The following is a list of free, open source books on machine learning, statistics, data-mining, etc. ## Machine-Learning / Data Mining * [An Introduction To Statistical Learning](http://www-bcf.usc.edu/~gareth/ISL/) - Book + R Code * [Elements of Statistical Learning](http://statweb.stanford.edu/~tibs/ElemStatLearn/) - Book * [Probabilistic Programming & Bayesian Methods for Hackers](http://camdavidsonpilon.github.io/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers/) - Book + IPython Notebooks * [Thinking Bayes](http://www.greenteapress.com/thinkbayes/) - Book + Python Code * [Information Theory, Inference, and Learning Algorithms](http://www.inference.phy.cam.ac.uk/mackay/itila/book.html) * [Gaussian Processes for Machine Learning](http://www.gaussianprocess.org/gpml/chapters/) * [Data Intensive Text Processing w/ MapReduce](http://lintool.github.io/MapReduceAlgorithms/) * [Reinforcement Learning: - An Introduction](http://webdocs.cs.ualberta.ca/~sutton/book/ebook/the-book.html) * [Mining Massive Datasets](http://infolab.stanford.edu/~ullman/mmds/book.pdf) * [A First Encounter with Machine Learning](https://www.ics.uci.edu/~welling/teaching/273ASpring10/IntroMLBook.pdf) * [Pattern Recognition and Machine Learning](http://www.hua.edu.vn/khoa/fita/wp-content/uploads/2013/08/Pattern-Recognition-and-Machine-Learning-Christophe-M-Bishop.pdf) * [Machine Learning & Bayesian Reasoning](http://web4.cs.ucl.ac.uk/staff/D.Barber/textbook/090310.pdf) * [Introduction to Machine Learning](http://alex.smola.org/drafts/thebook.pdf) * [A Probabilistic Theory of Pattern Recognition](http://www.szit.bme.hu/~gyorfi/pbook.pdf) * [Introduction to Information Retrieval](http://nlp.stanford.edu/IR-book/pdf/irbookprint.pdf) * [Forecasting: principles and practice](http://otexts.com/fpp/) * [Practical Artificial Intelligence Programming in Java](http://www.markwatson.com/opencontent_data/JavaAI3rd.pdf) * [Introduction to Machine Learning](http://arxiv.org/pdf/0904.3664v1.pdf) * [Reinforcement Learning](http://www.intechopen.com/books/reinforcement_learning) * [Machine Learning](http://www.intechopen.com/books/machine_learning) * [A Quest for AI](http://ai.stanford.edu/~nilsson/QAI/qai.pdf) ## Probability & Statistics * [Thinking Stats](http://www.greenteapress.com/thinkstats/) - Book + Python Code * [From Algorithms to Z-Scores](http://heather.cs.ucdavis.edu/probstatbook) - Book * [The Art of R Programming](http://heather.cs.ucdavis.edu/~matloff/132/NSPpart.pdf) - Book (Not Finished) * [All of Statistics](http://www.ucl.ac.uk/~rmjbale/Stat/wasserman2.pdf) * [Introduction to statistical thought](https://www.math.umass.edu/~lavine/Book/book.pdf) * [Basic Probability Theory](http://www.math.uiuc.edu/~r-ash/BPT/BPT.pdf) * [Introduction to probability](http://math.dartmouth.edu/~prob/prob/prob.pdf) * [Principle of Uncertainty](http://uncertainty.stat.cmu.edu/wp-content/uploads/2011/05/principles-of-uncertainty.pdf) ## Linear Algebra * [Linear Algebra Done Wrong](http://www.math.brown.edu/~treil/papers/LADW/LADW.pdf) * [Linear Algebra, Theory, and Applications](https://math.byu.edu/~klkuttle/Linearalgebra.pdf) * [Convex Optimization](http://www.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf) * [Applied Numerical Computing](http://www.seas.ucla.edu/~vandenbe/103/reader.pdf) * [Applied Numerical Linear Algebra](http://uqu.edu.sa/files2/tiny_mce/plugins/filemanager/files/4281667/hamdy/hamdy1/cgfvnv/hamdy2/h1/h2/h3/h4/h5/h6/Applied%20Numerical%20Linear%20.pdf)