1
0
Fork 0
mirror of https://github.com/jashkenas/coffeescript.git synced 2022-11-09 12:23:24 -05:00

converting the remainder of the CoffeeScript compiler (Rewriter, Scope, Optparse) to use classes

This commit is contained in:
Jeremy Ashkenas 2010-02-27 19:46:45 -05:00
parent 9f46c306e5
commit e02ab76edf
6 changed files with 786 additions and 775 deletions

View file

@ -1,67 +1,70 @@
(function(){
var LONG_FLAG, MULTI_FLAG, OPTIONAL, SHORT_FLAG, build_rule, build_rules, normalize_arguments, op;
var LONG_FLAG, MULTI_FLAG, OPTIONAL, OptionParser, SHORT_FLAG, build_rule, build_rules, normalize_arguments;
// Create an OptionParser with a list of valid options, in the form:
// [short-flag (optional), long-flag, description]
// And an optional banner for the usage help.
op = (exports.OptionParser = function OptionParser(rules, banner) {
this.banner = banner;
this.rules = build_rules(rules);
return this;
});
// Parse the argument array, populating an options object with all of the
// specified options, and returning it. options.arguments will be an array
// containing the remaning non-option arguments.
op.prototype.parse = function parse(args) {
var _a, _b, _c, arg, is_option, matched_rule, options, rule;
arguments = Array.prototype.slice.call(arguments, 0);
options = {
arguments: []
exports.OptionParser = (function() {
OptionParser = function OptionParser(rules, banner) {
this.banner = banner;
this.rules = build_rules(rules);
return this;
};
args = normalize_arguments(args);
while (arg = args.shift()) {
is_option = !!(arg.match(LONG_FLAG) || arg.match(SHORT_FLAG));
matched_rule = false;
// Parse the argument array, populating an options object with all of the
// specified options, and returning it. options.arguments will be an array
// containing the remaning non-option arguments.
OptionParser.prototype.parse = function parse(args) {
var _a, _b, _c, arg, is_option, matched_rule, options, rule;
arguments = Array.prototype.slice.call(arguments, 0);
options = {
arguments: []
};
args = normalize_arguments(args);
while (arg = args.shift()) {
is_option = !!(arg.match(LONG_FLAG) || arg.match(SHORT_FLAG));
matched_rule = false;
_a = this.rules;
for (_b = 0, _c = _a.length; _b < _c; _b++) {
rule = _a[_b];
if (rule.letter === arg || rule.flag === arg) {
options[rule.name] = rule.has_argument ? args.shift() : true;
matched_rule = true;
break;
}
}
if (is_option && !matched_rule) {
throw new Error("unrecognized option: " + arg);
}
if (!(is_option)) {
options.arguments.push(arg);
}
}
return options;
};
// Return the help text for this OptionParser, for --help and such.
OptionParser.prototype.help = function help() {
var _a, _b, _c, _d, _e, _f, _g, _h, i, let_part, lines, rule, spaces;
lines = ['Available options:'];
if (this.banner) {
lines.unshift(this.banner + '\n');
}
_a = this.rules;
for (_b = 0, _c = _a.length; _b < _c; _b++) {
rule = _a[_b];
if (rule.letter === arg || rule.flag === arg) {
options[rule.name] = rule.has_argument ? args.shift() : true;
matched_rule = true;
break;
}
spaces = 15 - rule.flag.length;
spaces = spaces > 0 ? (function() {
_d = []; _g = 0; _h = spaces;
for (_f = 0, i = _g; (_g <= _h ? i <= _h : i >= _h); (_g <= _h ? i += 1 : i -= 1), _f++) {
_d.push(' ');
}
return _d;
}).call(this).join('') : '';
let_part = rule.letter ? rule.letter + ', ' : ' ';
lines.push(' ' + let_part + rule.flag + spaces + rule.description);
}
if (is_option && !matched_rule) {
throw new Error("unrecognized option: " + arg);
}
if (!(is_option)) {
options.arguments.push(arg);
}
}
return options;
};
// Return the help text for this OptionParser, for --help and such.
op.prototype.help = function help() {
var _a, _b, _c, _d, _e, _f, _g, _h, i, let_part, lines, rule, spaces;
lines = ['Available options:'];
if (this.banner) {
lines.unshift(this.banner + '\n');
}
_a = this.rules;
for (_b = 0, _c = _a.length; _b < _c; _b++) {
rule = _a[_b];
spaces = 15 - rule.flag.length;
spaces = spaces > 0 ? (function() {
_d = []; _g = 0; _h = spaces;
for (_f = 0, i = _g; (_g <= _h ? i <= _h : i >= _h); (_g <= _h ? i += 1 : i -= 1), _f++) {
_d.push(' ');
}
return _d;
}).call(this).join('') : '';
let_part = rule.letter ? rule.letter + ', ' : ' ';
lines.push(' ' + let_part + rule.flag + spaces + rule.description);
}
return lines.join('\n');
};
return lines.join('\n');
};
return OptionParser;
}).call(this);
// Regex matchers for option flags.
LONG_FLAG = /^(--\w[\w\-]+)/;
SHORT_FLAG = /^(-\w)/;

View file

@ -1,13 +1,9 @@
(function(){
var BALANCED_PAIRS, EXPRESSION_CLOSE, EXPRESSION_START, EXPRESSION_TAIL, IMPLICIT_BLOCK, IMPLICIT_CALL, IMPLICIT_END, IMPLICIT_FUNC, INVERSES, SINGLE_CLOSERS, SINGLE_LINERS, _a, _b, _c, _d, _e, _f, _g, _h, _i, _j, _k, pair, re;
var BALANCED_PAIRS, EXPRESSION_CLOSE, EXPRESSION_START, EXPRESSION_TAIL, IMPLICIT_BLOCK, IMPLICIT_CALL, IMPLICIT_END, IMPLICIT_FUNC, INVERSES, Rewriter, SINGLE_CLOSERS, SINGLE_LINERS, _a, _b, _c, _d, _e, _f, _g, _h, _i, _j, _k, pair;
var __hasProp = Object.prototype.hasOwnProperty;
if (!((typeof process !== "undefined" && process !== null))) {
this.exports = this;
}
// In order to keep the grammar simple, the stream of tokens that the Lexer
// emits is rewritten by the Rewriter, smoothing out ambiguities, mis-nested
// indentation, and single-line flavors of expressions.
exports.Rewriter = (re = function re() { });
// Tokens that must be balanced.
BALANCED_PAIRS = [['(', ')'], ['[', ']'], ['{', '}'], ['INDENT', 'OUTDENT'], ['PARAM_START', 'PARAM_END'], ['CALL_START', 'CALL_END'], ['INDEX_START', 'INDEX_END'], ['SOAKED_INDEX_START', 'SOAKED_INDEX_END']];
// Tokens that signal the start of a balanced pair.
@ -47,338 +43,345 @@
// The grammar can't disambiguate them, so we insert the implicit indentation.
SINGLE_LINERS = ['ELSE', "->", "=>", 'TRY', 'FINALLY', 'THEN'];
SINGLE_CLOSERS = ['TERMINATOR', 'CATCH', 'FINALLY', 'ELSE', 'OUTDENT', 'LEADING_WHEN'];
// Rewrite the token stream in multiple passes, one logical filter at
// a time. This could certainly be changed into a single pass through the
// stream, with a big ol' efficient switch, but it's much nicer like this.
re.prototype.rewrite = function rewrite(tokens) {
this.tokens = tokens;
this.adjust_comments();
this.remove_leading_newlines();
this.remove_mid_expression_newlines();
this.move_commas_outside_outdents();
this.close_open_calls_and_indexes();
this.add_implicit_indentation();
this.add_implicit_parentheses();
this.ensure_balance(BALANCED_PAIRS);
this.rewrite_closing_parens();
return this.tokens;
};
// Rewrite the token stream, looking one token ahead and behind.
