module CoffeeScript # The abstract base class for all CoffeeScript nodes. class Node # Tabs are two spaces for pretty-printing. TAB = ' ' # Tag this node as a statement, meaning that it can't be used directly as # the result of an expression. def self.statement class_eval "def statement?; true; end" end # Tag this node as having a custom return, meaning that instead of returning # it from the outside, you ask it to return itself, and it obliges. def self.custom_return class_eval "def custom_return?; true; end" end # Tag this node as having a custom assignment, meaning that instead of # assigning it to a variable name from the outside, you pass it the variable # name and let it take care of it. def self.custom_assign class_eval "def custom_assign?; true; end" end def write(code) puts "#{self.class.to_s}:\n#{@options.inspect}\n#{code}\n\n" if ENV['VERBOSE'] code end def compile(o={}) @options = o.dup end # Default implementations of the common node methods. def unwrap; self; end def line_ending; ';'; end def statement?; false; end def custom_return?; false; end def custom_assign?; false; end end # A collection of nodes, each one representing an expression. class Expressions < Node statement attr_reader :expressions STRIP_TRAILING_WHITESPACE = /\s+$/ # Wrap up a node as an Expressions, unless it already is. def self.wrap(node) node.is_a?(Expressions) ? node : Expressions.new([node]) end def initialize(nodes) @expressions = nodes end # Tack an expression onto the end of this node. def <<(node) @expressions << node self end # If this Expressions consists of a single node, pull it back out. def unwrap @expressions.length == 1 ? @expressions.first : self end # Is the node last in this block of expressions. def last?(node) @last_index ||= @expressions.last.is_a?(CommentNode) ? -2 : -1 node == @expressions[@last_index] end # If this is the top-level Expressions, wrap everything in a safety closure. def root_compile code = compile(:indent => TAB, :scope => Scope.new) code.gsub!(STRIP_TRAILING_WHITESPACE, '') "(function(){\n#{code}\n})();" end # The extra fancy is to handle pushing down returns and assignments # recursively to the final lines of inner statements. def compile(options={}) return root_compile unless options[:scope] code = @expressions.map { |node| o = super(options) if last?(node) && (o[:return] || o[:assign]) if o[:return] if node.statement? || node.custom_return? "#{o[:indent]}#{node.compile(o)}#{node.line_ending}" else "#{o[:indent]}return #{node.compile(o)}#{node.line_ending}" end elsif o[:assign] if node.statement? || node.custom_assign? "#{o[:indent]}#{node.compile(o)}#{node.line_ending}" else "#{o[:indent]}#{AssignNode.new(ValueNode.new(LiteralNode.new(o[:assign])), node).compile(o)};" end end else o.delete(:return) and o.delete(:assign) "#{o[:indent]}#{node.compile(o)}#{node.line_ending}" end }.join("\n") write(code) end end # Literals are static values that have a Ruby representation, eg.: a string, a number, # true, false, nil, etc. class LiteralNode < Node STATEMENTS = ['break', 'continue'] attr_reader :value def initialize(value) @value = value end def statement? STATEMENTS.include?(@value.to_s) end def line_ending @value.to_s[-1..-1] == ';' ? '' : ';' end def compile(o={}) o = super(o) write(@value.to_s) end end # Try to return your expression, or tell it to return itself. class ReturnNode < Node statement custom_return attr_reader :expression def initialize(expression) @expression = expression end def line_ending @expression.custom_return? ? '' : ';' end def compile(o={}) o = super(o) return write(@expression.compile(o.merge(:return => true))) if @expression.custom_return? compiled = @expression.compile(o) write(@expression.statement? ? "#{compiled}\n#{indent}return null" : "return #{compiled}") end end # Pass through CoffeeScript comments into JavaScript comments at the # same position. class CommentNode < Node statement def initialize(lines) @lines = lines.value end def line_ending '' end