is at (x, y) double sum_kernel(const conv *map, int x, int y, int width, int height) { double ret = 0; // Compute sum of values which are "in range" int xstart = normalize_i_range(x, 0, map->w), xend = normalize_i_range(width + x, 0, map->w); int ystart = normalize_i_range(y, 0, map->h), yend = normalize_i_range(height + y, 0, map->h); assert(yend >= ystart && xend >= xstart); int d = map->w; if (map->rsum) { // See sum_kernel_preprocess double v1 = xstart ? map->rsum[(yend - 1) * d + xstart - 1] : 0; double v2 = ystart ? map->rsum[(ystart - 1) * d + xend - 1] : 0; double v3 = (xstart && ystart) ? map->rsum[(ystart - 1) * d + xstart - 1] : 0; return map->rsum[(yend - 1) * d + xend - 1] - v1 - v2 + v3; } for (int yi = ystart; yi < yend; yi++) { for (int xi = xstart; xi < xend; xi++) { ret += map->data[yi * d + xi]; } } return ret; } double sum_kernel_normalized(const conv *map, int x, int y, int width, int height) { double ret = sum_kernel(map, x, y, width, height); if (ret < 0) { ret = 0; } if (ret > 1) { ret = 1; } return ret; } static inline double attr_const gaussian(double r, double x, double y) { // Formula can be found here: // https://en.wikipedia.org/wiki/Gaussian_blur#Mathematics // Except a special case for r == 0 to produce sharp shadows if (r == 0) { return 1; } return exp(-0.5 * (x * x + y * y) / (r * r)) / (2 * M_PI * r * r); } conv *gaussian_kernel(double r, int size) { conv *c; int center = size / 2; double t; assert(size % 2 == 1); c = cvalloc(sizeof(conv) + (size_t)(size * size) * sizeof(double)); c->w = c->h = size; c->rsum = NULL; t = 0.0; for (int y = 0; y < size; y++) { for (int x = 0; x < size; x++) { double g = gaussian(r, x - center, y - center); t += g; c->data[y * size + x] = g; } } for (int y = 0; y < size; y++) { for (int x = 0; x < size; x++) { c->data[y * size + x] /= t; } } return c; } /// Estimate the element of the sum of the first row in a gaussian kernel with standard /// deviation `r` and size `size`, static inline double estimate_first_row_sum(double size, double r) { // `factor` is integral of gaussian from -size to size double factor = erf(size / r / sqrt(2)); // `a` is gaussian at (size, 0) double a = exp(-0.5 * size * size / (r * r)) / sqrt(2 * M_PI) / r; // The sum of the whole kernel is normalized to 1, i.e. each element is divided by // factor sqaured. So the sum of the first row is a * factor / factor^2 = a / // factor return a / factor; } /// Pick a suitable gaussian kernel standard deviation for a given kernel size. The /// returned radius is the maximum possible radius (<= size*2) that satisfies no sum of /// the rows in the kernel are less than `row_limit` (up to certain precision). double gaussian_kernel_std_for_size(double size, double row_limit) { assert(size > 0); if (row_limit >= 1.0 / 2.0 / size) { return size * 2; } double l = 0, r = size * 2; while (r - l > 1e-2) { double mid = (l + r) / 2.0; double vmid = estimate_first_row_sum(size, mid); if (vmid > row_limit) { r = mid; } else { l = mid; } } return (l + r) / 2.0; } /// Create a gaussian kernel with auto detected standard deviation. The choosen standard /// deviation tries to make sure the outer most pixels of the shadow are completely /// transparent, so the transition from shadow to the background is smooth. /// /// @param[in] shadow_radius the radius of the shadow conv *gaussian_kernel_autodetect_deviation(double shadow_radius) { assert(shadow_radius >= 0); int size = (int)(shadow_radius * 2 + 1); if (shadow_radius == 0) { return gaussian_kernel(0, size); } double std = gaussian_kernel_std_for_size(shadow_radius, 0.5 / 256.0); return gaussian_kernel(std, size); } /// preprocess kernels to make shadow generation faster /// shadow_sum[x*d+y] is the sum of the kernel from (0, 0) to (x, y), inclusive void sum_kernel_preprocess(conv *map) { if (map->rsum) { free(map->rsum); } auto sum = map->rsum = ccalloc(map->w * map->h, double); sum[0] = map->data[0]; for (int x = 1; x < map->w; x++) { sum[x] = sum[x - 1] + map->data[x]; } const int d = map->w; for (int y = 1; y < map->h; y++) { sum[y * d] = sum[(y - 1) * d] + map->data[y * d]; for (int x = 1; x < map->w; x++) { double tmp = sum[(y - 1) * d + x] + sum[y * d + x - 1] - sum[(y - 1) * d + x - 1]; sum[y * d + x] = tmp + map->data[y * d + x]; } } } // vim: set noet sw=8 ts=8 :