(function(){ var Parser, _a, _b, _c, _d, _e, _f, _g, _h, alt, alternatives, grammar, name, o, operators, token, tokens, unwrap; var __hasProp = Object.prototype.hasOwnProperty; // The CoffeeScript parser is generated by [Jison](http://github.com/zaach/jison) // from this grammar file. Jison is a bottom-up parser generator, similar in // style to [Bison](http://www.gnu.org/software/bison), implemented in JavaScript. // It can recognize [LALR(1), LR(0), SLR(1), and LR(1)](http://en.wikipedia.org/wiki/LR_grammar) // type grammars. To create the Jison parser, we list the pattern to match // on the left-hand side, and the action to take (usually the creation of syntax // tree nodes) on the right. As the parser runs, it // shifts tokens from our token stream, from left to right, and // [attempts to match](http://en.wikipedia.org/wiki/Bottom-up_parsing) // the token sequence against the rules below. When a match can be made, it // reduces into the [nonterminal](http://en.wikipedia.org/wiki/Terminal_and_nonterminal_symbols) // (the enclosing name at the top), and we proceed from there. // If you run the `cake build:parser` command, Jison constructs a parse table // from our rules and saves it into `lib/parser.js`. // The only dependency is on the **Jison.Parser**. Parser = require('jison').Parser; // Jison DSL // --------- // Since we're going to be wrapped in a function by Jison in any case, if our // action immediately returns a value, we can optimize by removing the function // wrapper and just returning the value directly. unwrap = /function\s*\(\)\s*\{\s*return\s*([\s\S]*);\s*\}/; // Our handy DSL for Jison grammar generation, thanks to // [Tim Caswell](http://github.com/creationix). For every rule in the grammar, // we pass the pattern-defining string, the action to run, and extra options, // optionally. If no action is specified, we simply pass the value of the // previous nonterminal. o = function o(pattern_string, action, options) { var match; if (!(action)) { return [pattern_string, '$$ = $1;', options]; } action = (match = (action + '').match(unwrap)) ? match[1] : ("(" + action + "())"); return [pattern_string, ("$$ = " + action + ";"), options]; }; // Grammatical Rules // ----------------- // In all of the rules that follow, you'll see the name of the nonterminal as // the key to a list of alternative matches. With each match's action, the // dollar-sign variables are provided by Jison as references to the value of // their numeric position, so in this rule: // "Expression UNLESS Expression" // `$1` would be the value of the first `Expression`, `$2` would be the token // for the `UNLESS` terminal, and `$3` would be the value of the second // `Expression`. grammar = { // The **Root** is the top-level node in the syntax tree. Since we parse bottom-up, // all parsing must end here. Root: [ o("", function() { return new Expressions(); }), o("TERMINATOR", function() { return new Expressions(); }), o("Body"), o("Block TERMINATOR") ], // Any list of statements and expressions, seperated by line breaks or semicolons. Body: [ o("Line", function() { return Expressions.wrap([$1]); }), o("Body TERMINATOR Line", function() { return $1.push($3); }), o("Body TERMINATOR") ], // Expressions and statements, which make up a line in a body. Line: [o("Expression"), o("Statement")], // Pure statements which cannot be expressions. Statement: [ o("Return"), o("Throw"), o("BREAK", function() { return new LiteralNode($1); }), o("CONTINUE", function() { return new LiteralNode($1); }) ], // All the different types of expressions in our language. The basic unit of // CoffeeScript is the **Expression** -- everything that can be an expression // is one. Expressions serve as the building blocks of many other rules, making // them somewhat circular. Expression: [o("Value"), o("Call"), o("Curry"), o("Code"), o("Operation"), o("Assign"), o("If"), o("Try"), o("While"), o("For"), o("Switch"), o("Extends"), o("Class"), o("Splat"), o("Existence"), o("Comment"), o("Extension")], // A an indented block of expressions. Note that the [Rewriter](rewriter.html) // will convert some postfix forms into blocks for us, by adjusting the // token stream. Block: [ o("INDENT Body OUTDENT", function() { return $2; }), o("INDENT OUTDENT", function() { return new Expressions(); }), o("TERMINATOR Comment", function() { return Expressions.wrap([$2]); }) ], // A literal identifier, a variable name or property. Identifier: [ o("IDENTIFIER", function() { return new LiteralNode($1); }) ], // Alphanumerics