picom/src/backend/backend_common.c

485 lines
16 KiB
C

// SPDX-License-Identifier: MPL-2.0
// Copyright (c) Yuxuan Shui <yshuiv7@gmail.com>
#include <math.h>
#include <string.h>
#include <xcb/render.h>
#include <xcb/xcb_image.h>
#include <xcb/xcb_renderutil.h>
#include "backend/backend.h"
#include "backend/backend_common.h"
#include "common.h"
#include "config.h"
#include "kernel.h"
#include "log.h"
#include "utils.h"
#include "win.h"
#include "x.h"
/**
* Generate a 1x1 <code>Picture</code> of a particular color.
*/
xcb_render_picture_t solid_picture(xcb_connection_t *c, xcb_drawable_t d, bool argb,
double a, double r, double g, double b) {
xcb_pixmap_t pixmap;
xcb_render_picture_t picture;
xcb_render_create_picture_value_list_t pa;
xcb_render_color_t col;
xcb_rectangle_t rect;
pixmap = x_create_pixmap(c, argb ? 32 : 8, d, 1, 1);
if (!pixmap)
return XCB_NONE;
pa.repeat = 1;
picture = x_create_picture_with_standard_and_pixmap(
c, argb ? XCB_PICT_STANDARD_ARGB_32 : XCB_PICT_STANDARD_A_8, pixmap,
XCB_RENDER_CP_REPEAT, &pa);
if (!picture) {
xcb_free_pixmap(c, pixmap);
return XCB_NONE;
}
col.alpha = (uint16_t)(a * 0xffff);
col.red = (uint16_t)(r * 0xffff);
col.green = (uint16_t)(g * 0xffff);
col.blue = (uint16_t)(b * 0xffff);
rect.x = 0;
rect.y = 0;
rect.width = 1;
rect.height = 1;
xcb_render_fill_rectangles(c, XCB_RENDER_PICT_OP_SRC, picture, col, 1, &rect);
xcb_free_pixmap(c, pixmap);
return picture;
}
xcb_image_t *
make_shadow(xcb_connection_t *c, const conv *kernel, double opacity, int width, int height) {
/*
* We classify shadows into 4 kinds of regions
* r = shadow radius
* (0, 0) is the top left of the window itself
* -r r width-r width+r
* -r +-----+---------+-----+
* | 1 | 2 | 1 |
* r +-----+---------+-----+
* | 2 | 3 | 2 |
* height-r +-----+---------+-----+
* | 1 | 2 | 1 |
* height+r +-----+---------+-----+
*/
xcb_image_t *ximage;
const double *shadow_sum = kernel->rsum;
assert(shadow_sum);
// We only support square kernels for shadow
assert(kernel->w == kernel->h);
int d = kernel->w;
int r = d / 2;
int swidth = width + r * 2, sheight = height + r * 2;
assert(d % 2 == 1);
assert(d > 0);
ximage = xcb_image_create_native(c, to_u16_checked(swidth), to_u16_checked(sheight),
XCB_IMAGE_FORMAT_Z_PIXMAP, 8, 0, 0, NULL);
if (!ximage) {
log_error("failed to create an X image");
return 0;
}
unsigned char *data = ximage->data;
long long sstride = ximage->stride;
// If the window body is smaller than the kernel, we do convolution directly
if (width < r * 2 && height < r * 2) {
for (int y = 0; y < sheight; y++) {
for (int x = 0; x < swidth; x++) {
double sum = sum_kernel_normalized(
kernel, d - x - 1, d - y - 1, width, height);
data[y * sstride + x] = (uint8_t)(sum * 255.0 * opacity);
}
}
return ximage;
}
if (height < r * 2) {
// Implies width >= r * 2
// If the window height is smaller than the kernel, we divide
// the window like this:
// -r r width-r width+r
// +------+-------------+------+
// | | | |
// +------+-------------+------+
for (int y = 0; y < sheight; y++) {
for (int x = 0; x < r * 2; x++) {
double sum = sum_kernel_normalized(kernel, d - x - 1,
d - y - 1, d, height) *
255.0 * opacity;
data[y * sstride + x] = (uint8_t)sum;
data[y * sstride + swidth - x - 1] = (uint8_t)sum;
}
}
for (int y = 0; y < sheight; y++) {
double sum = sum_kernel_normalized(kernel, 0, d - y - 1, d, height) *
255.0 * opacity;
memset(&data[y * sstride + r * 2], (uint8_t)sum,
(size_t)(width - 2 * r));
}
return ximage;
}
if (width < r * 2) {
// Similarly, for width smaller than kernel
for (int y = 0; y < r * 2; y++) {
