(function(){ var AccessorNode, ArrayNode, AssignNode, BaseNode, CallNode, ClassNode, ClosureNode, CodeNode, CommentNode, CurryNode, ExistenceNode, Expressions, ExtendsNode, ForNode, IDENTIFIER, IS_STRING, IfNode, IndexNode, LiteralNode, ObjectNode, OpNode, ParentheticalNode, PushNode, RangeNode, ReturnNode, Scope, SliceNode, SplatNode, TAB, TRAILING_WHITESPACE, ThrowNode, TryNode, UTILITIES, ValueNode, WhileNode, _a, children, compact, del, flatten, helpers, literal, merge, statement, utility; var __slice = Array.prototype.slice, __extends = function(child, parent) { var ctor = function(){ }; ctor.prototype = parent.prototype; child.__superClass__ = parent.prototype; child.prototype = new ctor(); child.prototype.constructor = child; }, __bind = function(func, obj, args) { return function() { return func.apply(obj || {}, args ? args.concat(__slice.call(arguments, 0)) : arguments); }; }; // `nodes.coffee` contains all of the node classes for the syntax tree. Most // nodes are created as the result of actions in the [grammar](grammar.html), // but some are created by other nodes as a method of code generation. To convert // the syntax tree into a string of JavaScript code, call `compile()` on the root. // Set up for both **Node.js** and the browser, by // including the [Scope](scope.html) class and the [helper](helpers.html) functions. if ((typeof process !== "undefined" && process !== null)) { Scope = require('./scope').Scope; helpers = require('./helpers').helpers; } else { this.exports = this; helpers = this.helpers; Scope = this.Scope; } // Import the helpers we plan to use. _a = helpers; compact = _a.compact; flatten = _a.flatten; merge = _a.merge; del = _a.del; // Helper function that marks a node as a JavaScript *statement*, or as a // *pure_statement*. Statements must be wrapped in a closure when used as an // expression, and nodes tagged as *pure_statement* cannot be closure-wrapped // without losing their meaning. statement = function statement(klass, only) { klass.prototype.is_statement = function is_statement() { return true; }; if (only) { klass.prototype.is_pure_statement = function is_pure_statement() { return true; }; return klass.prototype.is_pure_statement; } }; children = function children(klass) { var child_attrs; var _b = arguments.length, _c = _b >= 2; child_attrs = __slice.call(arguments, 1, _b - 0); klass.prototype.children_attributes = child_attrs; return klass.prototype.children_attributes; }; //### BaseNode // The **BaseNode** is the abstract base class for all nodes in the syntax tree. // Each subclass implements the `compile_node` method, which performs the // code generation for that node. To compile a node to JavaScript, // call `compile` on it, which wraps `compile_node` in some generic extra smarts, // to know when the generated code needs to be wrapped up in a closure. // An options hash is passed and cloned throughout, containing information about // the environment from higher in the tree (such as if a returned value is // being requested by the surrounding function), information about the current // scope, and indentation level. exports.BaseNode = (function() { BaseNode = function BaseNode() { }; // Common logic for determining whether to wrap this node in a closure before // compiling it, or to compile directly. We need to wrap if this node is a // *statement*, and it's not a *pure_statement*, and we're not at // the top level of a block (which would be unnecessary), and we haven't // already been asked to return the result (because statements know how to // return results). // If a Node is *top_sensitive*, that means that it needs to compile differently // depending on whether it's being used as part of a larger expression, or is a // top-level statement within the function body. BaseNode.prototype.compile = function compile(o) { var closure, top; this.options = merge(o || {}); this.tab = o.indent; if (!(this instanceof ValueNode || this instanceof CallNode)) { del(this.options, 'operation'); if (!(this instanceof AccessorNode || this instanceof IndexNode)) { del(this.options, 'chain_root'); } } top = this.top_sensitive() ? this.options.top : del(this.options, 'top'); closure = this.is_statement() && !this.is_pure_statement() && !top && !this.options.as_statement && !(this instanceof CommentNode) && !this.contains_pure_statement(); if (closure) { return this.compile_closure(this.options); } else { return this.compile_node(this.options); } }; // Statements converted into expressions via closure-wrapping share a scope // object with their parent closure, to preserve the expected lexical scope. BaseNode.prototype.compile_closure = function compile_closure(o) { this.tab = o.indent; o.shared_scope = o.scope; return ClosureNode.wrap(this).compile(o); }; // If the code generation wishes to use the result of a complex expression // in multiple places, ensure that the expression is only ever evaluated once, // by assigning it to a temporary variable. BaseNode.prototype.compile_reference = function compile_reference(o) { var compiled, reference; reference = literal(o.scope.free_variable()); compiled = new AssignNode(reference, this); return [compiled, reference]; }; // Convenience method to grab the current indentation level, plus tabbing in. BaseNode.prototype.idt = function idt(tabs) { var idt, num; idt = this.tab || ''; num = (tabs || 0) + 1; while (num -= 1) { idt += TAB; } return idt; }; // Construct a node that returns the current node's result. // Note that this is overridden for smarter behavior for // many statement nodes (eg IfNode, ForNode)... BaseNode.prototype.make_return = function make_return() { return new ReturnNode(this); }; // Does this node, or any of its children, contain a node of a certain kind? // Recursively traverses down the *children* of the nodes, yielding to a block // and returning true when the block finds a match. `contains` does not cross // scope boundaries. BaseNode.prototype.contains = function contains(block) { var contains; contains = false; this.traverse_children(false, function(node) { if (block(node)) { contains = true; return false; } }); return contains; }; // Is this node of a certain type, or does it contain the type? BaseNode.prototype.contains_type = function contains_type(type) { return this instanceof type || this.contains(function(n) { return n instanceof type; }); }; // Convenience for the most common use of contains. Does the node contain // a pure statement? BaseNode.prototype.contains_pure_statement = function contains_pure_statement() { return this.is_pure_statement() || this.contains(function(n) { return n.is_pure_statement(); }); }; // Perform an in-order traversal of the AST. Crosses scope boundaries. BaseNode.prototype.traverse = function traverse(block) { return this.traverse_children(true, block); }; // `toString` representation of the node, for inspecting the parse tree. // This is what `coffee --nodes` prints out. BaseNode.prototype.toString = function toString(idt) { var _b, _c, _d, _e, child; idt = idt || ''; return '\n' + idt + this.constructor.name + (function() { _b = []; _d = this.children(); for (_c = 0, _e = _d.length; _c < _e; _c++) { child = _d[_c]; _b.push(child.toString(idt + TAB)); } return _b; }).call(this).join(''); }; BaseNode.prototype.children = function children() { var nodes; nodes = []; this.each_child(function(node) { return nodes.push(node); }); return nodes; }; BaseNode.prototype.each_child = function each_child(func) { var _b, _c, _d, _e, _f, _g, attr, child; _c = this.children_attributes; for (_b = 0, _d = _c.length; _b < _d; _b++) { attr = _c[_b]; if (this[attr]) { _f = flatten([this[attr]]); for (_e = 0, _g = _f.length; _e < _g; _e++) { child = _f[_e]; if (func(child) === false) { return null; } } } } }; BaseNode.prototype.traverse_children = function traverse_children(cross_scope, func) { if (!