// Allow the return value of the block to tell us how many tokens to move
// forwards (or backwards) in the stream, to make sure we don't miss anything
// as the stream changes length under our feet.
re.prototype.scan_tokens = function scan_tokens(block) {
var i, move;
i = 0;
while (true) {
if (!(this.tokens[i])) {
break;
// In order to keep the grammar simple, the stream of tokens that the Lexer
// emits is rewritten by the Rewriter, smoothing out ambiguities, mis-nested
// indentation, and single-line flavors of expressions.
exports.Rewriter = (function() {
Rewriter = function Rewriter() { };
// Rewrite the token stream in multiple passes, one logical filter at
// a time. This could certainly be changed into a single pass through the
// stream, with a big ol' efficient switch, but it's much nicer like this.
Rewriter.prototype.rewrite = function rewrite(tokens) {
this.tokens = tokens;
this.adjust_comments();
this.remove_leading_newlines();
this.remove_mid_expression_newlines();
this.move_commas_outside_outdents();
this.close_open_calls_and_indexes();
this.add_implicit_indentation();
this.add_implicit_parentheses();
this.ensure_balance(BALANCED_PAIRS);
this.rewrite_closing_parens();
return this.tokens;
};
// Rewrite the token stream, looking one token ahead and behind.
// Allow the return value of the block to tell us how many tokens to move
// forwards (or backwards) in the stream, to make sure we don't miss anything
// as the stream changes length under our feet.
Rewriter.prototype.scan_tokens = function scan_tokens(block) {
var i, move;
i = 0;
while (true) {
if (!(this.tokens[i])) {
break;
}
move = block(this.tokens[i - 1], this.tokens[i], this.tokens[i + 1], i);
i += move;
}
move = block(this.tokens[i - 1], this.tokens[i], this.tokens[i + 1], i);
i += move;
}
return true;
};
// Massage newlines and indentations so that comments don't have to be
// correctly indented, or appear on their own line.
re.prototype.adjust_comments = function adjust_comments() {
return this.scan_tokens((function(__this) {
var __func = function(prev, token, post, i) {
var after, before;
if (!(token[0] === 'COMMENT')) {
return 1;
}
before = this.tokens[i - 2];
after = this.tokens[i + 2];
if (before && after && ((before[0] === 'INDENT' && after[0] === 'OUTDENT') || (before[0] === 'OUTDENT' && after[0] === 'INDENT')) && before[1] === after[1]) {
this.tokens.splice(i + 2, 1);
this.tokens.splice(i - 2, 1);
return 0;
} else if (prev && prev[0] === 'TERMINATOR' && after && after[0] === 'INDENT') {
this.tokens.splice(i + 2, 1);
this.tokens[i - 1] = after;
return 1;
} else if (prev && prev[0] !== 'TERMINATOR' && prev[0] !== 'INDENT' && prev[0] !== 'OUTDENT') {
this.tokens.splice(i, 0, ['TERMINATOR', "\n", prev[2]]);
return 2;
} else {
return 1;
}
};
return (function() {
return __func.apply(__this, arguments);
});
})(this));
};
// Leading newlines would introduce an ambiguity in the grammar, so we
// dispatch them here.
re.prototype.remove_leading_newlines = function remove_leading_newlines() {
if (this.tokens[0][0] === 'TERMINATOR') {
return this.tokens.shift();
}
};
// Some blocks occur in the middle of expressions -- when we're expecting
// this, remove their trailing newlines.
re.prototype.remove_mid_expression_newlines = function remove_mid_expression_newlines() {
return this.scan_tokens((function(__this) {
var __func = function(prev, token, post, i) {
if (!(post && EXPRESSION_CLOSE.indexOf(post[0]) >= 0 && token[0] === 'TERMINATOR')) {
return 1;
}
this.tokens.splice(i, 1);
return 0;
};
return (function() {
return __func.apply(__this, arguments);
});
})(this));
};
// Make sure that we don't accidentally break trailing commas, which need
// to go on the outside of expression closers.
re.prototype.move_commas_outside_outdents = function move_commas_outside_outdents() {
return this.scan_tokens((function(__this) {
var __func = function(prev, token, post, i) {
if (token[0] === 'OUTDENT' && prev[0] === ',') {
this.tokens.splice(i, 1, token);
}
return 1;
};
return (function() {
return __func.apply(__this, arguments);
});
})(this));
};
// We've tagged the opening parenthesis of a method call, and the opening
// bracket of an indexing operation. Match them with their close.
re.prototype.close_open_calls_and_indexes = function close_open_calls_and_indexes() {
var brackets, parens;
parens = [0];
brackets = [0];
return this.scan_tokens((function(__this) {
var __func = function(prev, token, post, i) {
var _l;
if ((_l = token[0]) === 'CALL_START') {
parens.push(0);
} else if (_l === 'INDEX_START') {
brackets.push(0);
} else if (_l === '(') {
parens[parens.length - 1] += 1;
} else if (_l === '[') {
brackets[brackets.length - 1] += 1;
} else if (_l === ')') {
if (parens[parens.length - 1] === 0) {
parens.pop();
token[0] = 'CALL_END';
} else {
parens[parens.length - 1] -= 1;
}
} else if (_l === ']') {
if (brackets[brackets.length - 1] === 0) {
brackets.pop();
token[0] = 'INDEX_END';
} else {
brackets[brackets.length - 1] -= 1;
}
}
return 1;
};
return (function() {
return __func.apply(__this, arguments);
});
})(this));
};
// Methods may be optionally called without parentheses, for simple cases.
// Insert the implicit parentheses here, so that the parser doesn't have to
// deal with them.
re.prototype.add_implicit_parentheses = function add_implicit_parentheses() {
var stack;
stack = [0];
return this.scan_tokens((function(__this) {
var __func = function(prev, token, post, i) {
var _l, _m, _n, _o, idx, last, size, stack_pointer, tag, tmp;
tag = token[0];
if (tag === 'INDENT') {
stack.push(0);
}
if (tag === 'OUTDENT') {
last = stack.pop();
stack[stack.length - 1] += last;
}
if (IMPLICIT_END.indexOf(tag) >= 0 || !(typeof post !== "undefined" && post !== null)) {
if (tag === 'INDENT' && prev && IMPLICIT_BLOCK.indexOf(prev[0]) >= 0) {
return true;
};
// Massage newlines and indentations so that comments don't have to be
// correctly indented, or appear on their own line.
Rewriter.prototype.adjust_comments = function adjust_comments() {
return this.scan_tokens((function(__this) {
var __func = function(prev, token, post, i) {
var after, before;
if (!(token[0] === 'COMMENT')) {
return 1;
}
if (stack[stack.length - 1] > 0 || tag === 'INDENT') {
idx = tag === 'OUTDENT' ? i + 1 : i;
stack_pointer = tag === 'INDENT' ? 2 : 1;
_n = 0; _o = stack[stack.length - stack_pointer];
for (_m = 0, tmp = _n; (_n <= _o ? tmp < _o : tmp > _o); (_n <= _o ? tmp += 1 : tmp -= 1), _m++) {
this.tokens.splice(idx, 0, ['CALL_END', ')', token[2]]);
}
size = stack[stack.length - stack_pointer] + 1;
stack[stack.length - stack_pointer] = 0;
return size;
}
}
if (!(prev && IMPLICIT_FUNC.indexOf(prev[0]) >= 0 && IMPLICIT_CALL.indexOf(tag) >= 0)) {
return 1;
}
this.tokens.splice(i, 0, ['CALL_START', '(', token[2]]);
stack[stack.length - 1] += 1;
return 2;
};
return (function() {
return __func.apply(__this, arguments);
});
})(this));
};
// Because our grammar is LALR(1), it can't handle some single-line
// expressions that lack ending delimiters. Use the lexer to add the implicit
// blocks, so it doesn't need to.