def compile(o={}) delimiter = "\n#{o[:indent]}//" comment = "#{delimiter}#{@lines.join(delimiter)}" write(comment) end end # Node for a function invocation. Takes care of converting super() calls into # calls against the prototype's function of the same name. class CallNode < Node LEADING_DOT = /\A\./ attr_reader :variable, :arguments def initialize(variable, arguments=[]) @variable, @arguments = variable, arguments end def new_instance @new = true self end def super? @variable == :super end def compile(o={}) o = super(o) args = @arguments.map{|a| a.compile(o.merge(:no_paren => true)) }.join(', ') return write(compile_super(args, o)) if super? prefix = @new ? "new " : '' write("#{prefix}#{@variable.compile(o)}(#{args})") end def compile_super(args, o) methname = o[:last_assign].sub(LEADING_DOT, '') "this.constructor.prototype.#{methname}.call(this, #{args})" end end # A value, indexed or dotted into, or vanilla. class ValueNode < Node attr_reader :literal, :properties, :last def initialize(literal, properties=[]) @literal, @properties = literal, properties end def <<(other) @properties << other self end def properties? return !@properties.empty? end def statement? @literal.is_a?(Node) && @literal.statement? && !properties? end def custom_assign? @literal.is_a?(Node) && @literal.custom_assign? && !properties? end def custom_return? @literal.is_a?(Node) && @literal.custom_return? && !properties? end def compile(o={}) o = super(o) parts = [@literal, @properties].flatten.map do |val| val.respond_to?(:compile) ? val.compile(o) : val.to_s end @last = parts.last write(parts.join('')) end end # A dotted accessor into a part of a value. class AccessorNode < Node attr_reader :name def initialize(name) @name = name end def compile(o={}) o = super(o) write(".#{@name}") end end # An indexed accessor into a part of an array or object. class IndexNode < Node attr_reader :index def initialize(index) @index = index end def compile(o={}) o = super(o) write("[#{@index.compile(o)}]") end end # An array slice literal. Unlike JavaScript's Array#slice, the second parameter # specifies the index of the end of the slice (just like the first parameter) # is the index of the beginning. class SliceNode < Node attr_reader :from, :to def initialize(from, to) @from, @to = from, to end def compile(o={}) o = super(o) write(".slice(#{@from.compile(o)}, #{@to.compile(o)} + 1)") end end # Setting the value of a local variable, or the value of an object property. class AssignNode < Node LEADING_VAR = /\Avar\s+/ statement custom_return attr_reader :variable, :value, :context def initialize(variable, value, context=nil) @variable, @value, @context = variable, value, context end def line_ending @value.custom_assign? ? '' : ';' end def compile(o={}) o = super(o) name = @variable.respond_to?(:compile) ? @variable.compile(o) : @variable last = @variable.respond_to?(:last) ? @variable.last.to_s : name.to_s o = o.merge(:assign => name, :last_assign => last) return write("#{@variable}: #{@value.compile(o)}") if @context == :object return write("#{name} = #{@value.compile(o)}") if @variable.properties? defined = o[:scope].find(name) postfix = !defined && o[:return] ? ";\n#{o[:indent]}return #{name}" : '' def_part = defined ? "" : "var #{name};\n#{o[:indent]}" return write(def_part + @value.compile(o)) if @value.custom_assign? def_part = defined ? name : "var #{name}" val_part = @value.compile(o).sub(LEADING_VAR, '') write("#{def_part} = #{val_part}#{postfix}") end end # Simple Arithmetic and logical operations. Performs some conversion from # CoffeeScript operations into their JavaScript equivalents. class OpNode < Node CONVERSIONS = { "==" => "===", "!=" => "!==", 'and' => '&&', 'or' => '||', 'is' => '===', "aint" => "!==", 'not' => '!', } CONDITIONALS = ['||=', '&&='] attr_reader :operator, :first, :second def initialize(operator, first, second=nil) @first, @second = first, second @operator = CONVERSIONS[operator] || operator end def unary? @second.nil? end def compile(o={}) o = super(o) return write(compile_conditional(o)) if CONDITIONALS.include?