(this.children_attributes)) { return null; } return this.each_child(function(child) { func.apply(this, arguments); if (child instanceof BaseNode) { return child.traverse_children(cross_scope, func); } }); }; // Default implementations of the common node identification methods. Nodes // will override these with custom logic, if needed. BaseNode.prototype.unwrap = function unwrap() { return this; }; BaseNode.prototype.is_statement = function is_statement() { return false; }; BaseNode.prototype.is_pure_statement = function is_pure_statement() { return false; }; BaseNode.prototype.top_sensitive = function top_sensitive() { return false; }; return BaseNode; })(); //### Expressions // The expressions body is the list of expressions that forms the body of an // indented block of code -- the implementation of a function, a clause in an // `if`, `switch`, or `try`, and so on... exports.Expressions = (function() { Expressions = function Expressions(nodes) { this.expressions = compact(flatten(nodes || [])); return this; }; __extends(Expressions, BaseNode); // Tack an expression on to the end of this expression list. Expressions.prototype.push = function push(node) { this.expressions.push(node); return this; }; // Add an expression at the beginning of this expression list. Expressions.prototype.unshift = function unshift(node) { this.expressions.unshift(node); return this; }; // If this Expressions consists of just a single node, unwrap it by pulling // it back out. Expressions.prototype.unwrap = function unwrap() { if (this.expressions.length === 1) { return this.expressions[0]; } else { return this; } }; // Is this an empty block of code? Expressions.prototype.empty = function empty() { return this.expressions.length === 0; }; // An Expressions node does not return its entire body, rather it // ensures that the final expression is returned. Expressions.prototype.make_return = function make_return() { var idx, last; idx = this.expressions.length - 1; last = this.expressions[idx]; if (last instanceof CommentNode) { last = this.expressions[idx -= 1]; } if (!last || last instanceof ReturnNode) { return this; } if (!(last.contains_pure_statement())) { this.expressions[idx] = last.make_return(); } return this; }; // An **Expressions** is the only node that can serve as the root. Expressions.prototype.compile = function compile(o) { o = o || {}; if (o.scope) { return Expressions.__superClass__.compile.call(this, o); } else { return this.compile_root(o); } }; Expressions.prototype.compile_node = function compile_node(o) { var _b, _c, _d, _e, node; return (function() { _b = []; _d = this.expressions; for (_c = 0, _e = _d.length; _c < _e; _c++) { node = _d[_c]; _b.push(this.compile_expression(node, merge(o))); } return _b; }).call(this).join("\n"); }; // If we happen to be the top-level **Expressions**, wrap everything in // a safety closure, unless requested not to. Expressions.prototype.compile_root = function compile_root(o) { var code; o.indent = (this.tab = o.no_wrap ? '' : TAB); o.scope = new Scope(null, this, null); code = o.globals ? this.compile_node(o) : this.compile_with_declarations(o); code = code.replace(TRAILING_WHITESPACE, ''); if (o.no_wrap) { return code; } else { return "(function(){\n" + code + "\n})();\n"; } }; // Compile the expressions body for the contents of a function, with // declarations of all inner variables pushed up to the top. Expressions.prototype.compile_with_declarations = function compile_with_declarations(o) { var code; code = this.compile_node(o); if (o.scope.has_assignments(this)) { code = ("" + (this.tab) + "var " + (o.scope.compiled_assignments()) + ";\n" + code); } if (o.scope.has_declarations(this)) { code = ("" + (this.tab) + "var " + (o.scope.compiled_declarations()) + ";\n" + code); } return code; }; // Compiles a single expression within the expressions body. If we need to // return the result, and it's an expression, simply return it. If it's a // statement, ask the statement to do so. Expressions.prototype.compile_expression = function compile_expression(node, o) { var compiled_node; this.tab = o.indent; compiled_node = node.compile(merge(o, { top: true })); if (node.is_statement()) { return compiled_node; } else { return "" + (this.idt()) + compiled_node + ";"; } }; return Expressions; })(); // Wrap up the given nodes as an **Expressions**, unless it already happens // to be one. Expressions.wrap = function wrap(nodes) { if (nodes.length === 1 && nodes[0] instanceof Expressions) { return nodes[0]; } return new Expressions(nodes); }; children(Expressions, 'expressions'); statement(Expressions); //### LiteralNode // Literals are static values that can be passed through directly into // JavaScript without translation, such as: strings, numbers, // `true`, `false`, `null`... exports.LiteralNode = (function() { LiteralNode = function LiteralNode(value) { this.value = value; return this; }; __extends(LiteralNode, BaseNode); // Break and continue must be treated as pure statements -- they lose their // meaning when wrapped in a closure. LiteralNode.prototype.is_statement = function is_statement() { return this.value === 'break' || this.value === 'continue'; }; LiteralNode.prototype.is_pure_statement = LiteralNode.prototype.is_statement; LiteralNode.prototype.compile_node = function compile_node(o) { var end, idt; idt = this.is_statement() ? this.idt() : ''; end = this.is_statement() ? ';' : ''; return "" + idt + this.value + end; }; LiteralNode.prototype.toString = function toString(idt) { return " \"" + this.value + "\""; }; return LiteralNode; })(); //### ReturnNode // A `return` is a *pure_statement* -- wrapping it in a closure wouldn't // make sense. exports.ReturnNode = (function() { ReturnNode = function ReturnNode(expression) { this.expression = expression; return this; }; __extends(ReturnNode, BaseNode); ReturnNode.prototype.top_sensitive = function top_sensitive() { return true; }; ReturnNode.prototype.compile_node = function compile_node(o) { var expr; expr = this.expression.make_return(); if (!(expr instanceof ReturnNode)) { return expr.compile(o); } del(o, 'top'); if (this.expression.is_statement()) { o.as_statement = true; } return "" + (this.tab) + "return " + (this.expression.compile(o)) + ";"; }; return ReturnNode; })(); statement(ReturnNode, true); children(ReturnNode, 'expression'); //### ValueNode // A value, variable or literal or parenthesized, indexed or dotted into, // or vanilla. exports.ValueNode = (function() { ValueNode = function ValueNode(base, properties) { this.base = base; this.properties = (properties || []); return this; }; __extends(ValueNode, BaseNode); ValueNode.prototype.SOAK = " == undefined ? undefined : "; // A **ValueNode** has a base and a list of property accesses. // Add a property access to the list. ValueNode.prototype.push = function push(prop) { this.properties.push(prop); return this; }; ValueNode.prototype.has_properties = function has_properties() { return !!this.properties.length; }; // Some boolean checks for the benefit of other nodes. ValueNode.prototype.is_array = function is_array() { return this.base instanceof ArrayNode && !this.has_properties(); }; ValueNode.prototype.is_object = function is_object() { return this.base instanceof ObjectNode && !this.has_properties(); }; ValueNode.prototype.is_splice = function is_splice() { return this.has_properties() && this.properties[this.properties.length - 1] instanceof SliceNode; }; ValueNode.prototype.make_return = function make_return() { if (this.has_properties()) { return ValueNode.__superClass__.make_return.call(this); } else { return this.base.make_return(); } }; // The value can be unwrapped as its inner node, if there are no attached // properties. ValueNode.prototype.unwrap = function unwrap() { if (this.properties.length) { return this; } else { return this.base; } }; // Values are considered to be statements if their base is a statement. ValueNode.prototype.is_statement = function is_statement() { return this.base.is_statement && this.base.is_statement() && !this.has_properties(); }; // Works out if the value is the start of a chain. ValueNode.prototype.is_start = function is_start(o) { var node; if (this === o.chain_root && this.properties[0] instanceof AccessorNode) { return true; } node = o.chain_root.base || o.chain_root.variable; while (node instanceof CallNode) { node = node.variable; } return node === this; }; // We compile a value to JavaScript by compiling and joining each property. // Things get much more insteresting if the chain of properties has *soak* // operators `?.