// ')' can close a single-line block, but we need to make sure it's balanced.
re.prototype.add_implicit_indentation = function add_implicit_indentation() {
return this.scan_tokens((function(__this) {
var __func = function(prev, token, post, i) {
var idx, insertion, parens, pre, starter, tok;
if (!(SINGLE_LINERS.indexOf(token[0]) >= 0 && post[0] !== 'INDENT' && !(token[0] === 'ELSE' && post[0] === 'IF'))) {
return 1;
}
starter = token[0];
this.tokens.splice(i + 1, 0, ['INDENT', 2, token[2]]);
idx = i + 1;
parens = 0;
while (true) {
idx += 1;
tok = this.tokens[idx];
pre = this.tokens[idx - 1];
if ((!tok || (SINGLE_CLOSERS.indexOf(tok[0]) >= 0 && tok[1] !== ';') || (pre[0] === ',' && tok[0] === 'PARAM_START') || (tok[0] === ')' && parens === 0)) && !(starter === 'ELSE' && tok[0] === 'ELSE')) {
insertion = pre[0] === "," ? idx - 1 : idx;
this.tokens.splice(insertion, 0, ['OUTDENT', 2, token[2]]);
break;
}
if (tok[0] === '(') {
parens += 1;
}
if (tok[0] === ')') {
parens -= 1;
}
}
if (!(token[0] === 'THEN')) {
return 1;
}
this.tokens.splice(i, 1);
return 0;
};
return (function() {
return __func.apply(__this, arguments);
});
})(this));
};
// Ensure that all listed pairs of tokens are correctly balanced throughout
// the course of the token stream.
re.prototype.ensure_balance = function ensure_balance(pairs) {
var _l, _m, key, levels, unclosed, value;
levels = {};
this.scan_tokens((function(__this) {
var __func = function(prev, token, post, i) {
var _l, _m, _n, _o, close, open;
_l = pairs;
for (_m = 0, _n = _l.length; _m < _n; _m++) {
pair = _l[_m];
_o = pair;
open = _o[0];
close = _o[1];
levels[open] = levels[open] || 0;
if (token[0] === open) {
levels[open] += 1;
}
if (token[0] === close) {
levels[open] -= 1;
}
if (levels[open] < 0) {
throw new Error("too many " + token[1]);
}
}
return 1;
};
return (function() {
return __func.apply(__this, arguments);
});
})(this));
unclosed = (function() {
_l = []; _m = levels;
for (key in _m) { if (__hasProp.call(_m, key)) {
value = _m[key];
if (value > 0) {
_l.push(key);
}
}}
return _l;
}).call(this);
if (unclosed.length) {
throw new Error("unclosed " + unclosed[0]);
}
};
// We'd like to support syntax like this:
// el.click((event) ->
// el.hide())
// In order to accomplish this, move outdents that follow closing parens
// inwards, safely. The steps to accomplish this are:
//
// 1. Check that all paired tokens are balanced and in order.
// 2. Rewrite the stream with a stack: if you see an '(' or INDENT, add it
// to the stack. If you see an ')' or OUTDENT, pop the stack and replace
// it with the inverse of what we've just popped.
// 3. Keep track of "debt" for tokens that we fake, to make sure we end
// up balanced in the end.
//
re.prototype.rewrite_closing_parens = function rewrite_closing_parens() {
var _l, debt, key, stack, val;
stack = [];
debt = {};
_l = INVERSES;
for (key in _l) { if (__hasProp.call(_l, key)) {
val = _l[key];
((debt[key] = 0));
}}
return this.scan_tokens((function(__this) {
var __func = function(prev, token, post, i) {
var inv, match, mtag, tag;
tag = token[0];
inv = INVERSES[token[0]];
// Push openers onto the stack.
if (EXPRESSION_START.indexOf(tag) >= 0) {
stack.push(token);
return 1;
// The end of an expression, check stack and debt for a pair.
} else if (EXPRESSION_TAIL.indexOf(tag) >= 0) {
// If the tag is already in our debt, swallow it.
if (debt[inv] > 0) {
debt[inv] -= 1;
this.tokens.splice(i, 1);
before = this.tokens[i - 2];
after = this.tokens[i + 2];
if (before && after && ((before[0] === 'INDENT' && after[0] === 'OUTDENT') || (before[0] === 'OUTDENT' && after[0] === 'INDENT')) && before[1] === after[1]) {
this.tokens.splice(i + 2, 1);
this.tokens.splice(i - 2, 1);
return 0;
} else if (prev && prev[0] === 'TERMINATOR' && after && after[0] === 'INDENT') {
this.tokens.splice(i + 2, 1);
this.tokens[i - 1] = after;
return 1;
} else if (prev && prev[0] !== 'TERMINATOR' && prev[0] !== 'INDENT' && prev[0] !== 'OUTDENT') {
this.tokens.splice(i, 0, ['TERMINATOR', "\n", prev[2]]);
return 2;
} else {
// Pop the stack of open delimiters.
match = stack.pop();
mtag = match[0];
// Continue onwards if it's the expected tag.
if (tag === INVERSES[mtag]) {
return 1;
return 1;
}
};
return (function() {
return __func.apply(__this, arguments);
});
})(this));
};
// Leading newlines would introduce an ambiguity in the grammar, so we
// dispatch them here.
Rewriter.prototype.remove_leading_newlines = function remove_leading_newlines() {
if (this.tokens[0][0] === 'TERMINATOR') {
return this.tokens.shift();
}
};
// Some blocks occur in the middle of expressions -- when we're expecting
// this, remove their trailing newlines.
Rewriter.prototype.remove_mid_expression_newlines = function remove_mid_expression_newlines() {
return this.scan_tokens((function(__this) {
var __func = function(prev, token, post, i) {
if (!(post && EXPRESSION_CLOSE.indexOf(post[0]) >= 0 && token[0] === 'TERMINATOR')) {
return 1;
}
this.tokens.splice(i, 1);
return 0;
};
return (function() {
return __func.apply(__this, arguments);
});
})(this));
};
// Make sure that we don't accidentally break trailing commas, which need
// to go on the outside of expression closers.
Rewriter.prototype.move_commas_outside_outdents = function move_commas_outside_outdents() {
return this.scan_tokens((function(__this) {
var __func = function(prev, token, post, i) {
if (token[0] === 'OUTDENT' && prev[0] === ',') {
this.tokens.splice(i, 1, token);
}
return 1;
};
return (function() {
return __func.apply(__this, arguments);
});
})(this));
};
// We've tagged the opening parenthesis of a method call, and the opening
// bracket of an indexing operation. Match them with their close.
Rewriter.prototype.close_open_calls_and_indexes = function close_open_calls_and_indexes() {
var brackets, parens;
parens = [0];
brackets = [0];
return this.scan_tokens((function(__this) {
var __func = function(prev, token, post, i) {
var _l;
if ((_l = token[0]) === 'CALL_START') {
parens.push(0);
} else if (_l === 'INDEX_START') {
brackets.push(0);
} else if (_l === '(') {
parens[parens.length - 1] += 1;
} else if (_l === '[') {
brackets[brackets.length - 1] += 1;
} else if (_l === ')') {
if (parens[parens.length - 1] === 0) {
parens.pop();
token[0] = 'CALL_END';
} else {
// Unexpected close, insert correct close, adding to the debt.
debt[mtag] += 1;
val = mtag === 'INDENT' ? match[1] : INVERSES[mtag];
this.tokens.splice(i, 0, [INVERSES[mtag], val]);
return 1;
parens[parens.length - 1] -= 1;
}
} else if (_l === ']') {
if (brackets[brackets.length - 1] === 0) {
brackets.pop();
token[0] = 'INDEX_END';
} else {
brackets[brackets.length - 1] -= 1;
}
}
} else {
return 1;
}
};
return (function() {
return __func.apply(__this, arguments);
});
})(this));
};
};
return (function() {
return __func.apply(__this, arguments);
});
})(this));
};
// Methods may be optionally called without parentheses, for simple cases.
