// SPDX-License-Identifier: MPL-2.0 // Copyright (c) Yuxuan Shui #include #include #include #include #include #include #include #include // for xcb_render_fixed_t, XXX #include "backend/backend.h" #include "common.h" #include "compiler.h" #include "config.h" #include "kernel.h" #include "log.h" #include "region.h" #include "string_utils.h" #include "types.h" #include "utils.h" #include "backend/backend_common.h" #include "backend/gl/gl_common.h" #define GLSL(version, ...) "#version " #version "\n" #__VA_ARGS__ #define QUOTE(...) #__VA_ARGS__ static const GLuint vert_coord_loc = 0; static const GLuint vert_in_texcoord_loc = 1; struct gl_blur_context { enum blur_method method; gl_blur_shader_t *blur_shader; /// Temporary textures used for blurring GLuint *blur_textures; int blur_texture_count; /// Temporary fbos used for blurring GLuint *blur_fbos; int blur_fbo_count; /// Cached dimensions of each blur_texture. They are the same size as the target, /// so they are always big enough without resizing. /// Turns out calling glTexImage to resize is expensive, so we avoid that. struct texture_size { int width; int height; } * texture_sizes; /// Cached dimensions of the offscreen framebuffer. It's the same size as the /// target but is expanded in either direction by resize_width / resize_height. int fb_width, fb_height; /// How much do we need to resize the damaged region for blurring. int resize_width, resize_height; int npasses; }; GLuint gl_create_shader(GLenum shader_type, const char *shader_str) { log_trace("===\n%s\n===", shader_str); bool success = false; GLuint shader = glCreateShader(shader_type); if (!shader) { log_error("Failed to create shader with type %#x.", shader_type); goto end; } glShaderSource(shader, 1, &shader_str, NULL); glCompileShader(shader); // Get shader status { GLint status = GL_FALSE; glGetShaderiv(shader, GL_COMPILE_STATUS, &status); if (status == GL_FALSE) { GLint log_len = 0; glGetShaderiv(shader, GL_INFO_LOG_LENGTH, &log_len); if (log_len) { char log[log_len + 1]; glGetShaderInfoLog(shader, log_len, NULL, log); log_error("Failed to compile shader with type %d: %s", shader_type, log); } goto end; } } success = true; end: if (shader && !success) { glDeleteShader(shader); shader = 0; } gl_check_err(); return shader; } GLuint gl_create_program(const GLuint *const shaders, int nshaders) { bool success = false; GLuint program = glCreateProgram(); if (!program) { log_error("Failed to create program."); goto end; } for (int i = 0; i < nshaders; ++i) { glAttachShader(program, shaders[i]); } glLinkProgram(program); // Get program status { GLint status = GL_FALSE; glGetProgramiv(program, GL_LINK_STATUS, &status); if (status == GL_FALSE) { GLint log_len = 0; glGetProgramiv(program, GL_INFO_LOG_LENGTH, &log_len); if (log_len) { char log[log_len + 1]; glGetProgramInfoLog(program, log_len, NULL, log); log_error("Failed to link program: %s", log); } goto end; } } success = true; end: if (program) { for (int i = 0; i < nshaders; ++i) { glDetachShader(program, shaders[i]); } } if (program && !success) { glDeleteProgram(program); program = 0; } gl_check_err(); return program; } /** * @brief Create a program from NULL-terminated arrays of vertex and fragment shader * strings. */ GLuint gl_create_program_from_strv(const char **vert_shaders, const char **frag_shaders) { int vert_count, frag_count; for (vert_count = 0; vert_shaders && vert_shaders[vert_count]; ++vert_count) { } for (frag_count = 0; frag_shaders && frag_shaders[frag_count]; ++frag_count) { } GLuint prog = 0; auto shaders = (GLuint *)ccalloc(vert_count + frag_count, GLuint); for (int i = 0; i < vert_count; ++i) { shaders[i] = gl_create_shader(GL_VERTEX_SHADER, vert_shaders[i]); if (shaders[i] == 0) { goto out; } } for (int i = 0; i < frag_count; ++i) { shaders[vert_count + i] = gl_create_shader(GL_FRAGMENT_SHADER, frag_shaders[i]); if (shaders[vert_count + i] == 0) { goto out; } } prog = gl_create_program(shaders, vert_count + frag_count); out: for (int i = 0; i < vert_count + frag_count; ++i) { if (shaders[i] != 0) { glDeleteShader(shaders[i]); } } free(shaders); gl_check_err(); return prog; } /** * @brief Create a program from vertex and fragment shader strings. */ GLuint gl_create_program_from_str(const char *vert_shader_str, const char *frag_shader_str) { const char *vert_shaders[2] = {vert_shader_str, NULL}; const char *frag_shaders[2] = {frag_shader_str, NULL}; return gl_create_program_from_strv(vert_shaders, frag_shaders); } void gl_destroy_window_shader(backend_t *backend_data attr_unused, void *shader) { if (!shader) { return; } auto pprogram = (gl_win_shader_t *)shader; if (pprogram->prog) { glDeleteProgram(pprogram->prog); pprogram->prog = 0; } gl_check_err(); free(shader); } /* * @brief Implements recursive part of gl_average_texture_color. * * @note In order to reduce number of textures which needs to be * allocated and deleted during this recursive render * we reuse the same two textures for render source and * destination simply by alterating between them. * Unfortunately on first iteration source_texture might * be read-only. In this case we will select auxiliary_texture as * destination_texture in order not to touch that read-only source * texture in following render iteration. * Otherwise we simply will switch source and destination textures * between each other on each render iteration. */ static GLuint _gl_average_texture_color(backend_t *base, GLuint source_texture, GLuint destination_texture, GLuint auxiliary_texture, GLuint fbo, int width, int height) { const int max_width = 1; const int max_height = 1; const int from_width = next_power_of_two(width); const int from_height = next_power_of_two(height); const int to_width = from_width > max_width ? from_width / 2 : from_width; const int to_height = from_height > max_height ? from_height / 2 : from_height; // Prepare coordinates GLint coord[] = { // top left 0, 0, // vertex coord 0, 0, // texture coord // top right to_width, 0, // vertex coord width, 0, // texture coord // bottom right to_width, to_height, // vertex coord width, height, // texture coord // bottom left 0, to_height, // vertex coord 0, height, // texture coord }; glBufferSubData(GL_ARRAY_BUFFER, 0, (long)sizeof(*coord) * 16, coord); // Prepare framebuffer for new render iteration glBindTexture(GL_TEXTURE_2D, destination_texture); glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, destination_texture, 0); gl_check_fb_complete(GL_FRAMEBUFFER); // Bind source texture as downscaling shader uniform input glBindTexture(GL_TEXTURE_2D, source_texture); // Render into framebuffer glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_INT, NULL); // Have we downscaled enough? GLuint result; if (to_width > max_width || to_height > max_height) { GLuint new_source_texture = destination_texture; GLuint new_destination_texture = auxiliary_texture != 0 ? auxiliary_texture : source_texture; result = _gl_average_texture_color(base, new_source_texture, new_destination_texture, 0, fbo, to_width, to_height); } else { result = destination_texture; } return result; } /* * @brief Builds a 1x1 texture which has color corresponding to the average of all * pixels of img by recursively rendering into texture of quorter the size (half * width and half height). * Returned texture must not be deleted, since it's owned by