` interspersed. Then we have to take care not to accidentally // evaluate a anything twice when building the soak chain. ValueNode.prototype.compile_node = function compile_node(o) { var _b, _c, baseline, complete, i, only, op, part, prop, props, temp; only = del(o, 'only_first'); op = del(o, 'operation'); props = only ? this.properties.slice(0, this.properties.length - 1) : this.properties; o.chain_root = o.chain_root || this; baseline = this.base.compile(o); if (this.base instanceof ObjectNode && this.has_properties()) { baseline = ("(" + baseline + ")"); } complete = (this.last = baseline); _b = props; for (i = 0, _c = _b.length; i < _c; i++) { prop = _b[i]; this.source = baseline; if (prop.soak_node) { if (this.base instanceof CallNode && i === 0) { temp = o.scope.free_variable(); complete = ("(" + (baseline = temp) + " = (" + complete + "))"); } if (i === 0 && this.is_start(o)) { complete = ("typeof " + complete + " === \"undefined\" || " + baseline); } complete += this.SOAK + (baseline += prop.compile(o)); } else { part = prop.compile(o); baseline += part; complete += part; this.last = part; } } if (op && this.wrapped) { return "(" + complete + ")"; } else { return complete; } }; return ValueNode; })(); children(ValueNode, 'base', 'properties'); //### CommentNode // CoffeeScript passes through comments as JavaScript comments at the // same position. exports.CommentNode = (function() { CommentNode = function CommentNode(lines, type) { this.lines = lines; this.type = type; this; return this; }; __extends(CommentNode, BaseNode); CommentNode.prototype.make_return = function make_return() { return this; }; CommentNode.prototype.compile_node = function compile_node(o) { var sep; if (this.type === 'herecomment') { sep = '\n' + this.tab; return "" + this.tab + "/*" + sep + (this.lines.join(sep)) + "\n" + this.tab + "*/"; } else { return ("" + this.tab + "//") + this.lines.join(("\n" + this.tab + "//")); } }; return CommentNode; })(); statement(CommentNode); //### CallNode // Node for a function invocation. Takes care of converting `super()` calls into // calls against the prototype's function of the same name. exports.CallNode = (function() { CallNode = function CallNode(variable, args) { this.is_new = false; this.is_super = variable === 'super'; this.variable = this.is_super ? null : variable; this.args = (args || []); this.compile_splat_arguments = __bind(SplatNode.compile_mixed_array, this, [this.args]); return this; }; __extends(CallNode, BaseNode); // Tag this invocation as creating a new instance. CallNode.prototype.new_instance = function new_instance() { this.is_new = true; return this; }; CallNode.prototype.prefix = function prefix() { if (this.is_new) { return 'new '; } else { return ''; } }; // Grab the reference to the superclass' implementation of the current method. CallNode.prototype.super_reference = function super_reference(o) { var meth, methname; methname = o.scope.method.name; meth = (function() { if (o.scope.method.proto) { return "" + (o.scope.method.proto) + ".__superClass__." + methname; } else if (methname) { return "" + (methname) + ".__superClass__.constructor"; } else { throw new Error("cannot call super on an anonymous function."); } })(); return meth; }; // Compile a vanilla function call. CallNode.prototype.compile_node = function compile_node(o) { var _b, _c, _d, _e, _f, _g, _h, arg, args, compilation; if (!(o.chain_root)) { o.chain_root = this; } _c = this.args; for (_b = 0, _d = _c.length; _b < _d; _b++) { arg = _c[_b]; arg instanceof SplatNode ? (compilation = this.compile_splat(o)) : null; } if (!(compilation)) { args = (function() { _e = []; _g = this.args; for (_f = 0, _h = _g.length; _f < _h; _f++) { arg = _g[_f]; _e.push(arg.compile(o)); } return _e; }).call(this).join(', '); compilation = this.is_super ? this.compile_super(args, o) : ("" + (this.prefix()) + (this.variable.compile(o)) + "(" + args + ")"); } if (o.operation && this.wrapped) { return "(" + compilation + ")"; } else { return compilation; } }; // `super()` is converted into a call against the superclass's implementation // of the current function. CallNode.prototype.compile_super = function compile_super(args, o) { return "" + (this.super_reference(o)) + ".call(this" + (args.length ? ', ' : '') + args + ")"; }; // If you call a function with a splat, it's converted into a JavaScript // `.apply()` call to allow an array of arguments to be passed. CallNode.prototype.compile_splat = function compile_splat(o) { var meth, obj, temp; meth = this.variable ? this.variable.compile(o) : this.super_reference(o); obj = this.variable && this.variable.source || 'this'; if (obj.match(/\(/)) { temp = o.scope.free_variable(); obj = temp; meth = ("(" + temp + " = " + (this.variable.source) + ")" + (this.variable.last)); } return "" + (this.prefix()) + (meth) + ".apply(" + obj + ", " + (this.compile_splat_arguments(o)) + ")"; }; return CallNode; })(); children(CallNode, 'variable', 'args'); //### CurryNode // Binds a context object and a list of arguments to a function, // returning the bound function. After ECMAScript 5, Prototype.js, and // Underscore's `bind` functions. exports.CurryNode = (function() { CurryNode = function CurryNode(meth, args) { this.meth = meth; this.context = args[0]; this.args = (args.slice(1) || []); this.compile_splat_arguments = __bind(SplatNode.compile_mixed_array, this, [this.args]); return this; }; __extends(CurryNode, CallNode); CurryNode.prototype.arguments = function arguments(o) { var _b, _c, _d, arg; _c = this.args; for (_b = 0, _d = _c.length; _b < _d; _b++) { arg = _c[_b]; if (arg instanceof SplatNode) { return this.compile_splat_arguments(o); } } return (new ArrayNode(this.args)).compile(o); }; CurryNode.prototype.compile_node = function compile_node(o) { var ref; utility('slice'); ref = new ValueNode(literal(utility('bind'))); return (new CallNode(ref, [this.meth, this.context, literal(this.arguments(o))])).compile(o); }; return CurryNode; }).apply(this, arguments); children(CurryNode, 'meth', 'context', 'args'); //### ExtendsNode // Node to extend an object's prototype with an ancestor object. // After `goog.inherits` from the // [Closure Library](http://closure-library.googlecode.com/svn/docs/closure_goog_base.js.html). exports.ExtendsNode = (function() { ExtendsNode = function ExtendsNode(child, parent) { this.child = child; this.parent = parent; return this; }; __extends(ExtendsNode, BaseNode); // Hooks one constructor into another's prototype chain. ExtendsNode.prototype.compile_node = function compile_node(o) { var ref; ref = new ValueNode(literal(utility('extends'))); return (new CallNode(ref, [this.child, this.parent])).compile(o); }; return ExtendsNode; })(); children(ExtendsNode, 'child', 'parent'); //### AccessorNode // A `.` accessor into a property of a value, or the `::` shorthand for // an accessor into the object's prototype. exports.AccessorNode = (function() { AccessorNode = function AccessorNode(name, tag) { this.name = name; this.prototype = tag === 'prototype'; this.soak_node = tag === 'soak'; this; return this; }; __extends(AccessorNode, BaseNode); AccessorNode.prototype.compile_node = function compile_node(o) { var proto_part; o.chain_root.wrapped = o.chain_root.wrapped || this.soak_node; proto_part = this.prototype ? 