// Insert the implicit parentheses here, so that the parser doesn't have to
// deal with them.
Rewriter.prototype.add_implicit_parentheses = function add_implicit_parentheses() {
var stack;
stack = [0];
return this.scan_tokens((function(__this) {
var __func = function(prev, token, post, i) {
var _l, _m, _n, _o, idx, last, size, stack_pointer, tag, tmp;
tag = token[0];
if (tag === 'INDENT') {
stack.push(0);
}
if (tag === 'OUTDENT') {
last = stack.pop();
stack[stack.length - 1] += last;
}
if (IMPLICIT_END.indexOf(tag) >= 0 || !(typeof post !== "undefined" && post !== null)) {
if (tag === 'INDENT' && prev && IMPLICIT_BLOCK.indexOf(prev[0]) >= 0) {
return 1;
}
if (stack[stack.length - 1] > 0 || tag === 'INDENT') {
idx = tag === 'OUTDENT' ? i + 1 : i;
stack_pointer = tag === 'INDENT' ? 2 : 1;
_n = 0; _o = stack[stack.length - stack_pointer];
for (_m = 0, tmp = _n; (_n <= _o ? tmp < _o : tmp > _o); (_n <= _o ? tmp += 1 : tmp -= 1), _m++) {
this.tokens.splice(idx, 0, ['CALL_END', ')', token[2]]);
}
size = stack[stack.length - stack_pointer] + 1;
stack[stack.length - stack_pointer] = 0;
return size;
}
}
if (!(prev && IMPLICIT_FUNC.indexOf(prev[0]) >= 0 && IMPLICIT_CALL.indexOf(tag) >= 0)) {
return 1;
}
this.tokens.splice(i, 0, ['CALL_START', '(', token[2]]);
stack[stack.length - 1] += 1;
return 2;
};
return (function() {
return __func.apply(__this, arguments);
});
})(this));
};
// Because our grammar is LALR(1), it can't handle some single-line
// expressions that lack ending delimiters. Use the lexer to add the implicit
// blocks, so it doesn't need to.
// ')' can close a single-line block, but we need to make sure it's balanced.
Rewriter.prototype.add_implicit_indentation = function add_implicit_indentation() {
return this.scan_tokens((function(__this) {
var __func = function(prev, token, post, i) {
var idx, insertion, parens, pre, starter, tok;
if (!(SINGLE_LINERS.indexOf(token[0]) >= 0 && post[0] !== 'INDENT' && !(token[0] === 'ELSE' && post[0] === 'IF'))) {
return 1;
}
starter = token[0];
this.tokens.splice(i + 1, 0, ['INDENT', 2, token[2]]);
idx = i + 1;
parens = 0;
while (true) {
idx += 1;
tok = this.tokens[idx];
pre = this.tokens[idx - 1];
if ((!tok || (SINGLE_CLOSERS.indexOf(tok[0]) >= 0 && tok[1] !== ';') || (pre[0] === ',' && tok[0] === 'PARAM_START') || (tok[0] === ')' && parens === 0)) && !(starter === 'ELSE' && tok[0] === 'ELSE')) {
insertion = pre[0] === "," ? idx - 1 : idx;
this.tokens.splice(insertion, 0, ['OUTDENT', 2, token[2]]);
break;
}
if (tok[0] === '(') {
parens += 1;
}
if (tok[0] === ')') {
parens -= 1;
}
}
if (!(token[0] === 'THEN')) {
return 1;
}
this.tokens.splice(i, 1);
return 0;
};
return (function() {
return __func.apply(__this, arguments);
});
})(this));
};
// Ensure that all listed pairs of tokens are correctly balanced throughout
// the course of the token stream.
Rewriter.prototype.ensure_balance = function ensure_balance(pairs) {
var _l, _m, key, levels, unclosed, value;
levels = {};
this.scan_tokens((function(__this) {
var __func = function(prev, token, post, i) {
var _l, _m, _n, _o, close, open;
_l = pairs;
for (_m = 0, _n = _l.length; _m < _n; _m++) {
pair = _l[_m];
_o = pair;
open = _o[0];
close = _o[1];
levels[open] = levels[open] || 0;
if (token[0] === open) {
levels[open] += 1;
}
if (token[0] === close) {
levels[open] -= 1;
}
if (levels[open] < 0) {
throw new Error("too many " + token[1]);
}
}
return 1;
};
return (function() {
return __func.apply(__this, arguments);
});
})(this));
unclosed = (function() {
_l = []; _m = levels;
for (key in _m) { if (__hasProp.call(_m, key)) {
value = _m[key];
if (value > 0) {
_l.push(key);
}
}}
return _l;
}).call(this);
if (unclosed.length) {
throw new Error("unclosed " + unclosed[0]);
}
};
// We'd like to support syntax like this:
// el.click((event) ->
// el.hide())
// In order to accomplish this, move outdents that follow closing parens
// inwards, safely. The steps to accomplish this are:
//
// 1. Check that all paired tokens are balanced and in order.
// 2. Rewrite the stream with a stack: if you see an '(' or INDENT, add it
// to the stack. If you see an ')' or OUTDENT, pop the stack and replace
// it with the inverse of what we've just popped.
// 3. Keep track of "debt" for tokens that we fake, to make sure we end
// up balanced in the end.
//
Rewriter.prototype.rewrite_closing_parens = function rewrite_closing_parens() {
var _l, debt, key, stack, val;
stack = [];
debt = {};
_l = INVERSES;
for (key in _l) { if (__hasProp.call(_l, key)) {
val = _l[key];
((debt[key] = 0));
}}
return this.scan_tokens((function(__this) {
var __func = function(prev, token, post, i) {
var inv, match, mtag, tag;
tag = token[0];
inv = INVERSES[token[0]];
// Push openers onto the stack.
if (EXPRESSION_START.indexOf(tag) >= 0) {
stack.push(token);
return 1;
// The end of an expression, check stack and debt for a pair.
} else if (EXPRESSION_TAIL.indexOf(tag) >= 0) {
// If the tag is already in our debt, swallow it.
if (debt[inv] > 0) {
debt[inv] -= 1;
this.tokens.splice(i, 1);
return 0;
} else {
// Pop the stack of open delimiters.
match = stack.pop();
mtag = match[0];
// Continue onwards if it's the expected tag.
if (tag === INVERSES[mtag]) {
return 1;
} else {
// Unexpected close, insert correct close, adding to the debt.
debt[mtag] += 1;
val = mtag === 'INDENT' ? match[1] : INVERSES[mtag];
this.tokens.splice(i, 0, [INVERSES[mtag], val]);
return 1;
}
}
} else {
return 1;
}
};
return (function() {
return __func.apply(__this, arguments);
});
})(this));
};
return Rewriter;
}).call(this);
})();

View file

@ -11,104 +11,107 @@
// Initialize a scope with its parent, for lookups up the chain,
// as well as the Expressions body where it should declare its variables,
// and the function that it wraps.
