1
0
Fork 0
mirror of https://github.com/davatorium/rofi.git synced 2024-11-25 13:55:34 -05:00

Improve blur algorithm.

This commit is contained in:
Dave Davenport 2021-02-16 01:46:04 +01:00
parent 606d9d12bf
commit e9cf6fb2b0
3 changed files with 136 additions and 92 deletions

View file

@ -194,5 +194,5 @@ extern WindowManagerQuirk current_window_manager;
* @returns NULL if window was not found, or unmapped, otherwise returns a cairo_surface.
*/
cairo_surface_t *x11_helper_get_screenshot_surface_window ( xcb_window_t window, int size );
void cairo_image_surface_blur(cairo_surface_t* surface, unsigned int radius);
void cairo_image_surface_blur(cairo_surface_t* surface, double radius, double deviation);
#endif

View file

@ -678,6 +678,7 @@ static void filter_elements ( thread_state *ts, G_GNUC_UNUSED gpointer user_data
g_mutex_unlock ( t->mutex );
}
}
static void rofi_view_setup_fake_transparency ( widget *win, const char* const fake_background )
{
if ( CacheState.fake_bg == NULL ) {
@ -726,7 +727,7 @@ static void rofi_view_setup_fake_transparency ( widget *win, const char* const f
cairo_destroy ( dr );
cairo_surface_destroy ( s );
if ( blur > 0 ){
cairo_image_surface_blur( CacheState.fake_bg, (double)blur );
cairo_image_surface_blur( CacheState.fake_bg, (double)blur, 0 );
TICK_N("BLUR");
}
}