for (int x = 0; x < swidth; x++) {
double sum = sum_kernel_normalized(kernel, d - x - 1,
d - y - 1, width, d) *
255.0 * opacity;
data[y * sstride + x] = (uint8_t)sum;
data[(sheight - y - 1) * sstride + x] = (uint8_t)sum;
}
}
for (int x = 0; x < swidth; x++) {
double sum = sum_kernel_normalized(kernel, d - x - 1, 0, width, d) *
255.0 * opacity;
for (int y = r * 2; y < height; y++) {
data[y * sstride + x] = (uint8_t)sum;
}
}
return ximage;
}
// Implies: width >= r * 2 && height >= r * 2
// Fill part 3
for (int y = r; y < height + r; y++) {
memset(data + sstride * y + r, (uint8_t)(255 * opacity), (size_t)width);
}
// Part 1
for (int y = 0; y < r * 2; y++) {
for (int x = 0; x < r * 2; x++) {
double tmpsum = shadow_sum[y * d + x] * opacity * 255.0;
data[y * sstride + x] = (uint8_t)tmpsum;
data[(sheight - y - 1) * sstride + x] = (uint8_t)tmpsum;
data[(sheight - y - 1) * sstride + (swidth - x - 1)] = (uint8_t)tmpsum;
data[y * sstride + (swidth - x - 1)] = (uint8_t)tmpsum;
}
}
// Part 2, top/bottom
for (int y = 0; y < r * 2; y++) {
double tmpsum = shadow_sum[d * y + d - 1] * opacity * 255.0;
memset(&data[y * sstride + r * 2], (uint8_t)tmpsum, (size_t)(width - r * 2));
memset(&data[(sheight - y - 1) * sstride + r * 2], (uint8_t)tmpsum,
(size_t)(width - r * 2));
}
// Part 2, left/right
for (int x = 0; x < r * 2; x++) {
double tmpsum = shadow_sum[d * (d - 1) + x] * opacity * 255.0;
for (int y = r * 2; y < height; y++) {
data[y * sstride + x] = (uint8_t)tmpsum;
data[y * sstride + (swidth - x - 1)] = (uint8_t)tmpsum;
}
}
return ximage;
}
/**
* Generate shadow <code>Picture</code> for a window.
*/
bool build_shadow(xcb_connection_t *c, xcb_drawable_t d, double opacity, const int width,
const int height, const conv *kernel, xcb_render_picture_t shadow_pixel,
xcb_pixmap_t *pixmap, xcb_render_picture_t *pict) {
xcb_image_t *shadow_image = NULL;
xcb_pixmap_t shadow_pixmap = XCB_NONE, shadow_pixmap_argb = XCB_NONE;
xcb_render_picture_t shadow_picture = XCB_NONE, shadow_picture_argb = XCB_NONE;
xcb_gcontext_t gc = XCB_NONE;
shadow_image = make_shadow(c, kernel, opacity, width, height);
if (!shadow_image) {
log_error("Failed to make shadow");
return false;
}
shadow_pixmap = x_create_pixmap(c, 8, d, shadow_image->width, shadow_image->height);
shadow_pixmap_argb =
x_create_pixmap(c, 32, d, shadow_image->width, shadow_image->height);
if (!shadow_pixmap || !shadow_pixmap_argb) {
log_error("Failed to create shadow pixmaps");
goto shadow_picture_err;
}
shadow_picture = x_create_picture_with_standard_and_pixmap(
c, XCB_PICT_STANDARD_A_8, shadow_pixmap, 0, NULL);
shadow_picture_argb = x_create_picture_with_standard_and_pixmap(
c, XCB_PICT_STANDARD_ARGB_32, shadow_pixmap_argb, 0, NULL);
if (!shadow_picture || !shadow_picture_argb) {
goto shadow_picture_err;
}
gc = x_new_id(c);
xcb_create_gc(c, gc, shadow_pixmap, 0, NULL);
// We need to make room for protocol metadata in the request. The metadata should
// be 24 bytes plus padding, let's be generous and give it 1kb
auto maximum_image_size = xcb_get_maximum_request_length(c) * 4 - 1024;
auto maximum_row =
to_u16_checked(clamp(maximum_image_size / shadow_image->stride, 0, UINT16_MAX));
if (maximum_row <= 0) {
// TODO(yshui) Upload image with XShm
log_error("X server request size limit is too restrictive, or the shadow "
"image is too wide for us to send a single row of the shadow "
"image. Shadow size: %dx%d",
width, height);
goto shadow_picture_err;
}
for (uint32_t row = 0; row < shadow_image->height; row += maximum_row) {
auto batch_height = maximum_row;
if (batch_height > shadow_image->height - row) {