the gl_image. It will be * deleted when the gl_image is released. */ static GLuint gl_average_texture_color(backend_t *base, struct backend_image *img) { auto gd = (struct gl_data *)base; auto inner = (struct gl_texture *)img->inner; // Prepare textures which will be used for destination and source of rendering // during downscaling. const int texture_count = ARR_SIZE(inner->auxiliary_texture); if (!inner->auxiliary_texture[0]) { assert(!inner->auxiliary_texture[1]); glGenTextures(texture_count, inner->auxiliary_texture); glActiveTexture(GL_TEXTURE0); for (int i = 0; i < texture_count; i++) { glBindTexture(GL_TEXTURE_2D, inner->auxiliary_texture[i]); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_BORDER); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_BORDER); glTexParameteriv(GL_TEXTURE_2D, GL_TEXTURE_BORDER_COLOR, (GLint[]){0, 0, 0, 0}); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB8, inner->width, inner->height, 0, GL_BGR, GL_UNSIGNED_BYTE, NULL); } } // Prepare framebuffer used for rendering and bind it GLuint fbo; glGenFramebuffers(1, &fbo); glBindFramebuffer(GL_DRAW_FRAMEBUFFER, fbo); glDrawBuffer(GL_COLOR_ATTACHMENT0); // Enable shaders glUseProgram(gd->brightness_shader.prog); glUniform2f(glGetUniformLocationChecked(gd->brightness_shader.prog, "texsize"), (GLfloat)inner->width, (GLfloat)inner->height); // Prepare vertex attributes GLuint vao; glGenVertexArrays(1, &vao); glBindVertexArray(vao); GLuint bo[2]; glGenBuffers(2, bo); glBindBuffer(GL_ARRAY_BUFFER, bo[0]); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, bo[1]); glEnableVertexAttribArray(vert_coord_loc); glEnableVertexAttribArray(vert_in_texcoord_loc); glVertexAttribPointer(vert_coord_loc, 2, GL_INT, GL_FALSE, sizeof(GLint) * 4, NULL); glVertexAttribPointer(vert_in_texcoord_loc, 2, GL_INT, GL_FALSE, sizeof(GLint) * 4, (void *)(sizeof(GLint) * 2)); // Allocate buffers for render input GLint coord[16] = {0}; GLuint indices[] = {0, 1, 2, 2, 3, 0}; glBufferData(GL_ARRAY_BUFFER, (long)sizeof(*coord) * 16, coord, GL_DYNAMIC_DRAW); glBufferData(GL_ELEMENT_ARRAY_BUFFER, (long)sizeof(*indices) * 6, indices, GL_STATIC_DRAW); // Do actual recursive render to 1x1 texture GLuint result_texture = _gl_average_texture_color( base, inner->texture, inner->auxiliary_texture[0], inner->auxiliary_texture[1], fbo, inner->width, inner->height); // Cleanup vertex attributes glDisableVertexAttribArray(vert_coord_loc); glDisableVertexAttribArray(vert_in_texcoord_loc); glBindBuffer(GL_ARRAY_BUFFER, 0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); glDeleteBuffers(2, bo); glBindVertexArray(0); glDeleteVertexArrays(1, &vao); // Cleanup shaders glUseProgram(0); // Cleanup framebuffers glDeleteFramebuffers(1, &fbo); glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0); glDrawBuffer(GL_BACK); // Cleanup render textures glBindTexture(GL_TEXTURE_2D, 0); gl_check_err(); return result_texture; } /** * Render a region with texture data. * * @param ptex the texture * @param target the framebuffer to render into * @param dst_x,dst_y the top left corner of region where this texture * should go. In OpenGL coordinate system (important!). * @param reg_tgt the clip region, in Xorg coordinate system * @param reg_visible ignored */ static void _gl_compose(backend_t *base, struct backend_image *img, GLuint target, GLint *coord, GLuint *indices, int nrects) { auto gd = (struct gl_data *)base; auto inner = (struct gl_texture *)img->inner; if (!img || !inner->texture) { log_error("Missing texture."); return; } GLuint brightness = 0; if (img->max_brightness < 1.0) { brightness = gl_average_texture_color(base, img); } auto win_shader = inner->shader; if (!win_shader) { win_shader = gd->default_shader; } assert(win_shader); assert(win_shader->prog); glUseProgram(win_shader->prog); if (win_shader->uniform_opacity >= 0) { glUniform1f(win_shader->uniform_opacity, (float)img->opacity); } if (win_shader->uniform_invert_color >= 0) { glUniform1i(win_shader->uniform_invert_color, img->color_inverted); } if (win_shader->uniform_tex >= 0) { glUniform1i(win_shader->uniform_tex, 0); } if (win_shader->uniform_dim >= 0) { glUniform1f(win_shader->uniform_dim, (float)img->dim); } if (win_shader->uniform_brightness >= 0) { glUniform1i(win_shader->uniform_brightness, 1); } if (win_shader->uniform_max_brightness >= 0) { glUniform1f(win_shader->uniform_max_brightness, (float)img->max_brightness); } if (win_shader->uniform_corner_radius >= 0) { glUniform1f(win_shader->uniform_corner_radius, (float)img->corner_radius); } if (win_shader->uniform_border_width >= 0) { auto border_width = img->border_width; if (border_width > img->corner_radius) { border_width = 0; } glUniform1f(win_shader->uniform_border_width, (float)border_width); } if (win_shader->uniform_time >= 0) { struct timespec ts; clock_gettime(CLOCK_MONOTONIC, &ts); glUniform1f(win_shader->uniform_time, (float)ts.tv_sec * 1000.0f + (float)ts.tv_nsec / 1.0e6f); } // log_trace("Draw: %d, %d, %d, %d -> %d, %d (%d, %d) z %d\n", // x, y, width, height, dx, dy, ptex->width, ptex->height, z); // Bind texture glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_2D, brightness); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, inner->texture); GLuint vao; glGenVertexArrays(1, &vao); glBindVertexArray(vao); GLuint bo[2]; glGenBuffers(2, bo); glBindBuffer(GL_ARRAY_BUFFER, bo[0]); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, bo[1]); glBufferData(GL_ARRAY_BUFFER, (long)sizeof(*coord) * nrects * 16, coord, GL_STATIC_DRAW); glBufferData(GL_ELEMENT_ARRAY_BUFFER, (long)sizeof(*indices) * nrects * 6, indices, GL_STATIC_DRAW); glEnableVertexAttribArray(vert_coord_loc); glEnableVertexAttribArray(vert_in_texcoord_loc); glVertexAttribPointer(vert_coord_loc, 2, GL_INT, GL_FALSE, sizeof(GLint) * 4, NULL); glVertexAttribPointer(vert_in_texcoord_loc, 2, GL_INT, GL_FALSE, sizeof(GLint) * 4, (void *)(sizeof(GLint) * 2)); glBindFramebuffer(GL_DRAW_FRAMEBUFFER, target); glDrawElements(GL_TRIANGLES, nrects * 6, GL_UNSIGNED_INT, NULL); glDisableVertexAttribArray(vert_coord_loc); glDisableVertexAttribArray(vert_in_texcoord_loc); glBindVertexArray(0); glDeleteVertexArrays(1, &vao); // Cleanup glBindTexture(GL_TEXTURE_2D, 0); glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0); glDrawBuffer(GL_BACK); glBindBuffer(GL_ARRAY_BUFFER, 0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); glDeleteBuffers(2, bo); glUseProgram(0); gl_check_err(); return; } /// Convert rectangles in X coordinates to OpenGL vertex and texture coordinates /// @param[in] nrects, rects rectangles /// @param[in] dst_x, dst_y origin of the OpenGL texture, affect the calculated texture /// coordinates /// @param[in] texture_height height of the OpenGL texture /// @param[in] root_height height of the back buffer /// @param[in] y_inverted whether the texture is y inverted /// @param[out] coord, indices output static void x_rect_to_coords(int nrects, const rect_t *rects, int dst_x, int dst_y, int texture_height, int root_height, bool y_inverted, GLint *coord, GLuint *indices) { dst_y = root_height - dst_y; if (y_inverted) { dst_y -= texture_height; } for (int i = 0; i < nrects; i++) { // Y-flip. Note after this, crect.y1 > crect.y2 rect_t crect = rects[i]; crect.y1 = root_height - crect.y1; crect.y2 = root_height - crect.y2; // Calculate texture coordinates // (texture_x1, texture_y1), texture coord for the _bottom left_ corner GLint texture_x1 = crect.x1 - dst_x, texture_y1 = crect.y2 - dst_y, texture_x2 = texture_x1 + (crect.x2 - crect.x1), texture_y2 = texture_y1 + (crect.y1 - crect.y2); // X pixmaps might be Y inverted, invert the texture coordinates if (y_inverted) { texture_y1 = texture_height - texture_y1; texture_y2 = texture_height - texture_y2; } // Vertex coordinates auto vx1 = crect.x1; auto vy1 = crect.y2; auto vx2 = crect.x2; auto vy2 = crect.y1; // log_trace("Rect %d: %f, %f, %f, %f -> %d, %d, %d, %d", // ri, rx, ry, rxe, rye, rdx, rdy, rdxe, rdye); memcpy(&coord[i * 16], ((GLint[][2]){ {vx1, vy1}, {texture_x1, texture_y1}, {vx2, vy1}, {texture_x2, texture_y1}, {vx2, vy2}, {texture_x2, texture_y2}, {vx1, vy2}, {texture_x1, texture_y2}, }), sizeof(GLint[2]) * 8); GLuint u = (GLuint)(i * 4); memcpy(&indices[i * 6], ((GLuint[]){u + 0, u + 1, u + 2, u + 2, u + 3, u + 0}), sizeof(GLuint) * 6); } } // TODO(yshui) make use of reg_visible void gl_compose(backend_t *base, void *image_data, int dst_x, int dst_y, const region_t *reg_tgt, const region_t *reg_visible attr_unused) { auto gd = (struct gl_data *)base; struct backend_image *img = image_data; auto inner = (struct gl_texture *)img->inner; // Painting int nrects; const rect_t *rects; rects = pixman_region32_rectangles((region_t *)reg_tgt, &nrects); if (!nrects) { // Nothing to paint return; } // Until we start to use glClipControl, reg_tgt, dst_x and dst_y and // in a different coordinate system than the one OpenGL uses. // OpenGL window coordinate (or NDC) has the origin at the lower left of the // screen, with y axis pointing up; Xorg has the origin at the upper left of the // screen, with y axis pointing down. We have to do some coordinate conversion in // this function auto coord = ccalloc(nrects * 16, GLint); auto indices = ccalloc(nrects * 6, GLuint); x_rect_to_coords(nrects, rects, dst_x, dst_y, inner->height, gd->height, inner->y_inverted, coord, indices); _gl_compose(base, img, gd->back_fbo, coord, indices, nrects); free(indices); free(coord); } /** * Blur contents in a particular region. */ bool gl_kernel_blur(backend_t *base, double opacity, void *ctx, const rect_t *extent, const GLuint vao[2], const int vao_nelems[2]) { auto bctx = (struct gl_blur_context *)ctx; auto gd = (struct gl_data *)base; int dst_y_fb_coord = bctx->fb_height - extent->y2; int curr = 0; for (int i = 0; i < bctx->npasses; ++i) { const gl_blur_shader_t *p = &bctx->blur_shader[i]; assert(p->prog); assert(bctx->blur_textures[curr]); // The origin to use when sampling from the source texture GLint texorig_x = extent->x1, texorig_y = dst_y_fb_coord; GLint tex_width, tex_height; GLuint src_texture; if (i == 0) { src_texture = gd->back_texture; tex_width = gd->width; tex_height = gd->height; } else { src_texture = bctx->blur_textures[curr]; auto src_size = bctx->texture_sizes[curr]; tex_width = src_size.width; tex_height = src_size.height; } glBindTexture(GL_TEXTURE_2D, src_texture); glUseProgram(p->prog); glUniform2f(p->uniform_pixel_norm, 1.0F / (GLfloat)tex_width, 1.0F / (GLfloat)tex_height); // The number of indices in the selected vertex array GLsizei nelems; if (i < bctx->npasses - 1) { assert(bctx->blur_fbos[0]); assert(bctx->blur_textures[!curr]); // not last pass, draw into framebuffer, with resized regions glBindVertexArray(vao[1]); nelems = vao_nelems[1]; glBindFramebuffer(GL_DRAW_FRAMEBUFFER, bctx->blur_fbos[0]); glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, bctx->blur_textures[!curr], 0); glDrawBuffer(GL_COLOR_ATTACHMENT0); if (!gl_check_fb_complete(GL_FRAMEBUFFER)) { return false; } glUniform1f(p->uniform_opacity, 1.0F); } else { // last pass, draw directly into the back buffer, with origin // regions glBindVertexArray(vao[0]); nelems = vao_nelems[0]; glBindFramebuffer(GL_FRAMEBUFFER, gd->back_fbo); glUniform1f(p->uniform_opacity, (float)opacity); } glUniform2f(p->texorig_loc, (GLfloat)texorig_x, (GLfloat)texorig_y); glDrawElements(GL_TRIANGLES, nelems, GL_UNSIGNED_INT, NULL); // XXX use multiple draw calls is probably going to be slow than // just simply blur the whole area. curr = !curr; } return true; } bool gl_dual_kawase_blur(backend_t *base, double opacity, void *ctx, const rect_t *extent, const GLuint vao[2], const int vao_nelems[2]) { auto bctx = (struct gl_blur_context *)ctx; auto gd = (struct gl_data *)base; int dst_y_fb_coord = bctx->fb_height - extent->y2; int iterations = bctx->blur_texture_count; int scale_factor = 1; // Kawase downsample pass const gl_blur_shader_t *down_pass = &bctx->blur_shader[0]; assert(down_pass->prog); glUseProgram(down_pass->prog); glUniform2f(down_pass->texorig_loc, (GLfloat)extent->x1, (GLfloat)dst_y_fb_coord); for (int i = 0; i < iterations; ++i) { // Scale output width / height by half in each iteration scale_factor <<= 1; GLuint src_texture; int tex_width, tex_height; if (i == 0) { // first pass: copy from back buffer src_texture = gd->back_texture; tex_width = gd->width; tex_height = gd->height; } else { // copy from previous pass src_texture = bctx->blur_textures[i - 1]; auto src_size = bctx->texture_sizes[i - 1]; tex_width = src_size.width; tex_height = src_size.height; } assert(src_texture); assert(bctx->blur_fbos[i]); glBindTexture(GL_TEXTURE_2D, src_texture); glBindVertexArray(vao[1]); auto nelems = vao_nelems[1]; glBindFramebuffer(GL_DRAW_FRAMEBUFFER, bctx->blur_fbos[i]); glDrawBuffer(GL_COLOR_ATTACHMENT0); glUniform1f(down_pass->scale_loc, (GLfloat)scale_factor); glUniform2f(down_pass->uniform_pixel_norm, 1.0F / (GLfloat)tex_width, 1.0F / (GLfloat)tex_height); glDrawElements(GL_TRIANGLES, nelems, GL_UNSIGNED_INT, NULL); } // Kawase upsample pass const gl_blur_shader_t *up_pass = &bctx->blur_shader[1]; assert(up_pass->prog); glUseProgram(up_pass->prog); glUniform2f(up_pass->texorig_loc, (GLfloat)extent->x1, (GLfloat)dst_y_fb_coord); for (int i = iterations - 1; i >= 0; --i) { // Scale output width / height back by two in each iteration scale_factor >>= 1; const GLuint src_texture = bctx->blur_textures[i]; assert(src_texture); // Calculate normalized half-width/-height of a src pixel auto src_size = bctx->texture_sizes[i]; int tex_width = src_size.width; int tex_height = src_size.height; // The number of indices in the selected vertex array GLsizei nelems; glBindTexture(GL_TEXTURE_2D, src_texture); if (i > 0) { assert(bctx->blur_fbos[i - 1]); // not last pass, draw into next framebuffer glBindVertexArray(vao[1]); nelems = vao_nelems[1]; glBindFramebuffer(GL_DRAW_FRAMEBUFFER, bctx->blur_fbos[i - 1]); glDrawBuffer(GL_COLOR_ATTACHMENT0); glUniform1f(up_pass->uniform_opacity, (GLfloat)1); } else { // last pass, draw directly into the back buffer glBindVertexArray(vao[0]); nelems = vao_nelems[0]; glBindFramebuffer(GL_FRAMEBUFFER, gd->back_fbo); glUniform1f(up_pass->uniform_opacity, (GLfloat)opacity); } glUniform1f(up_pass->scale_loc, (GLfloat)scale_factor); glUniform2f(up_pass->uniform_pixel_norm, 1.0F / (GLfloat)tex_width, 1.0F / (GLfloat)tex_height); glDrawElements(GL_TRIANGLES, nelems, GL_UNSIGNED_INT, NULL); } return true; } bool gl_blur(backend_t *base, double opacity, void *ctx, const region_t *reg_blur, const region_t *reg_visible attr_unused) { auto bctx = (struct gl_blur_context *)ctx; auto gd = (struct gl_data *)base; bool ret = false; if (gd->width != bctx->fb_width || gd->height != bctx->fb_height) { // Resize the temporary textures used for blur in case the root // size changed bctx->fb_width = gd->width; bctx->fb_height = gd->height; for (int i = 0; i < bctx->blur_texture_count; ++i) { auto tex_size = bctx->texture_sizes + i; if (bctx->method == BLUR_METHOD_DUAL_KAWASE) { // Use smaller textures for each iteration (quarter of the // previous texture) tex_size->width = 1 + ((bctx->fb_width - 1) >> (i + 1)); tex_size->height = 1 + ((bctx->fb_height - 1) >> (i + 1)); } else { tex_size->width = bctx->fb_width; tex_size->height = bctx->fb_height; } glBindTexture(GL_TEXTURE_2D, bctx->blur_textures[i]); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, tex_size->width, tex_size->height, 0, GL_BGRA, GL_UNSIGNED_BYTE, NULL); if (bctx->method == BLUR_METHOD_DUAL_KAWASE) { // Attach texture to FBO target glBindFramebuffer(GL_DRAW_FRAMEBUFFER, bctx->blur_fbos[i]); glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, bctx->blur_textures[i], 0); if (!gl_check_fb_complete(GL_FRAMEBUFFER)) { glBindFramebuffer(GL_FRAMEBUFFER, 0); return false; } } } glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0); } // Remainder: regions are in Xorg coordinates auto reg_blur_resized = resize_region(reg_blur, bctx->resize_width, bctx->resize_height); const rect_t *extent = pixman_region32_extents((region_t *)reg_blur), *extent_resized = pixman_region32_extents(®_blur_resized); int width = extent->x2 - extent->x1, height = extent->y2 - extent->y1; if (width == 0 || height == 0) { return true; } int nrects, nrects_resized; const rect_t *rects = pixman_region32_rectangles((region_t *)reg_blur, &nrects), *rects_resized = pixman_region32_rectangles(®_blur_resized, &nrects_resized); if (!nrects || !nrects_resized) { return true; } auto coord = ccalloc(nrects * 16, GLint); auto indices = ccalloc(nrects * 6, GLuint); x_rect_to_coords(nrects, rects, extent_resized->x1, extent_resized->y2, bctx->fb_height, gd->height, false, coord, indices); auto coord_resized = ccalloc(nrects_resized * 16, GLint); auto indices_resized = ccalloc(nrects_resized * 6, GLuint); x_rect_to_coords(nrects_resized, rects_resized, extent_resized->x1, extent_resized->y2, bctx->fb_height, bctx->fb_height, false, coord_resized, indices_resized); pixman_region32_fini(®_blur_resized); GLuint vao[2]; glGenVertexArrays(2, vao); GLuint bo[4]; glGenBuffers(4, bo); glBindVertexArray(vao[0]); glBindBuffer(GL_ARRAY_BUFFER, bo[0]); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, bo[1]); glBufferData(GL_ARRAY_BUFFER, (long)sizeof(*coord) * nrects * 16, coord, GL_STATIC_DRAW); glBufferData(GL_ELEMENT_ARRAY_BUFFER, (long)sizeof(*indices) * nrects * 6, indices, GL_STATIC_DRAW); glEnableVertexAttribArray(vert_coord_loc); glEnableVertexAttribArray(vert_in_texcoord_loc); glVertexAttribPointer(vert_coord_loc, 2, GL_INT, GL_FALSE, sizeof(GLint) * 4, NULL); glVertexAttribPointer(vert_in_texcoord_loc, 2, GL_INT, GL_FALSE, sizeof(GLint) * 4, (void *)(sizeof(GLint) * 2)); glBindVertexArray(vao[1]); glBindBuffer(GL_ARRAY_BUFFER, bo[2]); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, bo[3]); glBufferData(GL_ARRAY_BUFFER, (long)sizeof(*coord_resized) * nrects_resized * 16, coord_resized, GL_STATIC_DRAW); glBufferData(GL_ELEMENT_ARRAY_BUFFER, (long)sizeof(*indices_resized) * nrects_resized * 6, indices_resized, GL_STATIC_DRAW); glEnableVertexAttribArray(vert_coord_loc); glEnableVertexAttribArray(vert_in_texcoord_loc); glVertexAttribPointer(vert_coord_loc, 2, GL_INT, GL_FALSE, sizeof(GLint) * 4, NULL); glVertexAttribPointer(vert_in_texcoord_loc, 2, GL_INT, GL_FALSE, sizeof(GLint) * 4, (void *)(sizeof(GLint) * 2)); int vao_nelems[2] = {nrects * 6, nrects_resized * 6}; if (bctx->method == BLUR_METHOD_DUAL_KAWASE) { ret = gl_dual_kawase_blur(base, opacity, ctx, extent_resized, vao, vao_nelems); } else { ret = gl_kernel_blur(base, opacity, ctx, extent_resized, vao, vao_nelems); } glBindFramebuffer(GL_FRAMEBUFFER, 0); glBindTexture(GL_TEXTURE_2D, 0); glBindBuffer(GL_ARRAY_BUFFER, 0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); glDeleteBuffers(4, bo); glBindVertexArray(0); glDeleteVertexArrays(2, vao); glUseProgram(0); free(indices); free(coord); free(indices_resized); free(coord_resized); gl_check_err(); return ret; } // clang-format off const char *vertex_shader = GLSL(330, uniform mat4 projection; uniform float scale = 1.0; uniform vec2 texorig; layout(location = 0) in vec2 coord; layout(location = 1) in vec2 in_texcoord; out vec2 texcoord; void main() { gl_Position = projection * vec4(coord, 0, scale); texcoord = in_texcoord + texorig; } ); // clang-format on /** * Load a GLSL main program from shader strings. */ static bool gl_win_shader_from_stringv(const char **vshader_strv, const char **fshader_strv, gl_win_shader_t *ret) { // Build program ret->prog = gl_create_program_from_strv(vshader_strv, fshader_strv); if (!ret->prog) { log_error("Failed to create GLSL program."); gl_check_err(); return false; } // Get uniform addresses bind_uniform(ret, opacity); bind_uniform(ret, invert_color); bind_uniform(ret, tex); bind_uniform(ret, dim); bind_uniform(ret, brightness); bind_uniform(ret, max_brightness); bind_uniform(ret, corner_radius); bind_uniform(ret, border_width); bind_uniform(ret, time); gl_check_err(); return true; } /** * Callback to run on root window size change. */ void gl_resize(struct gl_data *gd, int width, int height) { GLint viewport_dimensions[2]; glGetIntegerv(GL_MAX_VIEWPORT_DIMS, viewport_dimensions); gd->height = height; gd->width = width; assert(viewport_dimensions[0] >= gd->width); assert(viewport_dimensions[1] >= gd->height); glBindTexture(GL_TEXTURE_2D, gd->back_texture); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB8, width, height, 0, GL_BGR, GL_UNSIGNED_BYTE, NULL); gl_check_err(); } // clang-format off static const char dummy_frag[] = GLSL(330, uniform sampler2D tex; in vec2 texcoord; void main() { gl_FragColor = texelFetch(tex, ivec2(texcoord.xy), 0); } ); static const char fill_frag[] = GLSL(330, uniform vec4 color; void main() { gl_FragColor = color; } ); static const char fill_vert[] = GLSL(330, layout(location = 0) in vec2 in_coord; uniform mat4 projection; void main() { gl_Position = projection * vec4(in_coord, 0, 1); } ); static const char interpolating_frag[] = GLSL(330, uniform sampler2D tex; in vec2 texcoord; void main() { gl_FragColor = vec4(texture2D(tex, vec2(texcoord.xy), 0).rgb, 1); } ); static const char interpolating_vert[] = GLSL(330, uniform mat4 projection; uniform vec2 texsize; layout(location = 0) in vec2 in_coord; layout(location = 1) in vec2 in_texcoord; out vec2 texcoord; void main() { gl_Position = projection * vec4(in_coord, 0, 1); texcoord = in_texcoord / texsize; } ); // clang-format on /// Fill a given region in bound framebuffer. /// @param[in] y_inverted whether the y coordinates in `clip` should be inverted static void _gl_fill(backend_t *base, struct color c, const region_t *clip, GLuint target, int height, bool y_inverted) { static const GLuint fill_vert_in_coord_loc = 0; int nrects; const rect_t *rect = pixman_region32_rectangles((region_t *)clip, &nrects); auto gd = (struct gl_data *)base; GLuint vao; glGenVertexArrays(1, &vao); glBindVertexArray(vao); GLuint