'prototype.' : ''; return "." + proto_part + (this.name.compile(o)); }; return AccessorNode; })(); children(AccessorNode, 'name'); //### IndexNode // A `[ ... ]` indexed accessor into an array or object. exports.IndexNode = (function() { IndexNode = function IndexNode(index, tag) { this.index = index; this.soak_node = tag === 'soak'; return this; }; __extends(IndexNode, BaseNode); IndexNode.prototype.compile_node = function compile_node(o) { var idx; o.chain_root.wrapped = o.chain_root.wrapped || this.soak_node; idx = this.index.compile(o); return "[" + idx + "]"; }; return IndexNode; })(); children(IndexNode, 'index'); //### RangeNode // A range literal. Ranges can be used to extract portions (slices) of arrays, // to specify a range for comprehensions, or as a value, to be expanded into the // corresponding array of integers at runtime. exports.RangeNode = (function() { RangeNode = function RangeNode(from, to, exclusive) { this.from = from; this.to = to; this.exclusive = !!exclusive; return this; }; __extends(RangeNode, BaseNode); // Compiles the range's source variables -- where it starts and where it ends. RangeNode.prototype.compile_variables = function compile_variables(o) { var _b, _c, from, to; this.tab = o.indent; _b = [o.scope.free_variable(), o.scope.free_variable()]; this.from_var = _b[0]; this.to_var = _b[1]; _c = [this.from.compile(o), this.to.compile(o)]; from = _c[0]; to = _c[1]; return "" + this.from_var + " = " + from + "; " + this.to_var + " = " + to + ";\n" + this.tab; }; // When compiled normally, the range returns the contents of the *for loop* // needed to iterate over the values in the range. Used by comprehensions. RangeNode.prototype.compile_node = function compile_node(o) { var compare, equals, idx, incr, intro, step, vars; if (!(o.index)) { return this.compile_array(o); } idx = del(o, 'index'); step = del(o, 'step'); vars = ("" + idx + " = " + this.from_var); step = step ? step.compile(o) : '1'; equals = this.exclusive ? '' : '='; intro = ("(" + this.from_var + " <= " + this.to_var + " ? " + idx); compare = ("" + intro + " <" + equals + " " + this.to_var + " : " + idx + " >" + equals + " " + this.to_var + ")"); incr = ("" + intro + " += " + step + " : " + idx + " -= " + step + ")"); return "" + vars + "; " + compare + "; " + incr; }; // When used as a value, expand the range into the equivalent array. In the // future, the code this generates should probably be cleaned up by handwriting // it instead of wrapping nodes. RangeNode.prototype.compile_array = function compile_array(o) { var arr, body, name; name = o.scope.free_variable(); body = Expressions.wrap([literal(name)]); arr = Expressions.wrap([ new ForNode(body, { source: (new ValueNode(this)) }, literal(name)) ]); return (new ParentheticalNode(new CallNode(new CodeNode([], arr.make_return())))).compile(o); }; return RangeNode; })(); children(RangeNode, 'from', 'to'); //### SliceNode // An array slice literal. Unlike JavaScript's `Array#slice`, the second parameter // specifies the index of the end of the slice, just as the first parameter // is the index of the beginning. exports.SliceNode = (function() { SliceNode = function SliceNode(range) { this.range = range; this; return this; }; __extends(SliceNode, BaseNode); SliceNode.prototype.compile_node = function compile_node(o) { var from, plus_part, to; from = this.range.from.compile(o); to = this.range.to.compile(o); plus_part = this.range.exclusive ? '' : ' + 1'; return ".slice(" + from + ", " + to + plus_part + ")"; }; return SliceNode; })(); children(SliceNode, 'range'); //### ObjectNode // An object literal, nothing fancy. exports.ObjectNode = (function() { ObjectNode = function ObjectNode(props) { this.objects = (this.properties = props || []); return this; }; __extends(ObjectNode, BaseNode); // All the mucking about with commas is to make sure that CommentNodes and // AssignNodes get interleaved correctly, with no trailing commas or // commas affixed to comments. ObjectNode.prototype.compile_node = function compile_node(o) { var _b, _c, _d, _e, _f, _g, _h, i, indent, inner, join, last_noncom, non_comments, prop, props; o.indent = this.idt(1); non_comments = (function() { _b = []; _d = this.properties; for (_c = 0, _e = _d.length; _c < _e; _c++) { prop = _d[_c]; !(prop instanceof CommentNode) ? _b.push(prop) : null; } return _b; }).call(this); last_noncom = non_comments[non_comments.length - 1]; props = (function() { _f = []; _g = this.properties; for (i = 0, _h = _g.length; i < _h; i++) { prop = _g[i]; _f.push((function() { join = ",\n"; if ((prop === last_noncom) || (prop instanceof CommentNode)) { join = "\n"; } if (i === this.properties.length - 1) { join = ''; } indent = prop instanceof CommentNode ? '' : this.idt(1); if (!(prop instanceof AssignNode || prop instanceof CommentNode)) { prop = new AssignNode(prop, prop, 'object'); } return indent + prop.compile(o) + join; }).call(this)); } return _f; }).call(this); props = props.join(''); inner = props ? '\n' + props + '\n' + this.idt() : ''; return "{" + inner + "}"; }; return ObjectNode; })(); children(ObjectNode, 'properties'); //### ArrayNode // An array literal. exports.ArrayNode = (function() { ArrayNode = function ArrayNode(objects) { this.objects = objects || []; this.compile_splat_literal = __bind(SplatNode.compile_mixed_array, this, [this.objects]); return this; }; __extends(ArrayNode, BaseNode); ArrayNode.prototype.compile_node = function compile_node(o) { var _b, _c, code, i, obj, objects; o.indent = this.idt(1); objects = []; _b = this.objects; for (i = 0, _c = _b.length; i < _c; i++) { obj = _b[i]; code = obj.compile(o); if (obj instanceof SplatNode) { return this.compile_splat_literal(this.objects, o); } else if (obj instanceof CommentNode) { objects.push(("\n" + code + "\n" + o.indent)); } else if (i === this.objects.length - 1) { objects.push(code); } else { objects.push(("" + code + ", ")); } } objects = objects.join(''); if (objects.indexOf('\n') >= 0) { return "[\n" + (this.idt(1)) + objects + "\n" + this.tab + "]"; } else { return "[" + objects + "]"; } }; return ArrayNode; })(); children(ArrayNode, 'objects'); //### ClassNode // The CoffeeScript class definition. exports.ClassNode = (function() { ClassNode = function ClassNode(variable, parent, props) { this.variable = variable; this.parent = parent; this.properties = props || []; this.returns = false; return this; }; __extends(ClassNode, BaseNode); // Initialize a **ClassNode** with its name, an optional superclass, and a // list of prototype property assignments. ClassNode.prototype.make_return = function make_return() { this.returns = true; return this; }; // Instead of generating the JavaScript string directly, we build up the // equivalent syntax tree and compile that, in pieces. You can see the // constructor, property assignments, and inheritance getting built out below. ClassNode.prototype.compile_node = function compile_node(o) { var _b, _c, _d, _e, access, applied, construct, extension, func, prop, props, pvar, returns, val; extension = this.parent && new ExtendsNode(this.variable, this.parent); constructor = null; props = new Expressions(); o.top = true; _c = this.properties; for (_b = 0, _d = _c.length; _b < _d; _b++) { prop = _c[_b]; _e = [prop.variable, prop.value]; pvar = _e[0]; func = _e[1]; if (pvar && pvar.base.value === 'constructor' && func instanceof CodeNode) { func.body.push(new ReturnNode(literal('this'))); constructor = new AssignNode(this.variable, func); } else { if (pvar) { access = prop.context === 'this' ? pvar.base.properties[0] : new AccessorNode(pvar, 'prototype'); val = new ValueNode(this.variable, [access]); prop = new AssignNode(val, func); } props.push(prop); } } if (!(constructor)) { if (this.parent) { applied = new ValueNode(this.parent, [new AccessorNode(literal('apply'))]); constructor = new AssignNode(this.variable, new CodeNode([], new Expressions([new CallNode(applied, [literal('this'), literal('arguments')])]))); } else { constructor = new AssignNode(this.variable, new CodeNode()); } } construct = this.idt() + constructor.compile(o) + ';\n'; props = props.empty() ? '' : props.compile(o) + '\n'; extension = extension ? this.idt() + extension.compile(o) + ';\n' : ''; returns = this.returns ? new ReturnNode(this.variable).compile(o) : ''; return "" + construct + extension + props + returns; }; return ClassNode; })(); statement(ClassNode); children(ClassNode, 'variable', 'parent', 'properties'); //### AssignNode // The **AssignNode** is used to assign a local variable to value, or to set the // property of an object -- including within object literals. exports.AssignNode = (function() { AssignNode = function AssignNode(variable, value, context) { this.variable = variable; this.value = value; this.context = context; return this; }; __extends(AssignNode, BaseNode); // Matchers for detecting prototype assignments. AssignNode.prototype.PROTO_ASSIGN = /^(\S+)\.prototype/; AssignNode.prototype.LEADING_DOT = /^\.(prototype\.)?