batch_height = to_u16_checked(shadow_image->height - row);
}
uint32_t offset = row * shadow_image->stride / sizeof(*shadow_image->data);
xcb_put_image(c, (uint8_t)shadow_image->format, shadow_pixmap, gc,
shadow_image->width, batch_height, 0, to_i16_checked(row),
0, shadow_image->depth, shadow_image->stride * batch_height,
shadow_image->data + offset);
}
xcb_render_composite(c, XCB_RENDER_PICT_OP_SRC, shadow_pixel, shadow_picture,
shadow_picture_argb, 0, 0, 0, 0, 0, 0, shadow_image->width,
shadow_image->height);
*pixmap = shadow_pixmap_argb;
*pict = shadow_picture_argb;
xcb_free_gc(c, gc);
xcb_image_destroy(shadow_image);
xcb_free_pixmap(c, shadow_pixmap);
xcb_render_free_picture(c, shadow_picture);
return true;
shadow_picture_err:
if (shadow_image) {
xcb_image_destroy(shadow_image);
}
if (shadow_pixmap) {
xcb_free_pixmap(c, shadow_pixmap);
}
if (shadow_pixmap_argb) {
xcb_free_pixmap(c, shadow_pixmap_argb);
}
if (shadow_picture) {
xcb_render_free_picture(c, shadow_picture);
}
if (shadow_picture_argb) {
xcb_render_free_picture(c, shadow_picture_argb);
}
if (gc) {
xcb_free_gc(c, gc);
}
return false;
}
void *
default_backend_render_shadow(backend_t *backend_data, int width, int height,
const conv *kernel, double r, double g, double b, double a) {
xcb_pixmap_t shadow_pixel = solid_picture(backend_data->c, backend_data->root,
true, 1, r, g, b),
shadow = XCB_NONE;
xcb_render_picture_t pict = XCB_NONE;
if (!build_shadow(backend_data->c, backend_data->root, a, width, height, kernel,
shadow_pixel, &shadow, &pict)) {
return NULL;
}
auto visual = x_get_visual_for_standard(backend_data->c, XCB_PICT_STANDARD_ARGB_32);
void *ret = backend_data->ops->bind_pixmap(
backend_data, shadow, x_get_visual_info(backend_data->c, visual), true);
xcb_render_free_picture(backend_data->c, pict);
return ret;
}
static struct conv **generate_box_blur_kernel(struct box_blur_args *args, int *kernel_count) {
int r = args->size * 2 + 1;
assert(r > 0);
auto ret = ccalloc(2, struct conv *);
ret[0] = cvalloc(sizeof(struct conv) + sizeof(double) * (size_t)r);
ret[1] = cvalloc(sizeof(struct conv) + sizeof(double) * (size_t)r);
ret[0]->w = r;
ret[0]->h = 1;
ret[1]->w = 1;
ret[1]->h = r;
for (int i = 0; i < r; i++) {
ret[0]->data[i] = 1;
ret[1]->data[i] = 1;
}
*kernel_count = 2;
return ret;
}
static struct conv **
generate_gaussian_blur_kernel(struct gaussian_blur_args *args, int *kernel_count) {
int r = args->size * 2 + 1;
assert(r > 0);
auto ret = ccalloc(2, struct conv *);
ret[0] = cvalloc(sizeof(struct conv) + sizeof(double) * (size_t)r);
ret[1] = cvalloc(sizeof(struct conv) + sizeof(double) * (size_t)r);
ret[0]->w = r;
ret[0]->h = 1;
ret[1]->w = 1;
ret[1]->h = r;
for (int i = 0; i <= args->size; i++) {
ret[0]->data[i] = ret[0]->data[r - i - 1] =
1.0 / (sqrt(2.0 * M_PI) * args->deviation) *
exp(-(args->size - i) * (args->size - i) /
(2 * args->deviation * args->deviation));
ret[1]->data[i] = ret[1]->data[r - i - 1] = ret[0]->data[i];
}
*kernel_count = 2;
return ret;
}
/// Generate blur kernels for gaussian and box blur methods. Generated kernel is not
/// normalized, and the center element will always be 1.
struct conv **generate_blur_kernel(enum blur_method method, void *args, int *kernel_count) {
switch (method) {
case BLUR_METHOD_BOX: return generate_box_blur_kernel(args, kernel_count);
case BLUR_METHOD_GAUSSIAN:
return generate_gaussian_blur_kernel(args, kernel_count);
default: break;
}
return NULL;
}
/// Generate kernel parameters for dual-kawase blur method. Falls back on approximating
/// standard gauss radius if strength is zero or below.