Scope = (exports.Scope = function Scope(parent, expressions, method) {
var _a;
_a = [parent, expressions, method];
this.parent = _a[0];
this.expressions = _a[1];
this.method = _a[2];
this.variables = {};
this.temp_var = this.parent ? this.parent.temp_var : '_a';
return this;
});
// Look up a variable in lexical scope, or declare it if not found.
Scope.prototype.find = function find(name) {
if (this.check(name)) {
return true;
}
this.variables[name] = 'var';
return false;
};
// Define a local variable as originating from a parameter in current scope
// -- no var required.
Scope.prototype.parameter = function parameter(name) {
return this.variables[name] = 'param';
};
// Just check to see if a variable has already been declared.
Scope.prototype.check = function check(name) {
if (this.variables[name]) {
return true;
}
return !!(this.parent && this.parent.check(name));
};
// You can reset a found variable on the immediate scope.
Scope.prototype.reset = function reset(name) {
return delete this.variables[name];
};
// Find an available, short, name for a compiler-generated variable.
Scope.prototype.free_variable = function free_variable() {
var ordinal;
while (this.check(this.temp_var)) {
ordinal = 1 + parseInt(this.temp_var.substr(1), 36);
this.temp_var = '_' + ordinal.toString(36).replace(/\d/g, 'a');
}
this.variables[this.temp_var] = 'var';
return this.temp_var;
};
// Ensure that an assignment is made at the top of scope (or top-level
// scope, if requested).
Scope.prototype.assign = function assign(name, value, top_level) {
if (top_level && this.parent) {
return this.parent.assign(name, value, top_level);
}
return this.variables[name] = {
value: value,
assigned: true
exports.Scope = (function() {
Scope = function Scope(parent, expressions, method) {
var _a;
_a = [parent, expressions, method];
this.parent = _a[0];
this.expressions = _a[1];
this.method = _a[2];
this.variables = {};
this.temp_var = this.parent ? this.parent.temp_var : '_a';
return this;
};
};
// Does this scope reference any variables that need to be declared in the
// given function body?
Scope.prototype.has_declarations = function has_declarations(body) {
return body === this.expressions && this.declared_variables().length;
};
// Does this scope reference any assignments that need to be declared at the
// top of the given function body?
Scope.prototype.has_assignments = function has_assignments(body) {
return body === this.expressions && this.assigned_variables().length;
};
// Return the list of variables first declared in current scope.
Scope.prototype.declared_variables = function declared_variables() {
var _a, _b, key, val;
return (function() {
// Look up a variable in lexical scope, or declare it if not found.
Scope.prototype.find = function find(name) {
if (this.check(name)) {
return true;
}
this.variables[name] = 'var';
return false;
};
// Define a local variable as originating from a parameter in current scope
// -- no var required.
Scope.prototype.parameter = function parameter(name) {
return this.variables[name] = 'param';
};
// Just check to see if a variable has already been declared.
Scope.prototype.check = function check(name) {
if (this.variables[name]) {
return true;
}
return !!(this.parent && this.parent.check(name));
};
// You can reset a found variable on the immediate scope.
Scope.prototype.reset = function reset(name) {
return delete this.variables[name];
};
// Find an available, short, name for a compiler-generated variable.
Scope.prototype.free_variable = function free_variable() {
var ordinal;
while (this.check(this.temp_var)) {
ordinal = 1 + parseInt(this.temp_var.substr(1), 36);
this.temp_var = '_' + ordinal.toString(36).replace(/\d/g, 'a');
}
this.variables[this.temp_var] = 'var';
return this.temp_var;
};
// Ensure that an assignment is made at the top of scope (or top-level
// scope, if requested).
Scope.prototype.assign = function assign(name, value, top_level) {
if (top_level && this.parent) {
return this.parent.assign(name, value, top_level);
}
return this.variables[name] = {
value: value,
assigned: true
};
};
// Does this scope reference any variables that need to be declared in the
// given function body?
Scope.prototype.has_declarations = function has_declarations(body) {
return body === this.expressions && this.declared_variables().length;
};
// Does this scope reference any assignments that need to be declared at the
// top of the given function body?
Scope.prototype.has_assignments = function has_assignments(body) {
return body === this.expressions && this.assigned_variables().length;
};
// Return the list of variables first declared in current scope.
Scope.prototype.declared_variables = function declared_variables() {
var _a, _b, key, val;
return (function() {
_a = []; _b = this.variables;
for (key in _b) { if (__hasProp.call(_b, key)) {
val = _b[key];
if (val === 'var') {
_a.push(key);
}
}}
return _a;
}).call(this).sort();
};
// Return the list of variables that are supposed to be assigned at the top
// of scope.
Scope.prototype.assigned_variables = function assigned_variables() {
var _a, _b, key, val;
_a = []; _b = this.variables;
for (key in _b) { if (__hasProp.call(_b, key)) {
val = _b[key];
if (val === 'var') {
_a.push(key);
if (val.assigned) {
_a.push(key + ' = ' + val.value);
}
}}
return _a;
}).call(this).sort();
};
// Return the list of variables that are supposed to be assigned at the top
// of scope.
Scope.prototype.assigned_variables = function assigned_variables() {
var _a, _b, key, val;
_a = []; _b = this.variables;
for (key in _b) { if (__hasProp.call(_b, key)) {
val = _b[key];
if (val.assigned) {
_a.push(key + ' = ' + val.value);
}
}}
return _a;
};
// Compile the string representing all of the declared variables for this scope.
Scope.prototype.compiled_declarations = function compiled_declarations() {
return this.declared_variables().join(', ');
};
// Compile the string performing all of the variable assignments for this scope.
Scope.prototype.compiled_assignments = function compiled_assignments() {
return this.assigned_variables().join(', ');
};
};
// Compile the string representing all of the declared variables for this scope.
Scope.prototype.compiled_declarations = function compiled_declarations() {
return this.declared_variables().join(', ');
};
// Compile the string performing all of the variable assignments for this scope.
Scope.prototype.compiled_assignments = function compiled_assignments() {
return this.assigned_variables().join(', ');
};
return Scope;
}).call(this);
})();

View file

@ -1,39 +1,40 @@
# Create an OptionParser with a list of valid options, in the form:
# [short-flag (optional), long-flag, description]
# And an optional banner for the usage help.
op: exports.OptionParser: (rules, banner) ->
@banner: banner
@rules: build_rules(rules)
this
exports.OptionParser: class OptionParser
# Parse the argument array, populating an options object with all of the
# specified options, and returning it. options.arguments will be an array
# containing the remaning non-option arguments.
op::parse: (args) ->
options: {arguments: []}
args: normalize_arguments args
while arg: args.shift()
is_option: !!(arg.match(LONG_FLAG) or arg.match(SHORT_FLAG))
matched_rule: no
constructor: (rules, banner) ->
@banner: banner
@rules: build_rules(rules)
# Parse the argument array, populating an options object with all of the
# specified options, and returning it. options.arguments will be an array
# containing the remaning non-option arguments.
parse: (args) ->
options: {arguments: []}
args: normalize_arguments args
while arg: args.shift()
is_option: !!(arg.match(LONG_FLAG) or arg.match(SHORT_FLAG))
matched_rule: no
for rule in @rules
if rule.letter is arg or rule.flag is arg
options[rule.name]: if rule.has_argument then args.shift() else true
matched_rule: yes
break
throw new Error "unrecognized option: " + arg if is_option and not matched_rule
options.arguments.push arg unless is_option
options
# Return the help text for this OptionParser, for --help and such.
help: ->
lines: ['Available options:']
lines.unshift @banner + '\n' if @banner
for rule in @rules
if rule.letter is arg or rule.flag is arg
options[rule.name]: if rule.has_argument then args.shift() else true
matched_rule: yes
break
throw new Error "unrecognized option: " + arg if is_option and not matched_rule
options.arguments.push arg unless is_option
options
# Return the help text for this OptionParser, for --help and such.
op::help: ->
lines: ['Available options:']
lines.unshift @banner + '\n' if @banner
for rule in @rules
spaces: 15 - rule.flag.length
spaces: if spaces > 0 then (' ' for i in [0..spaces]).join('') else ''
let_part: if rule.letter then rule.letter + ', ' else ' '
lines.push ' ' + let_part + rule.flag + spaces + rule.description
lines.join('\n')
spaces: 15 - rule.flag.length
spaces: if spaces > 0 then (' ' for i in [0..spaces]).join('') else ''
let_part: if rule.letter then rule.letter + ', ' else ' '
lines.push ' ' + let_part + rule.flag + spaces + rule.description
lines.join('\n')
# Regex matchers for option flags.
LONG_FLAG: /^(--\w[\w\-]+)/

View file

@ -1,10 +1,5 @@
this.exports: this unless process?