/; AssignNode.prototype.top_sensitive = function top_sensitive() { return true; }; AssignNode.prototype.is_value = function is_value() { return this.variable instanceof ValueNode; }; AssignNode.prototype.make_return = function make_return() { return new Expressions([this, new ReturnNode(this.variable)]); }; AssignNode.prototype.is_statement = function is_statement() { return this.is_value() && (this.variable.is_array() || this.variable.is_object()); }; // Compile an assignment, delegating to `compile_pattern_match` or // `compile_splice` if appropriate. Keep track of the name of the base object // we've been assigned to, for correct internal references. If the variable // has not been seen yet within the current scope, declare it. AssignNode.prototype.compile_node = function compile_node(o) { var last, match, name, proto, stmt, top, val; top = del(o, 'top'); if (this.is_statement()) { return this.compile_pattern_match(o); } if (this.is_value() && this.variable.is_splice()) { return this.compile_splice(o); } stmt = del(o, 'as_statement'); name = this.variable.compile(o); last = this.is_value() ? this.variable.last.replace(this.LEADING_DOT, '') : name; match = name.match(this.PROTO_ASSIGN); proto = match && match[1]; if (this.value instanceof CodeNode) { if (last.match(IDENTIFIER)) { this.value.name = last; } if (proto) { this.value.proto = proto; } } val = this.value.compile(o); if (this.context === 'object') { return ("" + name + ": " + val); } if (!(this.is_value() && this.variable.has_properties())) { o.scope.find(name); } val = ("" + name + " = " + val); if (stmt) { return ("" + this.tab + val + ";"); } if (top) { return val; } else { return "(" + val + ")"; } }; // Brief implementation of recursive pattern matching, when assigning array or // object literals to a value. Peeks at their properties to assign inner names. // See the [ECMAScript Harmony Wiki](http://wiki.ecmascript.org/doku.php?id=harmony:destructuring) // for details. AssignNode.prototype.compile_pattern_match = function compile_pattern_match(o) { var _b, _c, _d, access_class, assigns, code, i, idx, is_string, obj, oindex, olength, splat, val, val_var, value; val_var = o.scope.free_variable(); value = this.value.is_statement() ? ClosureNode.wrap(this.value) : this.value; assigns = [("" + this.tab + val_var + " = " + (value.compile(o)) + ";")]; o.top = true; o.as_statement = true; splat = false; _b = this.variable.base.objects; for (i = 0, _c = _b.length; i < _c; i++) { obj = _b[i]; // A regular array pattern-match. idx = i; if (this.variable.is_object()) { if (obj instanceof AssignNode) { // A regular object pattern-match. _d = [obj.value, obj.variable.base]; obj = _d[0]; idx = _d[1]; } else { // A shorthand `{a, b, c}: val` pattern-match. idx = obj; } } if (!(obj instanceof ValueNode || obj instanceof SplatNode)) { throw new Error('pattern matching must use only identifiers on the left-hand side.'); } is_string = idx.value && idx.value.match(IS_STRING); access_class = is_string || this.variable.is_array() ? IndexNode : AccessorNode; if (obj instanceof SplatNode && !splat) { val = literal(obj.compile_value(o, val_var, (oindex = this.variable.base.objects.indexOf(obj)), (olength = this.variable.base.objects.length) - oindex - 1)); splat = true; } else { if (typeof idx !== 'object') { idx = literal(splat ? ("" + (val_var) + ".length - " + (olength - idx)) : idx); } val = new ValueNode(literal(val_var), [new access_class(idx)]); } assigns.push(new AssignNode(obj, val).compile(o)); } code = assigns.join("\n"); return code; }; // Compile the assignment from an array splice literal, using JavaScript's // `Array#splice` method. AssignNode.prototype.compile_splice = function compile_splice(o) { var from, l, name, plus, range, to, val; name = this.variable.compile(merge(o, { only_first: true })); l = this.variable.properties.length; range = this.variable.properties[l - 1].range; plus = range.exclusive ? '' : ' + 1'; from = range.from.compile(o); to = range.to.compile(o) + ' - ' + from + plus; val = this.value.compile(o); return "" + (name) + ".splice.apply(" + name + ", [" + from + ", " + to + "].concat(" + val + "))"; }; return AssignNode; })(); children(AssignNode, 'variable', 'value'); //### CodeNode // A function definition. This is the only node that creates a new Scope. // When for the purposes of walking the contents of a function body, the CodeNode // has no *children* -- they're within the inner scope. exports.CodeNode = (function() { CodeNode = function CodeNode(params, body, tag) { this.params = params || []; this.body = body || new Expressions(); this.bound = tag === 'boundfunc'; return this; }; __extends(CodeNode, BaseNode); // Compilation creates a new scope unless explicitly asked to share with the // outer scope. Handles splat parameters in the parameter list by peeking at // the JavaScript `arguments` objects. If the function is bound with the `=>` // arrow, generates a wrapper that saves the current value of `this` through // a closure. CodeNode.prototype.compile_node = function compile_node(o) { var _b, _c, _d, _e, _f, _g, _h, _i, _j, _k, code, func, i, name_part, param, params, ref, shared_scope, splat, top; shared_scope = del(o, 'shared_scope'); top = del(o, 'top'); o.scope = shared_scope || new Scope(o.scope, this.body, this); o.top = true; o.indent = this.idt(this.bound ? 2 : 1); del(o, 'no_wrap'); del(o, 'globals'); i = 0; splat = undefined; params = []; _c = this.params; for (_b = 0, _d = _c.length; _b < _d; _b++) { param = _c[_b]; if (param instanceof SplatNode && !(typeof splat !== "undefined" && splat !== null)) { splat = param; splat.index = i; splat.trailings = []; splat.arglength = this.params.length; this.body.unshift(splat); } else if ((typeof splat !== "undefined" && splat !== null)) { splat.trailings.push(param); } else { params.push(param); } i += 1; } params = (function() { _e = []; _g = params; for (_f = 0, _h = _g.length; _f < _h; _f++) { param = _g[_f]; _e.push(param.compile(o)); } return _e; })(); this.body.make_return(); _j = params; for (_i = 0, _k = _j.length; _i < _k; _i++) { param = _j[_i]; (o.scope.parameter(param)); } code = this.body.expressions.length ? ("\n" + (this.body.compile_with_declarations(o)) + "\n") : ''; name_part = this.name ? ' ' + this.name : ''; func = ("function" + (this.bound ? '' : name_part) + "(" + (params.join(', ')) + ") {" + code + (this.idt(this.bound ? 1 : 0)) + "}"); if (top && !this.bound) { func = ("(" + func + ")"); } if (!(this.bound)) { return func; } utility('slice'); ref = new ValueNode(literal(utility('bind'))); return (new CallNode(ref, [literal(func), literal('this')])).compile(o); }; CodeNode.prototype.top_sensitive = function top_sensitive() { return true; }; // Short-circuit traverse_children method to prevent it from crossing scope boundaries // unless cross_scope is true CodeNode.prototype.traverse_children = function traverse_children(cross_scope, func) { if (cross_scope) { return CodeNode.__superClass__.traverse_children.call(this, cross_scope, func); } }; CodeNode.prototype.toString = function toString(idt) { var _b, _c, _d, _e, child; idt = idt || ''; children = (function() { _b = []; _d = this.children(); for (_c = 0, _e = _d.length; _c < _e; _c++) { child = _d[_c]; _b.push(child.toString(idt + TAB)); } return _b; }).call(this).join(''); return "\n" + idt + children; }; return CodeNode; })(); children(CodeNode, 'params', 'body'); //### SplatNode // A splat, either as a parameter to a function, an argument to a call, // or as part of a destructuring assignment. exports.SplatNode = (function() { SplatNode = function SplatNode(name) { if (!(name.compile)) { name = literal(name); } this.name = name; return this; }; __extends(SplatNode, BaseNode); SplatNode.prototype.compile_node = function compile_node(o) { var _b; if ((typeof (_b = this.index) !== "undefined" && _b !