View file

@ -38,7 +38,7 @@
#include <glib.h>
#include <cairo.h>
#include <cairo-xcb.h>
#include <math.h>
#include <xcb/xcb.h>
#include <xcb/xcb_aux.h>
#include <xcb/randr.h>
@ -113,101 +113,144 @@ static xcb_visualtype_t * lookup_visual ( xcb_screen_t *s, xcb_visualid_t visu
return 0;
}
typedef union {
uint32_t value;
struct {
uint8_t a,b,c,d;
}vals;
} Pixel __attribute__((packed));
/* This blur function was originally created my MacSlow and published on his website:
* http://macslow.thepimp.net. I'm not entirely sure he's proud of it, but it has
* proved immeasurably useful for me. */
typedef struct {
uint32_t a,b,c,d;
} Filter __attribute__((packed));
static uint32_t* create_kernel(double radius, double deviation, uint32_t *sum2) {
int size = 2 * (int)(radius) + 1;
uint32_t* kernel = (uint32_t*)(g_malloc(sizeof(uint32_t) * (size + 1)));
double radiusf = fabs(radius) + 1.0;
double value = -radius;
double sum = 0.0;
int i;
void cairo_image_surface_blur(cairo_surface_t* surface, unsigned int radius)
{
// Currently we only support argb32
if ( cairo_image_surface_get_format ( surface ) != CAIRO_FORMAT_ARGB32 ) {
g_warning("Invalid format for blurring.");
return;
}
// Steve Hanov, 2009
// Tweaks by Dave Davenport.
// Released into the public domain.
// get width, height
const uint_fast32_t stride = cairo_image_surface_get_stride(surface);
if ( stride%4 != 0 ) {
g_warning("Stride is not multiple of 4: %lu", stride%4);
return;
}
const uint_fast32_t width = stride/4;
const uint_fast32_t height = cairo_image_surface_get_height(surface);
const double mul = 1.0 / (double)(4.0*radius*radius);
Filter* precalc = (Filter*)g_malloc_n(stride*height,sizeof(Filter));
Pixel * src = (Pixel *)cairo_image_surface_get_data(surface);
// The number of times to perform the averaging. According to wikipedia,
// three iterations is good enough to pass for a gaussian.
const uint_fast32_t MAX_ITERATIONS = 3;
const uint_fast32_t wr1 = width-radius-1;
const uint_fast32_t hr1 = height-radius-1;
for (uint_fast32_t iteration = 0; iteration < MAX_ITERATIONS; iteration++) {
Pixel *pixel = (Pixel *)src;
Filter *filter = (Filter*)precalc;
for (uint_fast32_t y = 0; y < height; y++) {
for (uint_fast32_t x = 0; x < width; x++) {
Pixel t = pixel[0];
filter->a = t.vals.a;
filter->b = t.vals.b;
filter->c = t.vals.c;
filter->d = t.vals.d;
if (x!=0) {
filter->a += filter[-1].a;
filter->b += filter[-1].b;
filter->c += filter[-1].c;
filter->d += filter[-1].d;
}
if (y!=0) {
filter->a += filter[-width].a;
filter->b += filter[-width].b;
filter->c += filter[-width].c;
filter->d += filter[-width].d;
}
if (x!=0 && y!=0) {
filter->a -= filter[-width-1].a;
filter->b -= filter[-width-1].b;
filter->c -= filter[-width-1].c;
filter->d -= filter[-width-1].d;
}
filter++ ;
pixel++;
}
}
pixel = (Pixel *)src;
for (uint_fast32_t y = 0; y < (height); y++) {
const uint_fast32_t index = width*y;
const uint_fast32_t t = (y < radius)? 0: width*(y - radius);
const uint_fast32_t b = (y > hr1)? (height-1)*width: (y + radius)*width;
for (uint_fast32_t x = 0; x < (width ); x++) {
const uint_fast32_t l = (x < radius)? 0:(x - radius);
const uint_fast32_t r = (x > wr1)? (width-1):(x + radius);
int tota = precalc[r+b].a + precalc[l+t].a- precalc[l+b].a - precalc[r+t].a;
int totb = precalc[r+b].b + precalc[l+t].b- precalc[l+b].b - precalc[r+t].b;
int totc = precalc[r+b].c + precalc[l+t].c- precalc[l+b].c - precalc[r+t].c;
int totd = precalc[r+b].d + precalc[l+t].d- precalc[l+b].d - precalc[r+t].d;
pixel[index+x].vals.a = (uint8_t)(tota*mul);
pixel[index+x].vals.b = (uint8_t)(totb*mul);
pixel[index+x].vals.c = (uint8_t)(totc*mul);
pixel[index+x].vals.d = (uint8_t)(totd*mul);
}
}
if(deviation == 0.0) {
deviation = sqrt( -(radiusf * radiusf) / (2.0 * log(1.0 / 255.0)));
}
g_free(precalc);
kernel[0] = size;
for(i = 0; i < size; i++) {
kernel[1 + i] = INT16_MAX / (2.506628275 * deviation) * exp(-((value * value) / (2.0 * (deviation * deviation)))) ;
sum += kernel[1 + i];
value += 1.0;
}
*sum2 = sum;
return kernel;
}
void cairo_image_surface_blur(cairo_surface_t* surface, double radius, double deviation)
{
uint32_t* horzBlur;
uint32_t * kernel = 0;
cairo_format_t format;
unsigned int channels;
if(cairo_surface_status(surface)) return ;
uint8_t *data = cairo_image_surface_get_data(surface);
format = cairo_image_surface_get_format(surface);
const int width = cairo_image_surface_get_width(surface);
const int height = cairo_image_surface_get_height(surface);
const int stride = cairo_image_surface_get_stride(surface);
if(format == CAIRO_FORMAT_ARGB32) channels = 4;
else return ;
horzBlur = (uint32_t*)(g_malloc(sizeof(uint32_t) * height * stride));
TICK();
uint32_t sum = 0;
kernel = create_kernel(radius, deviation, &sum);
TICK_N("BLUR: kernel");
/* Horizontal pass. */
uint32_t *horzBlur_ptr = horzBlur;
for(int iY = 0; iY < height; iY++) {
const int iYs = iY*stride;
for(int iX = 0; iX < width; iX++) {
uint32_t red = 0;
uint32_t green = 0;
uint32_t blue = 0;
uint32_t alpha = 0;
int offset = (int)(kernel[0]) / -2;
for(int i = 0; i < (int)(kernel[0]); i++) {
int x = iX + offset;
if(x < 0 || x >= width){
offset++;
continue;
}
uint8_t *dataPtr = &data[iYs + x * channels];
const uint32_t kernip1 = kernel[i + 1];
blue += kernip1 * dataPtr[0];
green += kernip1 * dataPtr[1];
red += kernip1 * dataPtr[2];
alpha += kernip1 * dataPtr[3];
offset++;
}
*horzBlur_ptr++ = blue/sum;
*horzBlur_ptr++ = green/sum;
*horzBlur_ptr++ = red/sum;
*horzBlur_ptr++ = alpha/sum;
}
}
TICK_N("BLUR: hori");
/* Vertical pass. */
for(int iY = 0; iY < height; iY++) {
for(int iX = 0; iX < width; iX++) {
uint32_t red = 0;
uint32_t green = 0;
uint32_t blue = 0;
uint32_t alpha = 0;
int offset = (int)(kernel[0]) / -2;
const int iXs = iX*channels;
for(int i = 0; i < (int)(kernel[0]); i++) {
int y = iY + offset;
if(y < 0 || y >= height) {
offset++;
continue;
}
uint32_t *dataPtr = &horzBlur[y * stride + iXs];
const uint32_t kernip1 = kernel[i + 1];
blue += kernip1 * dataPtr[0];
green += kernip1 * dataPtr[1];
red += kernip1 * dataPtr[2];
alpha += kernip1 * dataPtr[3];
offset++;
}
*data++ = blue/sum;
*data++ = green/sum;
*data++ = red/sum;
*data++ = alpha/sum;
}
}
TICK_N("BLUR: vert");
free(kernel);
free(horzBlur);
return ;
}
cairo_surface_t *x11_helper_get_screenshot_surface_window ( xcb_window_t window, int size )
{
xcb_get_geometry_cookie_t cookie;