bo[2]; glGenBuffers(2, bo); glUseProgram(gd->fill_shader.prog); glUniform4f(gd->fill_shader.color_loc, (GLfloat)c.red, (GLfloat)c.green, (GLfloat)c.blue, (GLfloat)c.alpha); glEnableVertexAttribArray(fill_vert_in_coord_loc); glBindBuffer(GL_ARRAY_BUFFER, bo[0]); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, bo[1]); auto coord = ccalloc(nrects * 8, GLint); auto indices = ccalloc(nrects * 6, GLuint); for (int i = 0; i < nrects; i++) { GLint y1 = y_inverted ? height - rect[i].y2 : rect[i].y1, y2 = y_inverted ? height - rect[i].y1 : rect[i].y2; // clang-format off memcpy(&coord[i * 8], ((GLint[][2]){ {rect[i].x1, y1}, {rect[i].x2, y1}, {rect[i].x2, y2}, {rect[i].x1, y2}}), sizeof(GLint[2]) * 4); // clang-format on indices[i * 6 + 0] = (GLuint)i * 4 + 0; indices[i * 6 + 1] = (GLuint)i * 4 + 1; indices[i * 6 + 2] = (GLuint)i * 4 + 2; indices[i * 6 + 3] = (GLuint)i * 4 + 2; indices[i * 6 + 4] = (GLuint)i * 4 + 3; indices[i * 6 + 5] = (GLuint)i * 4 + 0; } glBufferData(GL_ARRAY_BUFFER, nrects * 8 * (long)sizeof(*coord), coord, GL_STREAM_DRAW); glBufferData(GL_ELEMENT_ARRAY_BUFFER, nrects * 6 * (long)sizeof(*indices), indices, GL_STREAM_DRAW); glVertexAttribPointer(fill_vert_in_coord_loc, 2, GL_INT, GL_FALSE, sizeof(*coord) * 2, (void *)0); glBindFramebuffer(GL_DRAW_FRAMEBUFFER, target); glDrawElements(GL_TRIANGLES, nrects * 6, GL_UNSIGNED_INT, NULL); glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0); glBindBuffer(GL_ARRAY_BUFFER, 0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); glDisableVertexAttribArray(fill_vert_in_coord_loc); glBindVertexArray(0); glDeleteVertexArrays(1, &vao); glDeleteBuffers(2, bo); free(indices); free(coord); gl_check_err(); } void gl_fill(backend_t *base, struct color c, const region_t *clip) { auto gd = (struct gl_data *)base; return _gl_fill(base, c, clip, gd->back_fbo, gd->height, true); } static void gl_release_image_inner(backend_t *base, struct gl_texture *inner) { auto gd = (struct gl_data *)base; gd->release_user_data(base, inner); assert(inner->user_data == NULL); glDeleteTextures(1, &inner->texture); glDeleteTextures(2, inner->auxiliary_texture); free(inner); gl_check_err(); } void gl_release_image(backend_t *base, void *image_data) { struct backend_image *wd = image_data; auto inner = (struct gl_texture *)wd->inner; inner->refcount--; assert(inner->refcount >= 0); if (inner->refcount == 0) { gl_release_image_inner(base, inner); } free(wd); } static inline void gl_free_blur_shader(gl_blur_shader_t *shader) { if (shader->prog) { glDeleteProgram(shader->prog); } shader->prog = 0; } void gl_destroy_blur_context(backend_t *base attr_unused, void *ctx) { auto bctx = (struct gl_blur_context *)ctx; // Free GLSL shaders/programs for (int i = 0; i < bctx->npasses; ++i) { gl_free_blur_shader(&bctx->blur_shader[i]); } free(bctx->blur_shader); if (bctx->blur_texture_count && bctx->blur_textures) { glDeleteTextures(bctx->blur_texture_count, bctx->blur_textures); free(bctx->blur_textures); } if (bctx->blur_texture_count && bctx->texture_sizes) { free(bctx->texture_sizes); } if (bctx->blur_fbo_count && bctx->blur_fbos) { glDeleteFramebuffers(bctx->blur_fbo_count, bctx->blur_fbos); free(bctx->blur_fbos); } bctx->blur_texture_count = 0; bctx->blur_fbo_count = 0; free(bctx); gl_check_err(); } /** * Initialize GL blur filters. */ bool gl_create_kernel_blur_context(void *blur_context, GLfloat *projection, enum blur_method method, void *args) { bool success = false; auto ctx = (struct gl_blur_context *)blur_context; struct conv **kernels; int nkernels; ctx->method = BLUR_METHOD_KERNEL; if (method == BLUR_METHOD_KERNEL) { nkernels = ((struct kernel_blur_args *)args)->kernel_count; kernels = ((struct kernel_blur_args *)args)->kernels; } else { kernels = generate_blur_kernel(method, args, &nkernels); } if (!nkernels) { ctx->method = BLUR_METHOD_NONE; return true; } // Specify required textures and FBOs ctx->blur_texture_count = 2; ctx->blur_fbo_count = 1; ctx->blur_shader = ccalloc(max2(2, nkernels), gl_blur_shader_t); char *lc_numeric_old = strdup(setlocale(LC_NUMERIC, NULL)); // Enforce LC_NUMERIC locale "C" here to make sure decimal point is sane // Thanks to hiciu for reporting. setlocale(LC_NUMERIC, "C"); // clang-format off static const char *FRAG_SHADER_BLUR = GLSL(330, %s\n // other extension pragmas uniform sampler2D tex_src; uniform vec2 pixel_norm; uniform float opacity; in vec2 texcoord; out vec4 out_color; void main() { vec2 uv = texcoord * pixel_norm; vec4 sum = vec4(0.0, 0.0, 0.0, 0.0); %s //body of the convolution out_color = sum / float(%.7g) * opacity; } ); static const char *FRAG_SHADER_BLUR_ADD = QUOTE( sum += float(%.7g) * texture2D(tex_src, uv + pixel_norm * vec2(%.7g, %.7g)); ); // clang-format on const char *shader_add = FRAG_SHADER_BLUR_ADD; char *extension = strdup(""); for (int i = 0; i < nkernels; i++) { auto kern = kernels[i]; // Build shader int width = kern->w, height = kern->h; int nele = width * height; // '%.7g' is at most 14 characters, inserted 3 times size_t body_len = (strlen(shader_add) + 42) * (uint)nele; char *shader_body = ccalloc(body_len, char); char *pc = shader_body; // Make use of the linear interpolation hardware by sampling 2 pixels with // one texture access by sampling between both pixels based on their // relative weight. Easiest done in a single dimension as 2D bilinear // filtering would raise additional constraints on the kernels. Therefore // only use interpolation along the larger dimension. double sum = 0.0; if (width > height) { // use interpolation in x dimension (width) for (int j = 0; j < height; ++j) { for (int k = 0; k < width; k += 2) { double val1, val2; val1 = kern->data[j * width + k]; val2 = (k + 1 < width) ? kern->data[j * width + k + 1] : 0; double combined_weight = val1 + val2; if (combined_weight == 0) { continue; } sum += combined_weight; double offset_x = k + (val2 / combined_weight) - (width / 2); double offset_y = j - (height / 2); pc += snprintf( pc, body_len - (ulong)(pc - shader_body), shader_add, combined_weight, offset_x, offset_y); assert(pc < shader_body + body_len); } } } else { // use interpolation in y dimension (height) for (int j = 0; j < height; j += 2) { for (int k = 0; k < width; ++k) { double val1, val2; val1 = kern->data[j * width + k]; val2 = (j + 1 < height) ? kern->data[(j + 1) * width + k] : 0; double combined_weight = val1 + val2; if (combined_weight == 0) { continue; } sum += combined_weight; double offset_x = k - (width / 2); double offset_y = j + (val2 / combined_weight) - (height / 2); pc += snprintf( pc, body_len - (ulong)(pc - shader_body), shader_add, combined_weight, offset_x, offset_y); assert(pc < shader_body + body_len); } } } auto pass = ctx->blur_shader + i; size_t shader_len = strlen(FRAG_SHADER_BLUR) + strlen(extension) + strlen(shader_body) + 10 /* sum */ + 1 /* null terminator */; char *shader_str = ccalloc(shader_len, char); auto real_shader_len = snprintf(shader_str, shader_len, FRAG_SHADER_BLUR, extension, shader_body, sum); CHECK(real_shader_len >= 0); CHECK((size_t)real_shader_len < shader_len); free(shader_body); // Build program pass->prog = gl_create_program_from_str(vertex_shader, shader_str); free(shader_str); if (!pass->prog) { log_error("Failed to create GLSL program."); success = false; goto out; } glBindFragDataLocation(pass->prog, 0, "out_color"); // Get uniform addresses bind_uniform(pass, pixel_norm); bind_uniform(pass, opacity); pass->texorig_loc = glGetUniformLocationChecked(pass->prog, "texorig"); // Setup projection matrix glUseProgram(pass->prog); int pml = glGetUniformLocationChecked(pass->prog, "projection"); glUniformMatrix4fv(pml, 1, false, projection); glUseProgram(0); ctx->resize_width += kern->w / 2; ctx->resize_height += kern->h / 2; } if (nkernels == 1) { // Generate an extra null pass so we don't need special code path for // the single pass case auto pass = &ctx->blur_shader[1]; pass->prog = gl_create_program_from_str(vertex_shader, dummy_frag); pass->uniform_pixel_norm = -1; pass->uniform_opacity = -1; pass->texorig_loc = glGetUniformLocationChecked(pass->prog, "texorig"); // Setup projection matrix glUseProgram(pass->prog); int pml = glGetUniformLocationChecked(pass->prog, "projection"); glUniformMatrix4fv(pml, 1, false, projection); glUseProgram(0); ctx->npasses = 2; } else { ctx->npasses = nkernels; } success = true; out: if (method != BLUR_METHOD_KERNEL) { // We generated the blur kernels, so we need to free them for (int i = 0; i < nkernels; i++) { free(kernels[i]); } free(kernels); } free(extension); // Restore LC_NUMERIC setlocale(LC_NUMERIC, lc_numeric_old); free(lc_numeric_old); return success; } bool gl_create_dual_kawase_blur_context(void *blur_context, GLfloat *projection, enum blur_method method, void *args) { bool success = false; auto ctx = (struct gl_blur_context *)blur_context; ctx->method = method; auto blur_params = generate_dual_kawase_params(args); // Specify required textures and FBOs ctx->blur_texture_count = blur_params->iterations; ctx->blur_fbo_count = blur_params->iterations; ctx->resize_width += blur_params->expand; ctx->resize_height += blur_params->expand; ctx->npasses = 2; ctx->blur_shader = ccalloc(ctx->npasses, gl_blur_shader_t); char *lc_numeric_old = strdup(setlocale(LC_NUMERIC, NULL)); // Enforce LC_NUMERIC locale "C" here to make sure decimal point is sane // Thanks to hiciu for reporting. setlocale(LC_NUMERIC, "C"); // Dual-kawase downsample shader / program auto down_pass = ctx->blur_shader; { // clang-format off static const char *FRAG_SHADER_DOWN = GLSL(330, uniform sampler2D tex_src; uniform float scale = 1.0; uniform vec2 pixel_norm; in vec2 texcoord; out vec4 out_color; void main() { vec2 offset = %.7g * pixel_norm; vec2 uv = texcoord * pixel_norm * (2.0 / scale); vec4 sum = texture2D(tex_src, uv) * 4.0; sum += texture2D(tex_src, uv - vec2(0.5, 0.5) * offset); sum += texture2D(tex_src, uv + vec2(0.5, 0.5) * offset); sum += texture2D(tex_src, uv + vec2(0.5, -0.5) * offset); sum += texture2D(tex_src, uv - vec2(0.5, -0.5) * offset); out_color = sum / 8.0; } ); // clang-format on // Build shader size_t shader_len = strlen(FRAG_SHADER_DOWN) + 10 /* offset */ + 1 /* null terminator */; char *shader_str = ccalloc(shader_len, char); auto real_shader_len = snprintf(shader_str, shader_len, FRAG_SHADER_DOWN, blur_params->offset); CHECK(real_shader_len >= 0); CHECK((size_t)real_shader_len < shader_len); // Build program down_pass->prog = gl_create_program_from_str(vertex_shader, shader_str); free(shader_str); if (!down_pass->prog) { log_error("Failed to create GLSL program."); success = false; goto out; } glBindFragDataLocation(down_pass->prog, 0, "out_color"); // Get uniform addresses bind_uniform(down_pass, pixel_norm); down_pass->texorig_loc = glGetUniformLocationChecked(down_pass->prog, "texorig"); down_pass->scale_loc = glGetUniformLocationChecked(down_pass->prog, "scale"); // Setup projection matrix glUseProgram(down_pass->prog); int pml = glGetUniformLocationChecked(down_pass->prog, "projection"); glUniformMatrix4fv(pml, 1, false, projection); glUseProgram(0); } // Dual-kawase upsample shader / program auto up_pass = ctx->blur_shader + 1; { // clang-format off static const char *FRAG_SHADER_UP = GLSL(330, uniform sampler2D tex_src; uniform float scale = 1.0; uniform vec2 pixel_norm; uniform float opacity; in vec2 texcoord; out vec4 out_color; void main() { vec2 offset = %.7g * pixel_norm; vec2 uv = texcoord * pixel_norm / (2 * scale); vec4 sum = texture2D(tex_src, uv + vec2(-1.0, 0.0) * offset); sum += texture2D(tex_src, uv + vec2(-0.5, 0.5) * offset) * 2.0; sum += texture2D(tex_src, uv + vec2(0.0, 1.0) * offset); sum += texture2D(tex_src, uv + vec2(0.5, 0.5) * offset) * 2.0; sum += texture2D(tex_src, uv + vec2(1.0, 0.0) * offset); sum += texture2D(tex_src, uv + vec2(0.5, -0.5) * offset) * 2.0; sum += texture2D(tex_src, uv + vec2(0.0, -1.0) * offset); sum += texture2D(tex_src, uv + vec2(-0.5, -0.5) * offset) * 2.0; out_color = sum / 12.0 * opacity; } ); // clang-format on // Build shader size_t shader_len = strlen(FRAG_SHADER_UP) + 10 /* offset */ + 1 /* null terminator */; char *shader_str = ccalloc(shader_len, char); auto real_shader_len = snprintf(shader_str, shader_len, FRAG_SHADER_UP, blur_params->offset); CHECK(real_shader_len >= 0); CHECK((size_t)real_shader_len < shader_len); // Build program up_pass->prog = gl_create_program_from_str(vertex_shader, shader_str); free(shader_str); if (!up_pass->prog) { log_error("Failed to create GLSL program."); success = false; goto out; } glBindFragDataLocation(up_pass->prog, 0, "out_color"); // Get uniform addresses bind_uniform(up_pass, pixel_norm); bind_uniform(up_pass, opacity); up_pass->texorig_loc = glGetUniformLocationChecked(up_pass->prog, "texorig"); up_pass->scale_loc = glGetUniformLocationChecked(up_pass->prog, "scale"); // Setup projection matrix glUseProgram(up_pass->prog); int pml = glGetUniformLocationChecked(up_pass->prog, "projection"); glUniformMatrix4fv(pml, 1, false, projection); glUseProgram(0); } success = true; out: free(blur_params); if (!success) { ctx = NULL; } // Restore LC_NUMERIC setlocale(LC_NUMERIC, lc_numeric_old); free(lc_numeric_old); return success; } void *gl_create_blur_context(backend_t *base, enum blur_method method, void *args) { bool success; auto gd = (struct gl_data *)base; auto ctx = ccalloc(1, struct gl_blur_context); if (!method || method >= BLUR_METHOD_INVALID) { ctx->method = BLUR_METHOD_NONE; return ctx; } // Set projection matrix to gl viewport dimensions so we can use screen // coordinates for all vertices // Note: OpenGL matrices are column major GLint viewport_dimensions[2]; glGetIntegerv(GL_MAX_VIEWPORT_DIMS, viewport_dimensions); GLfloat projection_matrix[4][4] = {{2.0F / (GLfloat)viewport_dimensions[0], 0, 0, 0}, {0, 2.0F / (GLfloat)viewport_dimensions[1], 0, 0}, {0, 0, 0, 0}, {-1, -1, 0, 1}}; if (method == BLUR_METHOD_DUAL_KAWASE) { success = gl_create_dual_kawase_blur_context(ctx, projection_matrix[0], method, args); } else { success = gl_create_kernel_blur_context(ctx, projection_matrix[0], method, args); } if (!success || ctx->method == BLUR_METHOD_NONE) { goto out; } // Texture size will be defined by gl_blur ctx->blur_textures = ccalloc(ctx->blur_texture_count, GLuint); ctx->texture_sizes = ccalloc(ctx->blur_texture_count, struct texture_size); glGenTextures(ctx->blur_texture_count, ctx->blur_textures); for (int i = 0; i < ctx->blur_texture_count; ++i) { glBindTexture(GL_TEXTURE_2D, ctx->blur_textures[i]); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); } // Generate FBO and textures when needed ctx->blur_fbos = ccalloc(ctx->blur_fbo_count, GLuint); glGenFramebuffers(ctx->blur_fbo_count, ctx->blur_fbos); for (int i = 0; i < ctx->blur_fbo_count; ++i) { if (!ctx->blur_fbos[i]) { log_error("Failed to generate framebuffer objects for blur"); success = false; goto out; } } out: if (!success) { gl_destroy_blur_context(&gd->base, ctx); ctx = NULL; } gl_check_err(); return ctx; } void gl_get_blur_size(void *blur_context, int *width, int *height) { auto ctx = (struct gl_blur_context *)blur_context; *width = ctx->resize_width; *height = ctx->resize_height; } // clang-format off const char *win_shader_glsl = GLSL(330, uniform float opacity; uniform float dim; uniform float corner_radius; uniform float border_width; uniform bool invert_color; in vec2 texcoord; uniform sampler2D tex; uniform sampler2D brightness; uniform float max_brightness; // Signed distance field for rectangle center at (0, 0), with size of // half_size * 2 float rectangle_sdf(vec2 point, vec2 half_size) { vec2 d = abs(point) - half_size; return length(max(d, 0.0)); } vec4 default_post_processing(vec4 c) { vec4 border_color = texture(tex, vec2(0.0, 0.5)); if (invert_color) { c = vec4(c.aaa - c.rgb, c.a); border_color = vec4(border_color.aaa - border_color.rgb, border_color.a); } c = vec4(c.rgb * (1.0 - dim), c.a) * opacity; border_color = vec4(border_color.rgb * (1.0 - dim), border_color.a) * opacity; vec3 rgb_brightness = texelFetch(brightness, ivec2(0, 0), 0).rgb; // Ref: https://en.wikipedia.org/wiki/Relative_luminance float brightness = rgb_brightness.r * 0.21 + rgb_brightness.g * 0.72 + rgb_brightness.b * 0.07; if (brightness > max_brightness) { c.rgb = c.rgb * (max_brightness / brightness); border_color.rgb = border_color.rgb * (max_brightness / brightness); } // Rim color is the color of the outer rim of the window, if there is no // border, it's the color of the window itself, otherwise it's the border. // Using mix() to avoid a branch here. vec4 rim_color = mix(c, border_color, clamp(border_width, 0.0f, 1.0f)); vec2 outer_size = vec2(textureSize(tex, 0)); vec2 inner_size = outer_size - vec2(corner_radius) * 2.0f; float rect_distance = rectangle_sdf(texcoord - outer_size / 2.0f, inner_size / 2.0f) - corner_radius; if (rect_distance > 0.0f) { c = (1.0f - clamp(rect_distance, 0.0f, 1.0f)) * rim_color; } else { float factor = clamp(rect_distance + border_width, 0.0f, 1.0f); c = (1.0f - factor) * c + factor * border_color; } return c; } vec4 window_shader(); void main() { gl_FragColor = window_shader(); } ); const char *win_shader_default = GLSL(330, in vec2 texcoord; uniform sampler2D tex; vec4 default_post_processing(vec4 c); vec4 window_shader() { vec4 c = texelFetch(tex, ivec2(texcoord), 0); return default_post_processing(c); } ); const char *present_vertex_shader = GLSL(330, uniform mat4 projection; layout(location = 0) in vec2 coord; out vec2 texcoord; void main() { gl_Position = projection * vec4(coord, 0, 1); texcoord = coord; } ); // clang-format on void *gl_create_window_shader(backend_t *backend_data attr_unused, const char *source) { auto win_shader = (gl_win_shader_t *)ccalloc(1, gl_win_shader_t); const char *vert_shaders[2] = {vertex_shader, NULL}; const char *frag_shaders[3] = {win_shader_glsl, source, NULL}; if (!gl_win_shader_from_stringv(vert_shaders, frag_shaders, win_shader)) { free(win_shader); return NULL; } GLint viewport_dimensions[2]; glGetIntegerv(GL_MAX_VIEWPORT_DIMS, viewport_dimensions); // Set projection matrix to gl viewport dimensions so we can use screen // coordinates for all vertices // Note: OpenGL matrices are column major GLfloat projection_matrix[4][4] = {{2.0F / (GLfloat)viewport_dimensions[0], 0, 0, 0}, {0, 2.0F / (GLfloat)viewport_dimensions[1], 0, 0}, {0, 0, 0, 0}, {-1, -1, 0, 1}}; int pml = glGetUniformLocationChecked(win_shader->prog, "projection"); glUseProgram(win_shader->prog); glUniformMatrix4fv(pml, 1, false, projection_matrix[0]); glUseProgram(0); return win_shader; } uint64_t gl_get_shader_attributes(backend_t *backend_data attr_unused, void *shader) { auto win_shader = (gl_win_shader_t *)shader; uint64_t ret = 0; if (glGetUniformLocation(win_shader->prog, "time") >= 0) { ret |= SHADER_ATTRIBUTE_ANIMATED; } return ret; } bool gl_init(struct gl_data *gd, session_t *ps) { // Initialize GLX data structure glDisable(GL_DEPTH_TEST); glDepthMask(GL_FALSE); glEnable(GL_BLEND); // X pixmap is in premultiplied alpha, so we might just as well use it too. // Thanks to derhass for help. glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA); // Initialize stencil buffer glDisable(GL_STENCIL_TEST); glStencilMask(0x1); glStencilFunc(GL_EQUAL, 0x1, 0x1); // Set gl viewport to the maximum supported size so we won't have to worry about // it later on when the screen is resized. The corresponding projection matrix can // be set now and won't have to be updated. Since fragments outside the target // buffer are skipped anyways, this should have no impact on performance. GLint viewport_dimensions[2]; glGetIntegerv(GL_MAX_VIEWPORT_DIMS, viewport_dimensions); glViewport(0, 0, viewport_dimensions[0], viewport_dimensions[1]); // Clear screen glClearColor(0.0F, 0.0F, 0.0F, 1.0F); glClear(GL_COLOR_BUFFER_BIT | GL_STENCIL_BUFFER_BIT); glGenFramebuffers(1, &gd->back_fbo); glGenTextures(1, &gd->back_texture); if (!gd->back_fbo || !gd->back_texture) { log_error("Failed to generate a framebuffer object"); return false; } glBindTexture(GL_TEXTURE_2D, gd->back_texture); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glBindTexture(GL_TEXTURE_2D, 0); // Initialize shaders gd->default_shader = gl_create_window_shader(NULL, win_shader_default); if (!gd->default_shader) { log_error("Failed to create window shaders"); return false; } // Set projection matrix to gl viewport dimensions so we can use screen // coordinates for all vertices // Note: OpenGL matrices are column major GLfloat projection_matrix[4][4] = {{2.0F / (GLfloat)viewport_dimensions[0], 0, 0, 0}, {0, 2.0F / (GLfloat)viewport_dimensions[1], 0, 0}, {0, 0, 0, 0}, {-1, -1, 0, 1}}; gd->fill_shader.prog = gl_create_program_from_str(fill_vert, fill_frag); gd->fill_shader.color_loc = glGetUniformLocation(gd->fill_shader.prog, "color"); int pml = glGetUniformLocationChecked(gd->fill_shader.prog, "projection"); glUseProgram(gd->fill_shader.prog); glUniformMatrix4fv(pml, 1, false, projection_matrix[0]); glUseProgram(0); gd->present_prog = gl_create_program_from_str(present_vertex_shader, dummy_frag); if (!gd->present_prog) { log_error("Failed to create the present shader"); return false; } pml = glGetUniformLocationChecked(gd->present_prog, "projection"); glUseProgram(gd->present_prog); glUniform1i(glGetUniformLocationChecked(gd->present_prog, "tex"), 0); glUniformMatrix4fv(pml, 1, false, projection_matrix[0]); glUseProgram(0); gd->brightness_shader.prog = gl_create_program_from_str(interpolating_vert, interpolating_frag); if (!gd->brightness_shader.prog) { log_error("Failed to create the brightness shader"); return false; } pml = glGetUniformLocationChecked(gd->brightness_shader.prog, "projection"); glUseProgram(gd->brightness_shader.prog); glUniform1i(glGetUniformLocationChecked(gd->brightness_shader.prog, "tex"), 0); glUniformMatrix4fv(pml, 1, false, projection_matrix[0]); glUseProgram(0); // Set up the size of the back texture gl_resize(gd, ps->root_width, ps->root_height); glBindFramebuffer(GL_DRAW_FRAMEBUFFER, gd->back_fbo); glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, gd->back_texture, 