== null)) { return this.compile_param(o); } else { return this.name.compile(o); } }; // Compiling a parameter splat means recovering the parameters that succeed // the splat in the parameter list, by slicing the arguments object. SplatNode.prototype.compile_param = function compile_param(o) { var _b, _c, idx, len, name, pos, trailing, variadic; name = this.name.compile(o); o.scope.find(name); len = o.scope.free_variable(); o.scope.assign(len, "arguments.length"); variadic = o.scope.free_variable(); o.scope.assign(variadic, ("" + len + " >= " + this.arglength)); _b = this.trailings; for (idx = 0, _c = _b.length; idx < _c; idx++) { trailing = _b[idx]; pos = this.trailings.length - idx; o.scope.assign(trailing.compile(o), ("arguments[" + variadic + " ? " + len + " - " + pos + " : " + (this.index + idx) + "]")); } return "" + name + " = " + (utility('slice')) + ".call(arguments, " + this.index + ", " + len + " - " + (this.trailings.length) + ")"; }; // A compiling a splat as a destructuring assignment means slicing arguments // from the right-hand-side's corresponding array. SplatNode.prototype.compile_value = function compile_value(o, name, index, trailings) { var trail; trail = trailings ? (", " + (name) + ".length - " + trailings) : ''; return "" + (utility('slice')) + ".call(" + name + ", " + index + trail + ")"; }; // Utility function that converts arbitrary number of elements, mixed with // splats, to a proper array SplatNode.compile_mixed_array = function compile_mixed_array(list, o) { var _b, _c, _d, arg, args, code, i, prev; args = []; i = 0; _c = list; for (_b = 0, _d = _c.length; _b < _d; _b++) { arg = _c[_b]; code = arg.compile(o); if (!(arg instanceof SplatNode)) { prev = args[i - 1]; if (i === 1 && prev.substr(0, 1) === '[' && prev.substr(prev.length - 1, 1) === ']') { args[i - 1] = ("" + (prev.substr(0, prev.length - 1)) + ", " + code + "]"); continue; } else if (i > 1 && prev.substr(0, 9) === '.concat([' && prev.substr(prev.length - 2, 2) === '])') { args[i - 1] = ("" + (prev.substr(0, prev.length - 2)) + ", " + code + "])"); continue; } else { code = ("[" + code + "]"); } } args.push(i === 0 ? code : (".concat(" + code + ")")); i += 1; } return args.join(''); }; return SplatNode; }).call(this); children(SplatNode, 'name'); //### WhileNode // A while loop, the only sort of low-level loop exposed by CoffeeScript. From // it, all other loops can be manufactured. Useful in cases where you need more // flexibility or more speed than a comprehension can provide. exports.WhileNode = (function() { WhileNode = function WhileNode(condition, opts) { if (opts && opts.invert) { condition = new OpNode('!', condition); } this.condition = condition; this.guard = opts && opts.guard; return this; }; __extends(WhileNode, BaseNode); WhileNode.prototype.add_body = function add_body(body) { this.body = body; return this; }; WhileNode.prototype.make_return = function make_return() { this.returns = true; return this; }; WhileNode.prototype.top_sensitive = function top_sensitive() { return true; }; // The main difference from a JavaScript *while* is that the CoffeeScript // *while* can be used as a part of a larger expression -- while loops may // return an array containing the computed result of each iteration. WhileNode.prototype.compile_node = function compile_node(o) { var cond, post, pre, rvar, set, top; top = del(o, 'top') && !this.returns; o.indent = this.idt(1); o.top = true; cond = this.condition.compile(o); set = ''; if (!(top)) { rvar = o.scope.free_variable(); set = ("" + this.tab + rvar + " = [];\n"); if (this.body) { this.body = PushNode.wrap(rvar, this.body); } } pre = ("" + set + (this.tab) + "while (" + cond + ")"); if (this.guard) { this.body = Expressions.wrap([new IfNode(this.guard, this.body)]); } this.returns ? (post = '\n' + new ReturnNode(literal(rvar)).compile(merge(o, { indent: this.idt() }))) : (post = ''); return "" + pre + " {\n" + (this.body.compile(o)) + "\n" + this.tab + "}" + post; }; return WhileNode; })(); statement(WhileNode); children(WhileNode, 'condition', 'guard', 'body'); //### OpNode // Simple Arithmetic and logical operations. Performs some conversion from // CoffeeScript operations into their JavaScript equivalents. exports.OpNode = (function() { OpNode = function OpNode(operator, first, second, flip) { this.constructor.name += ' ' + operator; this.first = first; this.second = second; this.operator = this.CONVERSIONS[operator] || operator; this.flip = !!flip; return this; }; __extends(OpNode, BaseNode); // The map of conversions from CoffeeScript to JavaScript symbols. OpNode.prototype.CONVERSIONS = { '==': '===', '!=': '!==' }; // The list of operators for which we perform // [Python-style comparison chaining](http://docs.python.org/reference/expressions.html#notin). OpNode.prototype.CHAINABLE = ['<', '>', '>=', '<=', '===', '!==']; // Our assignment operators that have no JavaScript equivalent. OpNode.prototype.ASSIGNMENT = ['||=', '&&=', '?=']; // Operators must come before their operands with a space. OpNode.prototype.PREFIX_OPERATORS = ['typeof', 'delete']; OpNode.prototype.is_unary = function is_unary() { return !this.second; }; OpNode.prototype.is_chainable = function is_chainable() { return this.CHAINABLE.indexOf(this.operator) >= 0; }; OpNode.prototype.compile_node = function compile_node(o) { o.operation = true; if (this.is_chainable() && this.first.unwrap() instanceof OpNode && this.first.unwrap().is_chainable()) { return this.compile_chain(o); } if (this.ASSIGNMENT.indexOf(this.operator) >= 0) { return this.compile_assignment(o); } if (this.is_unary()) { return this.compile_unary(o); } if (this.operator === '?') { return this.compile_existence(o); } return [this.first.compile(o), this.operator, this.second.compile(o)].join(' '); }; // Mimic Python's chained comparisons when multiple comparison operators are // used sequentially. For example: // bin/coffee -e "puts 50 < 65 > 10" // true OpNode.prototype.compile_chain = function compile_chain(o) { var _b, _c, first, second, shared; shared = this.first.unwrap().second; if (shared.contains_type(CallNode)) { _b = shared.compile_reference(o); this.first.second = _b[0]; shared = _b[1]; } _c = [this.first.compile(o), this.second.compile(o), shared.compile(o)]; first = _c[0]; second = _c[1]; shared = _c[2]; return "(" + first + ") && (" + shared + " " + this.operator + " " + second + ")"; }; // When compiling a conditional assignment, take care to ensure that the // operands are only evaluated once, even though we have to reference them // more than once. OpNode.prototype.compile_assignment = function compile_assignment(o) { var _b, first, second; _b = [this.first.compile(o), this.second.compile(o)]; first = _b[0]; second = _b[1]; if (first.match(IDENTIFIER)) { o.scope.find(first); } if (this.operator === '?=') { return ("" + first + " = " + (ExistenceNode.compile_test(o, this.first)) + " ? " + first + " : " + second); } return "" + first + " = " + first + " " + (this.operator.substr(0, 2)) + " " + second; }; // If this is an existence operator, we delegate to `ExistenceNode.compile_test` // to give us the safe references for the variables. OpNode.prototype.compile_existence = function compile_existence(o) { var _b, first, second, test; _b = [this.first.compile(o), this.second.compile(o)]; first = _b[0]; second = _b[1]; test = ExistenceNode.compile_test(o, this.first); return "" + test + " ? " + first + " : " + second; }; // Compile a unary **OpNode**. OpNode.prototype.compile_unary = function compile_unary(o) { var parts, space; space = this.PREFIX_OPERATORS.indexOf(this.operator) >= 0 ? ' ' : ''; parts = [this.operator, space, this.first.compile(o)]; if (this.flip) { parts = parts.reverse(); } return parts.join(''); }; return OpNode; })(); children(OpNode, 'first', 'second'); //### TryNode // A classic *try/catch/finally* block. exports.TryNode = (function() { TryNode = function TryNode(attempt, error, recovery, ensure) { this.attempt = attempt; this.recovery = recovery; this.ensure = ensure; this.error = error; this; return this; }; __extends(TryNode, BaseNode); TryNode.prototype.make_return = function make_return() { if (this.attempt) { this.attempt = this.attempt.make_return(); } if (this.recovery) { this.recovery = this.recovery.make_return(); } return this; }; // Compilation is more or less as you would expect -- the *finally* clause // is optional, the *catch* is not. TryNode.prototype.compile_node = function compile_node(o) { var attempt_part, catch_part, error_part, finally_part; o.indent = this.idt(1); o.top = true; attempt_part = this.attempt.compile(o); error_part = this.error ? (" (" + (this.error.compile(o)) + ") ") : ' '; catch_part = this.recovery ? (" catch" + error_part + "{\n" + (this.recovery.compile(o)) + "\n" + this.tab + "}") : ''; finally_part = (this.ensure || '') && ' finally {\n' + this.ensure.compile(merge(o)) + ("\n" + this.tab + "}"); return "" + (this.tab) + "try {\n" + attempt_part + "\n" + this.tab + "}" + catch_part + finally_part; }; return TryNode; })(); statement(TryNode); children(TryNode, 'attempt', 'recovery', 'ensure'); //### ThrowNode // Simple node to throw an exception. exports.ThrowNode = (function() { ThrowNode = function ThrowNode(expression) { this.expression = expression; return this; }; __extends(ThrowNode, BaseNode); // A **ThrowNode** is already a return, of sorts... ThrowNode.prototype.make_return = function make_return() { return this; }; ThrowNode.prototype.compile_node = function compile_node(o) { return "" + (this.tab) + "throw " + (this.expression.compile(o)) + ";"; }; return ThrowNode; })(); statement(ThrowNode); children(ThrowNode, 'expression'); //### ExistenceNode // Checks a variable for existence -- not *null* and not *undefined*. This is // similar to `.nil?