struct dual_kawase_params *generate_dual_kawase_params(void *args) {
struct dual_kawase_blur_args *blur_args = args;
static const struct {
int iterations; /// Number of down- and upsample iterations
float offset; /// Sample offset in half-pixels
int min_radius; /// Approximate gauss-blur with at least this
/// radius and std-deviation
} strength_levels[20] = {
{.iterations = 1, .offset = 1.25f, .min_radius = 1}, // LVL 1
{.iterations = 1, .offset = 2.25f, .min_radius = 6}, // LVL 2
{.iterations = 2, .offset = 2.00f, .min_radius = 11}, // LVL 3
{.iterations = 2, .offset = 3.00f, .min_radius = 17}, // LVL 4
{.iterations = 2, .offset = 4.25f, .min_radius = 24}, // LVL 5
{.iterations = 3, .offset = 2.50f, .min_radius = 32}, // LVL 6
{.iterations = 3, .offset = 3.25f, .min_radius = 40}, // LVL 7
{.iterations = 3, .offset = 4.25f, .min_radius = 51}, // LVL 8
{.iterations = 3, .offset = 5.50f, .min_radius = 67}, // LVL 9
{.iterations = 4, .offset = 3.25f, .min_radius = 83}, // LVL 10
{.iterations = 4, .offset = 4.00f, .min_radius = 101}, // LVL 11
{.iterations = 4, .offset = 5.00f, .min_radius = 123}, // LVL 12
{.iterations = 4, .offset = 6.00f, .min_radius = 148}, // LVL 13
{.iterations = 4, .offset = 7.25f, .min_radius = 178}, // LVL 14
{.iterations = 4, .offset = 8.25f, .min_radius = 208}, // LVL 15
{.iterations = 5, .offset = 4.50f, .min_radius = 236}, // LVL 16
{.iterations = 5, .offset = 5.25f, .min_radius = 269}, // LVL 17
{.iterations = 5, .offset = 6.25f, .min_radius = 309}, // LVL 18
{.iterations = 5, .offset = 7.25f, .min_radius = 357}, // LVL 19
{.iterations = 5, .offset = 8.50f, .min_radius = 417}, // LVL 20
};
auto params = ccalloc(1, struct dual_kawase_params);
params->iterations = 0;
params->offset = 1.0f;
if (blur_args->strength <= 0 && blur_args->size) {
// find highest level that approximates blur-strength with the selected
// gaussian blur-radius
int lvl = 1;
while (strength_levels[lvl - 1].min_radius < blur_args->size && lvl < 20) {
++lvl;
}
blur_args->strength = lvl;
}
if (blur_args->strength <= 0) {
// default value
blur_args->strength = 5;
}
assert(blur_args->strength > 0 && blur_args->strength <= 20);
params->iterations = strength_levels[blur_args->strength - 1].iterations;
params->offset = strength_levels[blur_args->strength - 1].offset;
// Expand sample area to cover the smallest texture / highest selected iteration:
// - Smallest texture dimensions are halved `iterations`-times
// - Upsample needs pixels two-times `offset` away from the border
// - Plus one for interpolation differences
params->expand = (1 << params->iterations) * 2 * (int)ceil(params->offset) + 1;
return params;
}
void *default_clone_image(backend_t *base attr_unused, const void *image_data,
const region_t *reg_visible attr_unused) {
auto new_img = ccalloc(1, struct backend_image);
*new_img = *(struct backend_image *)image_data;
new_img->inner->refcount++;
return new_img;
}
bool default_set_image_property(backend_t *base attr_unused, enum image_properties op,
void *image_data, void *arg) {
struct backend_image *tex = image_data;
int *iargs = arg;
bool *bargs = arg;
double *dargs = arg;
switch (op) {
case IMAGE_PROPERTY_INVERTED: tex->color_inverted = bargs[0]; break;
case IMAGE_PROPERTY_DIM_LEVEL: tex->dim = dargs[0]; break;
case IMAGE_PROPERTY_OPACITY: tex->opacity = dargs[0]; break;
case IMAGE_PROPERTY_EFFECTIVE_SIZE:
// texture is already set to repeat, so nothing else we need to do
tex->ewidth = iargs[0];
tex->eheight = iargs[1];
break;
case IMAGE_PROPERTY_CORNER_RADIUS: tex->corner_radius = dargs[0]; break;
case IMAGE_PROPERTY_MAX_BRIGHTNESS: tex->max_brightness = dargs[0]; break;
case IMAGE_PROPERTY_BORDER_WIDTH: tex->border_width = *(int *)arg; break;
case IMAGE_PROPERTY_CUSTOM_SHADER: break;
}
return true;
}
bool default_is_image_transparent(backend_t *base attr_unused, void *image_data) {
struct backend_image *img = image_data;
return img->opacity < 1 || img->inner->has_alpha;
}
struct backend_image *default_new_backend_image(int w, int h) {
auto ret = ccalloc(1, struct backend_image);
ret->opacity = 1;
ret->dim = 0;
ret->max_brightness = 1;
ret->eheight = h;
ret->ewidth = w;
ret->color_inverted = false;
ret->corner_radius = 0;
return ret;
}
void init_backend_base(struct backend_base *base, session_t *ps) {
base->c = ps->c;
base->loop = ps->loop;
base->root = ps->root;
base->busy = false;
base->ops = NULL;
}