# In order to keep the grammar simple, the stream of tokens that the Lexer
# emits is rewritten by the Rewriter, smoothing out ambiguities, mis-nested
# indentation, and single-line flavors of expressions.
exports.Rewriter: re: ->
# Tokens that must be balanced.
BALANCED_PAIRS: [['(', ')'], ['[', ']'], ['{', '}'], ['INDENT', 'OUTDENT'],
['PARAM_START', 'PARAM_END'], ['CALL_START', 'CALL_END'],
@ -39,217 +34,222 @@ for pair in BALANCED_PAIRS
SINGLE_LINERS: ['ELSE', "->", "=>", 'TRY', 'FINALLY', 'THEN']
SINGLE_CLOSERS: ['TERMINATOR', 'CATCH', 'FINALLY', 'ELSE', 'OUTDENT', 'LEADING_WHEN']
# Rewrite the token stream in multiple passes, one logical filter at
# a time. This could certainly be changed into a single pass through the
# stream, with a big ol' efficient switch, but it's much nicer like this.
re::rewrite: (tokens) ->
@tokens: tokens
@adjust_comments()
@remove_leading_newlines()
@remove_mid_expression_newlines()
@move_commas_outside_outdents()
@close_open_calls_and_indexes()
@add_implicit_indentation()
@add_implicit_parentheses()
@ensure_balance(BALANCED_PAIRS)
@rewrite_closing_parens()
@tokens
# In order to keep the grammar simple, the stream of tokens that the Lexer
# emits is rewritten by the Rewriter, smoothing out ambiguities, mis-nested
# indentation, and single-line flavors of expressions.
exports.Rewriter: class Rewriter
# Rewrite the token stream, looking one token ahead and behind.
# Allow the return value of the block to tell us how many tokens to move
# forwards (or backwards) in the stream, to make sure we don't miss anything
# as the stream changes length under our feet.
re::scan_tokens: (block) ->
i: 0
while true
break unless @tokens[i]
move: block(@tokens[i - 1], @tokens[i], @tokens[i + 1], i)
i += move
true
# Rewrite the token stream in multiple passes, one logical filter at
# a time. This could certainly be changed into a single pass through the
# stream, with a big ol' efficient switch, but it's much nicer like this.
rewrite: (tokens) ->
@tokens: tokens
@adjust_comments()
@remove_leading_newlines()
@remove_mid_expression_newlines()
@move_commas_outside_outdents()
@close_open_calls_and_indexes()
@add_implicit_indentation()
@add_implicit_parentheses()
@ensure_balance(BALANCED_PAIRS)
@rewrite_closing_parens()
@tokens
# Massage newlines and indentations so that comments don't have to be
# correctly indented, or appear on their own line.
re::adjust_comments: ->
@scan_tokens (prev, token, post, i) =>
return 1 unless token[0] is 'COMMENT'
before: @tokens[i - 2]
after: @tokens[i + 2]
if before and after and
((before[0] is 'INDENT' and after[0] is 'OUTDENT') or
(before[0] is 'OUTDENT' and after[0] is 'INDENT')) and
before[1] is after[1]
@tokens.splice(i + 2, 1)
@tokens.splice(i - 2, 1)
return 0
else if prev and prev[0] is 'TERMINATOR' and after and after[0] is 'INDENT'
@tokens.splice(i + 2, 1)
@tokens[i - 1]: after
return 1
else if prev and prev[0] isnt 'TERMINATOR' and prev[0] isnt 'INDENT' and prev[0] isnt 'OUTDENT'
@tokens.splice(i, 0, ['TERMINATOR', "\n", prev[2]])
return 2
else
return 1
# Leading newlines would introduce an ambiguity in the grammar, so we
# dispatch them here.
re::remove_leading_newlines: ->
@tokens.shift() if @tokens[0][0] is 'TERMINATOR'
# Some blocks occur in the middle of expressions -- when we're expecting
# this, remove their trailing newlines.
re::remove_mid_expression_newlines: ->
@scan_tokens (prev, token, post, i) =>
return 1 unless post and EXPRESSION_CLOSE.indexOf(post[0]) >= 0 and token[0] is 'TERMINATOR'
@tokens.splice(i, 1)
return 0
# Make sure that we don't accidentally break trailing commas, which need
# to go on the outside of expression closers.
re::move_commas_outside_outdents: ->
@scan_tokens (prev, token, post, i) =>
@tokens.splice(i, 1, token) if token[0] is 'OUTDENT' and prev[0] is ','
return 1
# We've tagged the opening parenthesis of a method call, and the opening
# bracket of an indexing operation. Match them with their close.
re::close_open_calls_and_indexes: ->
parens: [0]
brackets: [0]
@scan_tokens (prev, token, post, i) =>
switch token[0]
when 'CALL_START' then parens.push(0)
when 'INDEX_START' then brackets.push(0)
when '(' then parens[parens.length - 1] += 1
when '[' then brackets[brackets.length - 1] += 1
when ')'
if parens[parens.length - 1] is 0
parens.pop()
token[0]: 'CALL_END'
else
parens[parens.length - 1] -= 1
when ']'
if brackets[brackets.length - 1] == 0
brackets.pop()
token[0]: 'INDEX_END'
else
brackets[brackets.length - 1] -= 1
return 1
# Methods may be optionally called without parentheses, for simple cases.
# Insert the implicit parentheses here, so that the parser doesn't have to
# deal with them.
re::add_implicit_parentheses: ->
stack: [0]
@scan_tokens (prev, token, post, i) =>
tag: token[0]
stack.push(0) if tag is 'INDENT'
if tag is 'OUTDENT'
last: stack.pop()
stack[stack.length - 1] += last
if IMPLICIT_END.indexOf(tag) >= 0 or !post?