` in Ruby, and avoids having to consult a JavaScript truth // table. exports.ExistenceNode = (function() { ExistenceNode = function ExistenceNode(expression) { this.expression = expression; return this; }; __extends(ExistenceNode, BaseNode); ExistenceNode.prototype.compile_node = function compile_node(o) { return ExistenceNode.compile_test(o, this.expression); }; // The meat of the **ExistenceNode** is in this static `compile_test` method // because other nodes like to check the existence of their variables as well. // Be careful not to double-evaluate anything. ExistenceNode.compile_test = function compile_test(o, variable) { var _b, _c, _d, first, second; _b = [variable, variable]; first = _b[0]; second = _b[1]; if (variable instanceof CallNode || (variable instanceof ValueNode && variable.has_properties())) { _c = variable.compile_reference(o); first = _c[0]; second = _c[1]; } _d = [first.compile(o), second.compile(o)]; first = _d[0]; second = _d[1]; return "(typeof " + first + " !== \"undefined\" && " + second + " !== null)"; }; return ExistenceNode; }).call(this); children(ExistenceNode, 'expression'); //### ParentheticalNode // An extra set of parentheses, specified explicitly in the source. At one time // we tried to clean up the results by detecting and removing redundant // parentheses, but no longer -- you can put in as many as you please. // Parentheses are a good way to force any statement to become an expression. exports.ParentheticalNode = (function() { ParentheticalNode = function ParentheticalNode(expression) { this.expression = expression; return this; }; __extends(ParentheticalNode, BaseNode); ParentheticalNode.prototype.is_statement = function is_statement() { return this.expression.is_statement(); }; ParentheticalNode.prototype.make_return = function make_return() { return this.expression.make_return(); }; ParentheticalNode.prototype.compile_node = function compile_node(o) { var code, l; code = this.expression.compile(o); if (this.is_statement()) { return code; } l = code.length; if (code.substr(l - 1, 1) === ';') { code = code.substr(o, l - 1); } if (this.expression instanceof AssignNode) { return code; } else { return "(" + code + ")"; } }; return ParentheticalNode; })(); children(ParentheticalNode, 'expression'); //### ForNode // CoffeeScript's replacement for the *for* loop is our array and object // comprehensions, that compile into *for* loops here. They also act as an // expression, able to return the result of each filtered iteration. // Unlike Python array comprehensions, they can be multi-line, and you can pass // the current index of the loop as a second parameter. Unlike Ruby blocks, // you can map and filter in a single pass. exports.ForNode = (function() { ForNode = function ForNode(body, source, name, index) { var _b; this.body = body; this.name = name; this.index = index || null; this.source = source.source; this.guard = source.guard; this.step = source.step; this.object = !!source.object; if (this.object) { _b = [this.index, this.name]; this.name = _b[0]; this.index = _b[1]; } this.pattern = this.name instanceof ValueNode; if (this.index instanceof ValueNode) { throw new Error('index cannot be a pattern matching expression'); } this.returns = false; return this; }; __extends(ForNode, BaseNode); ForNode.prototype.top_sensitive = function top_sensitive() { return true; }; ForNode.prototype.make_return = function make_return() { this.returns = true; return this; }; ForNode.prototype.compile_return_value = function compile_return_value(val, o) { if (this.returns) { return '\n' + new ReturnNode(literal(val)).compile(o); } if (val) { return '\n' + val; } return ''; }; // Welcome to the hairiest method in all of CoffeeScript. Handles the inner // loop, filtering, stepping, and result saving for array, object, and range // comprehensions. Some of the generated code can be shared in common, and // some cannot. ForNode.prototype.compile_node = function compile_node(o) { var body, body_dent, close, for_part, index, ivar, lvar, name, range, return_result, rvar, scope, set_result, source, source_part, step_part, svar, top_level, var_part, vars; top_level = del(o, 'top') && !this.returns; range = this.source instanceof ValueNode && this.source.base instanceof RangeNode && !this.source.properties.length; source = range ? this.source.base : this.source; scope = o.scope; name = this.name && this.name.compile(o); index = this.index && this.index.compile(o); if (name && !this.pattern) { scope.find(name); } if (index) { scope.find(index); } body_dent = this.idt(1); if (!(top_level)) { rvar = scope.free_variable(); } ivar = range ? name : index || scope.free_variable(); var_part = ''; body = Expressions.wrap([this.body]); if (range) { source_part = source.compile_variables(o); for_part = source.compile(merge(o, { index: ivar, step: this.step })); } else { svar = scope.free_variable(); source_part = ("" + svar + " = " + (this.source.compile(o)) + ";\n" + this.tab); if (this.pattern) { var_part = new AssignNode(this.name, literal(("" + svar + "[" + ivar + "]"))).compile(merge(o, { indent: this.idt(1), top: true })) + "\n"; } else { if (name) { var_part = ("" + body_dent + name + " = " + svar + "[" + ivar + "];\n"); } } if (!(this.object)) { lvar = scope.free_variable(); step_part = this.step ? ("" + ivar + " += " + (this.step.compile(o))) : ("" + ivar + "++"); for_part = ("" + ivar + " = 0, " + lvar + " = " + (svar) + ".length; " + ivar + " < " + lvar + "; " + step_part); } } set_result = rvar ? this.idt() + rvar + ' = []; ' : this.idt(); return_result = this.compile_return_value(rvar, o); if (top_level && body.contains(function(n) { return n instanceof CodeNode; })) { body = ClosureNode.wrap(body, true); } if (!(top_level)) { body = PushNode.wrap(rvar, body); } this.guard ? (body = Expressions.wrap([new IfNode(this.guard, body)])) : null; this.object ? (for_part = ("" + ivar + " in " + svar + ") { if (" + (utility('hasProp')) + ".call(" + svar + ", " + ivar + ")")) : null; body = body.compile(merge(o, { indent: body_dent, top: true })); vars = range ? name : ("" + name + ", " + ivar); close = this.object ? '}}' : '}'; return "" + set_result + (source_part) + "for (" + for_part + ") {\n" + var_part + body + "\n" + this.tab + close + return_result; }; return ForNode; })(); statement(ForNode); children(ForNode, 'body', 'source', 'guard'); //### IfNode // *If/else* statements. Our *switch/when* will be compiled into this. Acts as an // expression by pushing down requested returns to the last line of each clause. // Single-expression **IfNodes** are compiled into ternary operators if possible, // because ternaries are already proper expressions, and don't need conversion. exports.IfNode = (function() { IfNode = function IfNode(condition, body, tags) { this.condition = condition; this.body = body; this.else_body = null; this.tags = tags || {}; if (this.tags.invert) { this.condition = new OpNode('!', new ParentheticalNode(this.condition)); } this.is_chain = false; return this; }; __extends(IfNode, BaseNode); IfNode.prototype.body_node = function body_node() { return this.body == undefined ? undefined : this.body.unwrap(); }; IfNode.prototype.else_body_node = function else_body_node() { return this.else_body == undefined ? undefined : this.else_body.unwrap(); }; IfNode.prototype.force_statement = function force_statement() { this.tags.statement = true; return this; }; // Tag a chain of **IfNodes** with their object(s) to switch on for equality // tests. `rewrite_switch` will perform the actual change at compile time. IfNode.prototype.switches_over = function switches_over(expression) { this.switch_subject = expression; return this; }; // Rewrite a chain of **IfNodes** with their switch condition for equality. // Ensure that the switch expression isn't evaluated more than once. IfNode.prototype.rewrite_switch = function rewrite_switch(o) { var _b, _c, _d, cond, i, variable; this.assigner = this.switch_subject; if (!