(@operator) return write(compile_unary(o)) if unary? write("#{@first.compile(o)} #{@operator} #{@second.compile(o)}") end def compile_conditional(o) first, second = @first.compile(o), @second.compile(o) sym = @operator[0..1] "#{first} = #{first} #{sym} #{second}" end def compile_unary(o) space = @operator == 'delete' ? ' ' : '' "#{@operator}#{space}#{@first.compile(o)}" end end # A function definition. The only node that creates a new Scope. class CodeNode < Node attr_reader :params, :body def initialize(params, body) @params = params @body = body end def compile(o={}) o = super(o) o[:scope] = Scope.new(o[:scope]) o[:return] = true indent = o[:indent] o[:indent] += TAB o.delete(:assign) @params.each {|id| o[:scope].find(id.to_s) } code = @body.compile(o) write("function(#{@params.join(', ')}) {\n#{code}\n#{indent}}") end end # An object literal. class ObjectNode < Node attr_reader :properties def initialize(properties = []) @properties = properties end def compile(o={}) o = super(o) indent = o[:indent] o[:indent] += TAB props = @properties.map { |prop| joiner = prop == @properties.last ? '' : prop.is_a?(CommentNode) ? "\n" : ",\n" o[:indent] + prop.compile(o) + joiner }.join('') write("{\n#{props}\n#{indent}}") end end # An array literal. class ArrayNode < Node attr_reader :objects def initialize(objects=[]) @objects = objects end def compile(o={}) o = super(o) objects = @objects.map { |obj| joiner = obj.is_a?(CommentNode) ? "\n#{o[:indent] + TAB}" : obj == @objects.last ? '' : ', ' obj.compile(o.merge(:indent => o[:indent] + TAB)) + joiner }.join('') ending = objects.include?("\n") ? "\n#{o[:indent]}]" : ']' write("[#{objects}#{ending}") end end # A while loop, the only sort of low-level loop exposed by CoffeeScript. From # it, all other loops can be manufactured. class WhileNode < Node statement attr_reader :condition, :body def initialize(condition, body) @condition, @body = condition, body end def line_ending '' end def compile(o={}) o = super(o) indent = o[:indent] + TAB cond = @condition.compile(o.merge(:no_paren => true)) write("while (#{cond}) {\n#{@body.compile(o.merge(:indent => indent))}\n#{o[:indent]}}") end end # The replacement for the for loop is an array comprehension (that compiles) # into a for loop. Also acts as an expression, able to return the result # of the comprehenion. Unlike Python array comprehensions, it's able to pass # the current index of the loop as a second parameter. class ForNode < Node statement custom_return custom_assign attr_reader :body, :source, :name, :filter, :index def initialize(body, source, name, filter, index=nil) @body, @source, @name, @filter, @index = body, source, name, filter, index end def line_ending '' end def compile(o={}) o = super(o) scope = o[:scope] name_found = scope.find(@name) index_found = @index && scope.find(@index) svar = scope.free_variable ivar = scope.free_variable lvar = scope.free_variable name_part = name_found ? @name : "var #{@name}" index_name = @index ? (index_found ? @index : "var #{@index}") : nil source_part = "var #{svar} = #{@source.compile(o)};" for_part = "var #{ivar}=0, #{lvar}=#{svar}.length; #{ivar}<#{lvar}; #{ivar}++" var_part = "\n#{o[:indent] + TAB}#{name_part} = #{svar}[#{ivar}];\n" index_part = @index ? "#{o[:indent] + TAB}#{index_name} = #{ivar};\n" : '' set_result = '' save_result = '' return_result = '' body = @body suffix = ';' if o[:return] || o[:assign] rvar = scope.free_variable set_result = "var #{rvar} = [];\n#{o[:indent]}" save_result += "#{rvar}[#{ivar}] = " return_result = rvar return_result = "#{o[:assign]} = #{return_result};" if o[:assign] return_result = "return #{return_result};" if o[:return] return_result = "\n#{o[:indent]}#{return_result}" if @filter body = CallNode.new(ValueNode.new(LiteralNode.new(rvar), [AccessorNode.new('push')]), [@body]) body = IfNode.new(@filter, body, nil, :statement) save_result = '' suffix = '' end elsif @filter body = IfNode.new(@filter, @body) end indent = o[:indent] + TAB body = body.compile(o.merge(:indent => indent)) write("#{source_part}\n#{o[:indent]}#{set_result}for (#{for_part}) {#{var_part}#{index_part}#{indent}#{save_result}#{body}#{suffix}\n#{o[:indent]}}#{return_result}") end end # A try/catch/finally block. class TryNode < Node statement attr_reader :try, :error, :recovery, :finally def initialize(try, error, recovery, finally=nil) @try, @error, @recovery, @finally = try, error, recovery, finally end def line_ending '' end def compile(o={}) o = super(o) indent = o[:indent] o[:indent] += TAB catch_part = @recovery && " catch (#{@error}) {\n#{@recovery.compile(o)}\n#{indent}}" finally_part = @finally && " finally {\n#{@finally.compile(o)}\n#{indent}}" write("try {\n#{@try.compile(o)}\n#{indent}}#{catch_part}#{finally_part}") end end # Throw an exception. class ThrowNode < Node statement attr_reader :expression def initialize(expression) @expression = expression end def compile(o={}) o = super(o) write("throw #{@expression.compile(o)}") end end # An extra set of parenthesis, supplied by the script source. class ParentheticalNode < Node attr_reader :expressions def initialize(expressions) @expressions = expressions.unwrap end def statement? @expressions.statement? end def custom_assign? @expressions.custom_assign? end def custom_return? @expressions.custom_return? end def compile(o={}) o = super(o) compiled = @expressions.compile(o) compiled = compiled[0...-1] if compiled[-1..-1] == ';' write(o[:no_paren] || statement? ? compiled : "(#{compiled})") end end # If/else statements. Switch/cases get compiled into these. Acts as an # expression by pushing down requested returns to the expression bodies. # Single-expression IfNodes are compiled into ternary operators if possible, # because ternaries are first-class returnable assignable expressions. class IfNode < Node attr_reader :condition, :body, :else_body def initialize(condition, body, else_body=nil, tags={}) @condition = condition @body = body && body.unwrap @else_body = else_body && else_body.unwrap @tags = tags @condition = OpNode.new("!", @condition) if @tags[:invert] end def <<(else_body) eb = else_body.unwrap @else_body ? @else_body << eb : @else_body = eb self end # Rewrite a chain of IfNodes with their switch condition for equality. def rewrite_condition(expression) @condition = OpNode.new("is", expression, @condition) @else_body.rewrite_condition(expression) if chain? self end # Rewrite a chain of IfNodes to add a default case as the final else. def add_else(expressions) chain? ? @else_body.add_else(expressions) : @else_body = expressions self end # If the else_body is an IfNode itself, then we've got an if-else chain. def chain? @chain ||= @else_body && @else_body.is_a?(IfNode) end # The IfNode only compiles into a statement if either of the bodies needs # to be a statement. def statement? @is_statement ||= !!(@tags[:statement] || @body.statement? || (@else_body && @else_body.statement?)) end def custom_return? statement? end def custom_assign? statement? end def line_ending statement? ? '' : ';' end def compile(o={}) o = super(o) write(statement? ? compile_statement(o) : compile_ternary(o)) end # Compile the IfNode as a regular if-else statement. Flattened chains # force sub-else bodies into statement form. def compile_statement(o) indent = o[:indent] o[:indent] += TAB if_part = "if (#{@condition.compile(o.merge(:no_paren => true))}) {\n#{Expressions.wrap(@body).compile(o)}\n#{indent}}" return if_part unless @else_body else_part = chain? ? " else #{@else_body.compile(o.merge(:indent => indent))}" : " else {\n#{Expressions.wrap(@else_body).compile(o)}\n#{indent}}" if_part + else_part end # Compile the IfNode into a ternary operator. def compile_ternary(o) if_part = "#{@condition.compile(o)} ? #{@body.compile(o)}" else_part = @else_body ? "#{@else_body.compile(o)}" : 'null' "#{if_part} : #{else_part}" end end end