0); glDrawBuffer(GL_COLOR_ATTACHMENT0); if (!gl_check_fb_complete(GL_FRAMEBUFFER)) { return false; } glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0); gd->logger = gl_string_marker_logger_new(); if (gd->logger) { log_add_target_tls(gd->logger); } const char *vendor = (const char *)glGetString(GL_VENDOR); log_debug("GL_VENDOR = %s", vendor); if (strcmp(vendor, "NVIDIA Corporation") == 0) { log_info("GL vendor is NVIDIA, don't use glFinish"); gd->is_nvidia = true; } else { gd->is_nvidia = false; } gd->has_robustness = gl_has_extension("GL_ARB_robustness"); return true; } void gl_deinit(struct gl_data *gd) { if (gd->logger) { log_remove_target_tls(gd->logger); gd->logger = NULL; } if (gd->default_shader) { gl_destroy_window_shader(&gd->base, gd->default_shader); gd->default_shader = NULL; } gl_check_err(); } GLuint gl_new_texture(GLenum target) { GLuint texture; glGenTextures(1, &texture); if (!texture) { log_error("Failed to generate texture"); return 0; } glBindTexture(target, texture); glTexParameteri(target, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(target, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(target, GL_TEXTURE_WRAP_S, GL_REPEAT); glTexParameteri(target, GL_TEXTURE_WRAP_T, GL_REPEAT); glBindTexture(target, 0); return texture; } /// Actually duplicate a texture into a new one, if this texture is shared static inline void gl_image_decouple(backend_t *base, struct backend_image *img) { if (img->inner->refcount == 1) { return; } auto gd = (struct gl_data *)base; auto inner = (struct gl_texture *)img->inner; auto new_tex = ccalloc(1, struct gl_texture); new_tex->texture = gl_new_texture(GL_TEXTURE_2D); new_tex->y_inverted = true; new_tex->height = inner->height; new_tex->width = inner->width; new_tex->refcount = 1; new_tex->user_data = gd->decouple_texture_user_data(base, inner->user_data); glBindTexture(GL_TEXTURE_2D, new_tex->texture); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, new_tex->width, new_tex->height, 0, GL_BGRA, GL_UNSIGNED_BYTE, NULL); glBindTexture(GL_TEXTURE_2D, 0); assert(gd->present_prog); glUseProgram(gd->present_prog); glBindTexture(GL_TEXTURE_2D, inner->texture); GLuint fbo; glGenFramebuffers(1, &fbo); glBindFramebuffer(GL_DRAW_FRAMEBUFFER, fbo); glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, new_tex->texture, 0); glDrawBuffer(GL_COLOR_ATTACHMENT0); gl_check_fb_complete(GL_DRAW_FRAMEBUFFER); glClearColor(0, 0, 0, 0); glClear(GL_COLOR_BUFFER_BIT); // clang-format off GLint coord[] = { // top left 0, 0, // vertex coord 0, 0, // texture coord // top right new_tex->width, 0, // vertex coord new_tex->width, 0, // texture coord // bottom right new_tex->width, new_tex->height, new_tex->width, new_tex->height, // bottom left 0, new_tex->height, 0, new_tex->height, }; // clang-format on GLuint indices[] = {0, 1, 2, 2, 3, 0}; GLuint vao; glGenVertexArrays(1, &vao); glBindVertexArray(vao); GLuint bo[2]; glGenBuffers(2, bo); glBindBuffer(GL_ARRAY_BUFFER, bo[0]); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, bo[1]); glBufferData(GL_ARRAY_BUFFER, (long)sizeof(*coord) * 16, coord, GL_STATIC_DRAW); glBufferData(GL_ELEMENT_ARRAY_BUFFER, (long)sizeof(*indices) * 6, indices, GL_STATIC_DRAW); glEnableVertexAttribArray(vert_coord_loc); glEnableVertexAttribArray(vert_in_texcoord_loc); glVertexAttribPointer(vert_coord_loc, 2, GL_INT, GL_FALSE, sizeof(GLint) * 4, NULL); glVertexAttribPointer(vert_in_texcoord_loc, 2, GL_INT, GL_FALSE, sizeof(GLint) * 4, (void *)(sizeof(GLint) * 2)); glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_INT, NULL); glDisableVertexAttribArray(vert_coord_loc); glDisableVertexAttribArray(vert_in_texcoord_loc); glBindVertexArray(0); glDeleteVertexArrays(1, &vao); glBindBuffer(GL_ARRAY_BUFFER, 0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); glDeleteBuffers(2, bo); glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0); glDeleteFramebuffers(1, &fbo); glBindTexture(GL_TEXTURE_2D, 0); glUseProgram(0); gl_check_err(); img->inner = (struct backend_image_inner_base *)new_tex; inner->refcount--; } static void gl_image_apply_alpha(backend_t *base, struct backend_image *img, const region_t *reg_op, double alpha) { // Result color = 0 (GL_ZERO) + alpha (GL_CONSTANT_ALPHA) * original color auto inner = (struct gl_texture *)img->inner; glBlendFunc(GL_ZERO, GL_CONSTANT_ALPHA); glBlendColor(0, 0, 0, (GLclampf)alpha); GLuint fbo; glGenFramebuffers(1, &fbo); glBindFramebuffer(GL_DRAW_FRAMEBUFFER, fbo); glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, inner->texture, 0); glDrawBuffer(GL_COLOR_ATTACHMENT0); _gl_fill(base, (struct color){0, 0, 0, 0}, reg_op, fbo, 0, false); glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA); glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0); glDeleteFramebuffers(1, &fbo); } void gl_present(backend_t *base, const region_t *region) { auto gd = (struct gl_data *)base; int nrects; const rect_t *rect = pixman_region32_rectangles((region_t *)region, &nrects); auto coord = ccalloc(nrects * 8, GLint); auto indices = ccalloc(nrects * 6, GLuint); for (int i = 0; i < nrects; i++) { // clang-format off memcpy(&coord[i * 8], ((GLint[]){rect[i].x1, gd->height - rect[i].y2, rect[i].x2, gd->height - rect[i].y2, rect[i].x2, gd->height - rect[i].y1, rect[i].x1, gd->height - rect[i].y1}), sizeof(GLint) * 8); // clang-format on GLuint u = (GLuint)(i * 4); memcpy(&indices[i * 6], ((GLuint[]){u + 0, u + 1, u + 2, u + 2, u + 3, u + 0}), sizeof(GLuint) * 6); } glUseProgram(gd->present_prog); glBindTexture(GL_TEXTURE_2D, gd->back_texture); GLuint vao; glGenVertexArrays(1, &vao); glBindVertexArray(vao); GLuint bo[2]; glGenBuffers(2, bo); glEnableVertexAttribArray(vert_coord_loc); glBindBuffer(GL_ARRAY_BUFFER, bo[0]); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, bo[1]); glBufferData(GL_ARRAY_BUFFER, (long)sizeof(GLint) * nrects * 8, coord, GL_STREAM_DRAW); glBufferData(GL_ELEMENT_ARRAY_BUFFER, (long)sizeof(GLuint) * nrects * 6, indices, GL_STREAM_DRAW); glVertexAttribPointer(vert_coord_loc, 2, GL_INT, GL_FALSE, sizeof(GLint) * 2, NULL); glDrawElements(GL_TRIANGLES, nrects * 6, GL_UNSIGNED_INT, NULL); glBindBuffer(GL_ARRAY_BUFFER, 0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); glBindVertexArray(0); glDeleteBuffers(2, bo); glDeleteVertexArrays(1, &vao); free(coord); free(indices); } bool gl_image_op(backend_t *base, enum image_operations op, void *image_data, const region_t *reg_op, const region_t *reg_visible attr_unused, void *arg) { struct backend_image *tex = image_data; switch (op) { case IMAGE_OP_APPLY_ALPHA: gl_image_decouple(base, tex); assert(tex->inner->refcount == 1); gl_image_apply_alpha(base, tex, reg_op, *(double *)arg); break; } return true; } bool gl_set_image_property(backend_t *backend_data, enum image_properties prop, void *image_data, void *args) { if (prop != IMAGE_PROPERTY_CUSTOM_SHADER) { return default_set_image_property(backend_data, prop, image_data, args); } struct backend_image *img = image_data; auto inner = (struct gl_texture *)img->inner; inner->shader = args; return true; } enum device_status gl_device_status(backend_t *base) { auto gd = (struct gl_data *)base; if (!gd->has_robustness) { return DEVICE_STATUS_NORMAL; } if (glGetGraphicsResetStatusARB() == GL_NO_ERROR) { return DEVICE_STATUS_NORMAL; } else { return DEVICE_STATUS_RESETTING; } }