((this.switch_subject.unwrap() instanceof LiteralNode))) { variable = literal(o.scope.free_variable()); this.assigner = new AssignNode(variable, this.switch_subject); this.switch_subject = variable; } this.condition = (function() { _b = []; _c = flatten([this.condition]); for (i = 0, _d = _c.length; i < _d; i++) { cond = _c[i]; _b.push((function() { if (cond instanceof OpNode) { cond = new ParentheticalNode(cond); } return new OpNode('==', (i === 0 ? this.assigner : this.switch_subject), cond); }).call(this)); } return _b; }).call(this); if (this.is_chain) { this.else_body_node().switches_over(this.switch_subject); } // prevent this rewrite from happening again this.switch_subject = undefined; return this; }; // Rewrite a chain of **IfNodes** to add a default case as the final *else*. IfNode.prototype.add_else = function add_else(else_body, statement) { if (this.is_chain) { this.else_body_node().add_else(else_body, statement); } else { this.is_chain = else_body instanceof IfNode; this.else_body = this.ensure_expressions(else_body); } return this; }; // The **IfNode** only compiles into a statement if either of its bodies needs // to be a statement. Otherwise a ternary is safe. IfNode.prototype.is_statement = function is_statement() { return this.statement = this.statement || !!(this.comment || this.tags.statement || this.body_node().is_statement() || (this.else_body && this.else_body_node().is_statement())); }; IfNode.prototype.compile_condition = function compile_condition(o) { var _b, _c, _d, _e, cond; return (function() { _b = []; _d = flatten([this.condition]); for (_c = 0, _e = _d.length; _c < _e; _c++) { cond = _d[_c]; _b.push(cond.compile(o)); } return _b; }).call(this).join(' || '); }; IfNode.prototype.compile_node = function compile_node(o) { if (this.is_statement()) { return this.compile_statement(o); } else { return this.compile_ternary(o); } }; IfNode.prototype.make_return = function make_return() { this.body = this.body && this.ensure_expressions(this.body.make_return()); this.else_body = this.else_body && this.ensure_expressions(this.else_body.make_return()); return this; }; IfNode.prototype.ensure_expressions = function ensure_expressions(node) { if (!(node instanceof Expressions)) { node = new Expressions([node]); } return node; }; // Compile the **IfNode** as a regular *if-else* statement. Flattened chains // force inner *else* bodies into statement form. IfNode.prototype.compile_statement = function compile_statement(o) { var body, child, com_dent, cond_o, else_part, if_dent, if_part, prefix; if (this.switch_subject) { this.rewrite_switch(o); } child = del(o, 'chain_child'); cond_o = merge(o); o.indent = this.idt(1); o.top = true; if_dent = child ? '' : this.idt(); com_dent = child ? this.idt() : ''; prefix = this.comment ? ("" + (this.comment.compile(cond_o)) + "\n" + com_dent) : ''; body = this.body.compile(o); if_part = ("" + prefix + (if_dent) + "if (" + (this.compile_condition(cond_o)) + ") {\n" + body + "\n" + this.tab + "}"); if (!(this.else_body)) { return if_part; } else_part = this.is_chain ? ' else ' + this.else_body_node().compile(merge(o, { indent: this.idt(), chain_child: true })) : (" else {\n" + (this.else_body.compile(o)) + "\n" + this.tab + "}"); return "" + if_part + else_part; }; // Compile the IfNode as a ternary operator. IfNode.prototype.compile_ternary = function compile_ternary(o) { var else_part, if_part; if_part = this.condition.compile(o) + ' ? ' + this.body_node().compile(o); else_part = this.else_body ? this.else_body_node().compile(o) : 'null'; return "" + if_part + " : " + else_part; }; return IfNode; })(); children(IfNode, 'condition', 'body', 'else_body', 'assigner'); // Faux-Nodes // ---------- //### PushNode // Faux-nodes are never created by the grammar, but are used during code // generation to generate other combinations of nodes. The **PushNode** creates // the tree for `array.push(value)`, which is helpful for recording the result // arrays from comprehensions. PushNode = (exports.PushNode = { wrap: function wrap(array, expressions) { var expr; expr = expressions.unwrap(); if (expr.is_pure_statement() || expr.contains_pure_statement()) { return expressions; } return Expressions.wrap([new CallNode(new ValueNode(literal(array), [new AccessorNode(literal('push'))]), [expr])]); } }); //### ClosureNode // A faux-node used to wrap an expressions body in a closure. ClosureNode = (exports.ClosureNode = { // Wrap the expressions body, unless it contains a pure statement, // in which case, no dice. If the body mentions `this` or `arguments`, // then make sure that the closure wrapper preserves the original values. wrap: function wrap(expressions, statement) { var args, call, func, mentions_args, mentions_this, meth; if (expressions.contains_pure_statement()) { return expressions; } func = new ParentheticalNode(new CodeNode([], Expressions.wrap([expressions]))); args = []; mentions_args = expressions.contains(function(n) { return (n instanceof LiteralNode) && (n.value === 'arguments'); }); mentions_this = expressions.contains(function(n) { return (n instanceof LiteralNode) && (n.value === 'this'); }); if (mentions_args || mentions_this) { meth = literal(mentions_args ? 'apply' : 'call'); args = [literal('this')]; if (mentions_args) { args.push(literal('arguments')); } func = new ValueNode(func, [new AccessorNode(meth)]); } call = new CallNode(func, args); if (statement) { return Expressions.wrap([call]); } else { return call; } } }); // Utility Functions // ----------------- UTILITIES = { // Correctly set up a prototype chain for inheritance, including a reference // to the superclass for `super()` calls. See: // [goog.inherits](http://closure-library.googlecode.com/svn/docs/closure_goog_base.js.source.html#line1206). __extends: " function(child, parent) {\n var ctor = function(){ };\n ctor.prototype = parent.prototype;\n child.__superClass__ = parent.prototype;\n child.prototype = new ctor();\n child.prototype.constructor = child;\n}", // Bind a function to a calling context, optionally including curried arguments. // See [Underscore's implementation](http://jashkenas.github.com/coffee-script/documentation/docs/underscore.html#section-47). __bind: " function(func, obj, args) {\n return function() {\n return func.apply(obj || {}, args ? args.concat(__slice.call(arguments, 0)) : arguments);\n };\n}", // Shortcuts to speed up the lookup time for native functions. __hasProp: 'Object.prototype.hasOwnProperty', __slice: 'Array.prototype.slice' }; // Constants // --------- // Tabs are two spaces for pretty printing. TAB = ' '; // Trim out all trailing whitespace, so that the generated code plays nice // with Git. TRAILING_WHITESPACE = /[ \t]+$/gm; // Keep this identifier regex in sync with the Lexer. IDENTIFIER = /^[a-zA-Z\$_](\w|\$)*$/; // Is a literal value a string? IS_STRING = /^['"]/; // Utility Functions // ----------------- // Handy helper for a generating LiteralNode. literal = function literal(name) { return new LiteralNode(name); }; // Helper for ensuring that utility functions are assigned at the top level. utility = function utility(name) { var ref; ref = ("__" + name); Scope.root.assign(ref, UTILITIES[ref]); return ref; }; })();