return 1 if tag is 'INDENT' and prev and IMPLICIT_BLOCK.indexOf(prev[0]) >= 0
if stack[stack.length - 1] > 0 or tag is 'INDENT'
idx: if tag is 'OUTDENT' then i + 1 else i
stack_pointer: if tag is 'INDENT' then 2 else 1
for tmp in [0...stack[stack.length - stack_pointer]]
@tokens.splice(idx, 0, ['CALL_END', ')', token[2]])
size: stack[stack.length - stack_pointer] + 1
stack[stack.length - stack_pointer]: 0
return size
return 1 unless prev and IMPLICIT_FUNC.indexOf(prev[0]) >= 0 and IMPLICIT_CALL.indexOf(tag) >= 0
@tokens.splice(i, 0, ['CALL_START', '(', token[2]])
stack[stack.length - 1] += 1
return 2
# Because our grammar is LALR(1), it can't handle some single-line
# expressions that lack ending delimiters. Use the lexer to add the implicit
# blocks, so it doesn't need to.
# ')' can close a single-line block, but we need to make sure it's balanced.
re::add_implicit_indentation: ->
@scan_tokens (prev, token, post, i) =>
return 1 unless SINGLE_LINERS.indexOf(token[0]) >= 0 and post[0] isnt 'INDENT' and
not (token[0] is 'ELSE' and post[0] is 'IF')
starter: token[0]
@tokens.splice(i + 1, 0, ['INDENT', 2, token[2]])
idx: i + 1
parens: 0
# Rewrite the token stream, looking one token ahead and behind.
# Allow the return value of the block to tell us how many tokens to move
# forwards (or backwards) in the stream, to make sure we don't miss anything
# as the stream changes length under our feet.
scan_tokens: (block) ->
i: 0
while true
idx += 1
tok: @tokens[idx]
pre: @tokens[idx - 1]
if (not tok or
(SINGLE_CLOSERS.indexOf(tok[0]) >= 0 and tok[1] isnt ';') or
(pre[0] is ',' and tok[0] is 'PARAM_START') or
(tok[0] is ')' && parens is 0)) and
not (starter is 'ELSE' and tok[0] is 'ELSE')
insertion: if pre[0] is "," then idx - 1 else idx
@tokens.splice(insertion, 0, ['OUTDENT', 2, token[2]])
break
parens += 1 if tok[0] is '('
parens -= 1 if tok[0] is ')'
return 1 unless token[0] is 'THEN'
@tokens.splice(i, 1)
return 0
break unless @tokens[i]
move: block(@tokens[i - 1], @tokens[i], @tokens[i + 1], i)
i += move
true
# Ensure that all listed pairs of tokens are correctly balanced throughout
# the course of the token stream.
re::ensure_balance: (pairs) ->
levels: {}
@scan_tokens (prev, token, post, i) =>
for pair in pairs
[open, close]: pair
levels[open] ||= 0
levels[open] += 1 if token[0] is open
levels[open] -= 1 if token[0] is close
throw new Error("too many " + token[1]) if levels[open] < 0
return 1
unclosed: key for key, value of levels when value > 0
throw new Error("unclosed " + unclosed[0]) if unclosed.length
# We'd like to support syntax like this:
# el.click((event) ->
# el.hide())
# In order to accomplish this, move outdents that follow closing parens
# inwards, safely. The steps to accomplish this are:
#
# 1. Check that all paired tokens are balanced and in order.
# 2. Rewrite the stream with a stack: if you see an '(' or INDENT, add it
# to the stack. If you see an ')' or OUTDENT, pop the stack and replace
# it with the inverse of what we've just popped.
# 3. Keep track of "debt" for tokens that we fake, to make sure we end
# up balanced in the end.
#
re::rewrite_closing_parens: ->
stack: []
debt: {}
(debt[key]: 0) for key, val of INVERSES
@scan_tokens (prev, token, post, i) =>
tag: token[0]
inv: INVERSES[token[0]]
# Push openers onto the stack.
if EXPRESSION_START.indexOf(tag) >= 0
stack.push(token)
return 1
# The end of an expression, check stack and debt for a pair.
else if EXPRESSION_TAIL.indexOf(tag) >= 0
# If the tag is already in our debt, swallow it.
if debt[inv] > 0
debt[inv] -= 1
@tokens.splice(i, 1)
# Massage newlines and indentations so that comments don't have to be
# correctly indented, or appear on their own line.
adjust_comments: ->
@scan_tokens (prev, token, post, i) =>
return 1 unless token[0] is 'COMMENT'
before: @tokens[i - 2]
after: @tokens[i + 2]
if before and after and
((before[0] is 'INDENT' and after[0] is 'OUTDENT') or
(before[0] is 'OUTDENT' and after[0] is 'INDENT')) and
before[1] is after[1]
@tokens.splice(i + 2, 1)
@tokens.splice(i - 2, 1)
return 0
else if prev and prev[0] is 'TERMINATOR' and after and after[0] is 'INDENT'
@tokens.splice(i + 2, 1)
@tokens[i - 1]: after
return 1
else if prev and prev[0] isnt 'TERMINATOR' and prev[0] isnt 'INDENT' and prev[0] isnt 'OUTDENT'
@tokens.splice(i, 0, ['TERMINATOR', "\n", prev[2]])
return 2
else
# Pop the stack of open delimiters.
match: stack.pop()
mtag: match[0]
# Continue onwards if it's the expected tag.
if tag is INVERSES[mtag]
return 1
else
# Unexpected close, insert correct close, adding to the debt.
debt[mtag] += 1
val: if mtag is 'INDENT' then match[1] else INVERSES[mtag]
@tokens.splice(i, 0, [INVERSES[mtag], val])
return 1
else
return 1
# Leading newlines would introduce an ambiguity in the grammar, so we
# dispatch them here.
remove_leading_newlines: ->
@tokens.shift() if @tokens[0][0] is 'TERMINATOR'
# Some blocks occur in the middle of expressions -- when we're expecting
# this, remove their trailing newlines.
remove_mid_expression_newlines: ->
@scan_tokens (prev, token, post, i) =>
return 1 unless post and EXPRESSION_CLOSE.indexOf(post[0]) >= 0 and token[0] is 'TERMINATOR'
@tokens.splice(i, 1)
return 0
# Make sure that we don't accidentally break trailing commas, which need
# to go on the outside of expression closers.
move_commas_outside_outdents: ->
@scan_tokens (prev, token, post, i) =>
@tokens.splice(i, 1, token) if token[0] is 'OUTDENT' and prev[0] is ','
return 1
# We've tagged the opening parenthesis of a method call, and the opening
# bracket of an indexing operation. Match them with their close.
close_open_calls_and_indexes: ->
parens: [0]
brackets: [0]
@scan_tokens (prev, token, post, i) =>
switch token[0]
when 'CALL_START' then parens.push(0)
when 'INDEX_START' then brackets.push(0)
when '(' then parens[parens.length - 1] += 1
when '[' then brackets[brackets.length - 1] += 1
when ')'
if parens[parens.length - 1] is 0
parens.pop()
token[0]: 'CALL_END'
else
parens[parens.length - 1] -= 1
when ']'
if brackets[brackets.length - 1] == 0
brackets.pop()
token[0]: 'INDEX_END'
else
brackets[brackets.length - 1] -= 1
return 1
# Methods may be optionally called without parentheses, for simple cases.
# Insert the implicit parentheses here, so that the parser doesn't have to
# deal with them.
add_implicit_parentheses: ->
stack: [0]
@scan_tokens (prev, token, post, i) =>
tag: token[0]
stack.push(0) if tag is 'INDENT'
if tag is 'OUTDENT'
last: stack.pop()
stack[stack.length - 1] += last
if IMPLICIT_END.indexOf(tag) >= 0 or !post?
return 1 if tag is 'INDENT' and prev and IMPLICIT_BLOCK.indexOf(prev[0]) >= 0
if stack[stack.length - 1] > 0 or tag is 'INDENT'
idx: if tag is 'OUTDENT' then i + 1 else i
stack_pointer: if tag is 'INDENT' then 2 else 1
for tmp in [0...stack[stack.length - stack_pointer]]
@tokens.splice(idx, 0, ['CALL_END', ')', token[2]])
size: stack[stack.length - stack_pointer] + 1
stack[stack.length - stack_pointer]: 0
return size
return 1 unless prev and IMPLICIT_FUNC.indexOf(prev[0]) >= 0 and IMPLICIT_CALL.indexOf(tag) >= 0
@tokens.splice(i, 0, ['CALL_START', '(', token[2]])
stack[stack.length - 1] += 1
return 2
# Because our grammar is LALR(1), it can't handle some single-line
# expressions that lack ending delimiters. Use the lexer to add the implicit
# blocks, so it doesn't need to.
# ')' can close a single-line block, but we need to make sure it's balanced.
add_implicit_indentation: ->
@scan_tokens (prev, token, post, i) =>
return 1 unless SINGLE_LINERS.indexOf(token[0]) >= 0 and post[0] isnt 'INDENT' and
not (token[0] is 'ELSE' and post[0] is 'IF')
starter: token[0]
@tokens.splice(i + 1, 0, ['INDENT', 2, token[2]])
idx: i + 1
parens: 0
while true
idx += 1
tok: @tokens[idx]
pre: @tokens[idx - 1]
if (not tok or
(SINGLE_CLOSERS.indexOf(tok[0]) >= 0 and tok[1] isnt ';') or
(pre[0] is ',' and tok[0] is 'PARAM_START') or
(tok[0] is ')' && parens is 0)) and
not (starter is 'ELSE' and tok[0] is 'ELSE')
insertion: if pre[0] is "," then idx - 1 else idx
@tokens.splice(insertion, 0, ['OUTDENT', 2, token[2]])
break
parens += 1 if tok[0] is '('
parens -= 1 if tok[0] is ')'
return 1 unless token[0] is 'THEN'
@tokens.splice(i, 1)
return 0
# Ensure that all listed pairs of tokens are correctly balanced throughout
# the course of the token stream.
ensure_balance: (pairs) ->
levels: {}
@scan_tokens (prev, token, post, i) =>
for pair in pairs
[open, close]: pair
levels[open] ||= 0
levels[open] += 1 if token[0] is open
levels[open] -= 1 if token[0] is close
throw new Error("too many " + token[1]) if levels[open] < 0
return 1
unclosed: key for key, value of levels when value > 0
throw new Error("unclosed " + unclosed[0]) if unclosed.length
# We'd like to support syntax like this:
# el.click((event) ->
# el.hide())
# In order to accomplish this, move outdents that follow closing parens
# inwards, safely. The steps to accomplish this are:
#
# 1. Check that all paired tokens are balanced and in order.
# 2. Rewrite the stream with a stack: if you see an '(' or INDENT, add it
# to the stack. If you see an ')' or OUTDENT, pop the stack and replace
# it with the inverse of what we've just popped.
# 3. Keep track of "debt" for tokens that we fake, to make sure we end
# up balanced in the end.
#
rewrite_closing_parens: ->
stack: []
debt: {}
(debt[key]: 0) for key, val of INVERSES
@scan_tokens (prev, token, post, i) =>
tag: token[0]
inv: INVERSES[token[0]]
# Push openers onto the stack.
if EXPRESSION_START.indexOf(tag) >= 0
stack.push(token)
return 1
# The end of an expression, check stack and debt for a pair.
else if EXPRESSION_TAIL.indexOf(tag) >= 0
# If the tag is already in our debt, swallow it.
if debt[inv] > 0
debt[inv] -= 1
@tokens.splice(i, 1)
return 0
else
# Pop the stack of open delimiters.
match: stack.pop()
mtag: match[0]
# Continue onwards if it's the expected tag.
if tag is INVERSES[mtag]
return 1
else
# Unexpected close, insert correct close, adding to the debt.
debt[mtag] += 1
val: if mtag is 'INDENT' then match[1] else INVERSES[mtag]
@tokens.splice(i, 0, [INVERSES[mtag], val])
return 1
else
return 1

View file

@ -7,69 +7,70 @@ this.exports: this unless process?
# Initialize a scope with its parent, for lookups up the chain,
# as well as the Expressions body where it should declare its variables,
# and the function that it wraps.
Scope: exports.Scope: (parent, expressions, method) ->
[@parent, @expressions, @method]: [parent, expressions, method]
@variables: {}
@temp_var: if @parent then @parent.temp_var else '_a'
this
exports.Scope: class Scope
# Look up a variable in lexical scope, or declare it if not found.
Scope::find: (name) ->
return true if @check name
@variables[name]: 'var'
false
constructor: (parent, expressions, method) ->
[@parent, @expressions, @method]: [parent, expressions, method]
@variables: {}
@temp_var: if @parent then @parent.temp_var else '_a'
# Define a local variable as originating from a parameter in current scope
# -- no var required.
Scope::parameter: (name) ->
@variables[name]: 'param'
# Look up a variable in lexical scope, or declare it if not found.
find: (name) ->
return true if @check name
@variables[name]: 'var'
false
# Just check to see if a variable has already been declared.
Scope::check: (name) ->
return true if @variables[name]
!!(@parent and @parent.check(name))
# Define a local variable as originating from a parameter in current scope
# -- no var required.
parameter: (name) ->
@variables[name]: 'param'
# You can reset a found variable on the immediate scope.
Scope::reset: (name) ->
delete @variables[name]
# Just check to see if a variable has already been declared.
check: (name) ->
return true if @variables[name]
!!(@parent and @parent.check(name))
# Find an available, short, name for a compiler-generated variable.
Scope::free_variable: ->
while @check @temp_var
ordinal: 1 + parseInt @temp_var.substr(1), 36
@temp_var: '_' + ordinal.toString(36).replace(/\d/g, 'a')
@variables[@temp_var]: 'var'
@temp_var
# You can reset a found variable on the immediate scope.
reset: (name) ->
delete @variables[name]
# Ensure that an assignment is made at the top of scope (or top-level
# scope, if requested).
Scope::assign: (name, value, top_level) ->
return @parent.assign(name, value, top_level) if top_level and @parent
@variables[name]: {value: value, assigned: true}
# Find an available, short, name for a compiler-generated variable.
free_variable: ->
while @check @temp_var
ordinal: 1 + parseInt @temp_var.substr(1), 36
@temp_var: '_' + ordinal.toString(36).replace(/\d/g, 'a')
@variables[@temp_var]: 'var'
@temp_var
# Does this scope reference any variables that need to be declared in the
# given function body?
Scope::has_declarations: (body) ->
body is @expressions and @declared_variables().length
# Ensure that an assignment is made at the top of scope (or top-level
# scope, if requested).
assign: (name, value, top_level) ->
return @parent.assign(name, value, top_level) if top_level and @parent
@variables[name]: {value: value, assigned: true}
# Does this scope reference any assignments that need to be declared at the
# top of the given function body?
Scope::has_assignments: (body) ->
body is @expressions and @assigned_variables().length
# Does this scope reference any variables that need to be declared in the
# given function body?
has_declarations: (body) ->
body is @expressions and @declared_variables().length
# Return the list of variables first declared in current scope.
Scope::declared_variables: ->
(key for key, val of @variables when val is 'var').sort()
# Does this scope reference any assignments that need to be declared at the
# top of the given function body?
has_assignments: (body) ->
body is @expressions and @assigned_variables().length
# Return the list of variables that are supposed to be assigned at the top
# of scope.
Scope::assigned_variables: ->
key + ' = ' + val.value for key, val of @variables when val.assigned
# Return the list of variables first declared in current scope.
declared_variables: ->
(key for key, val of @variables when val is 'var').sort()
# Compile the string representing all of the declared variables for this scope.
Scope::compiled_declarations: ->
@declared_variables().join ', '
# Return the list of variables that are supposed to be assigned at the top
# of scope.
assigned_variables: ->
key + ' = ' + val.value for key, val of @variables when val.assigned
# Compile the string performing all of the variable assignments for this scope.
Scope::compiled_assignments: ->
@assigned_variables().join ', '
# Compile the string representing all of the declared variables for this scope.
compiled_declarations: ->
@declared_variables().join ', '
# Compile the string performing all of the variable assignments for this scope.
compiled_assignments: ->
@assigned_variables().join ', '