are separated from the other **Literal** matchers because // they can also serve as keys in object literals. AlphaNumeric: [ o("NUMBER", function() { return new LiteralNode($1); }), o("STRING", function() { return new LiteralNode($1); }) ], // All of our immediate values. These can (in general), be passed straight // through and printed to JavaScript. Literal: [ o("AlphaNumeric"), o("JS", function() { return new LiteralNode($1); }), o("REGEX", function() { return new LiteralNode($1); }), o("TRUE", function() { return new LiteralNode(true); }), o("FALSE", function() { return new LiteralNode(false); }), o("YES", function() { return new LiteralNode(true); }), o("NO", function() { return new LiteralNode(false); }), o("ON", function() { return new LiteralNode(true); }), o("OFF", function() { return new LiteralNode(false); }) ], // Assignment of a variable, property, or index to a value. Assign: [ o("Assignable ASSIGN Expression", function() { return new AssignNode($1, $3); }) ], // Assignment when it happens within an object literal. The difference from // the ordinary **Assign** is that these allow numbers and strings as keys. AssignObj: [ o("Identifier", function() { return new ValueNode($1); }), o("AlphaNumeric"), o("Identifier ASSIGN Expression", function() { return new AssignNode(new ValueNode($1), $3, 'object'); }), o("AlphaNumeric ASSIGN Expression", function() { return new AssignNode(new ValueNode($1), $3, 'object'); }), o("Comment") ], // A return statement from a function body. Return: [ o("RETURN Expression", function() { return new ReturnNode($2); }), o("RETURN", function() { return new ReturnNode(new ValueNode(new LiteralNode('null'))); }) ], // A comment. Because CoffeeScript passes comments through to JavaScript, we // have to parse comments like any other construct, and identify all of the // positions in which they can occur in the grammar. Comment: [ o("COMMENT", function() { return new CommentNode($1); }) ], // [The existential operator](http://jashkenas.github.com/coffee-script/#existence). Existence: [ o("Expression ?", function() { return new ExistenceNode($1); }) ], // The **Code** node is the function literal. It's defined by an indented block // of **Expressions** preceded by a function arrow, with an optional parameter // list. Code: [ o("PARAM_START ParamList PARAM_END FuncGlyph Block", function() { return new CodeNode($2, $5, $4); }), o("FuncGlyph Block", function() { return new CodeNode([], $2, $1); }) ], // CoffeeScript has two different symbols for functions. `->` is for ordinary // functions, and `=>` is for functions bound to the current value of *this*. FuncGlyph: [ o("->", function() { return 'func'; }), o("=>", function() { return 'boundfunc'; }) ], // An optional, trailing comma. OptComma: [o(''), o(',')], // The list of parameters that a function accepts can be of any length. ParamList: [ o("", function() { return []; }), o("Param", function() { return [$1]; }), o("ParamList , Param", function() { return $1.concat([$3]); }) ], // A single parameter in a function definition can be ordinary, or a splat // that hoovers up the remaining arguments. Param: [ o("PARAM", function() { return new LiteralNode($1); }), o("Param . . .", function() { return new SplatNode($1); }) ], // A splat that occurs outside of a parameter list. Splat: [ o("Expression . . .", function() { return new SplatNode($1); }) ], // Variables and properties that can be assigned to. SimpleAssignable: [ o("Identifier", function() { return new ValueNode($1); }), o("Value Accessor", function() { return $1.push($2); }), o("Invocation Accessor", function() { return new ValueNode($1, [$2]); }), o("ThisProperty") ], // Everything that can be assigned to. Assignable: [ o("SimpleAssignable"), o("Array", function() { return new ValueNode($1); }), o("Object", function() { return new ValueNode($1); }) ], // The types of things that can be treated as values -- assigned to, invoked // as functions, indexed into, named as a class, etc. Value: [ o("Assignable"), o("Literal", function() { return new ValueNode($1); }), o("Parenthetical", function() { return new ValueNode($1); }), o("Range", function() { return new ValueNode($1); }), o("This"), o("NULL", function() { return new ValueNode(new LiteralNode('null')); }) ], // The general group of accessors into an object, by property, by prototype // or by array index or slice. Accessor: [ o("PROPERTY_ACCESS Identifier", function() { return new AccessorNode($2); }), o("PROTOTYPE_ACCESS Identifier", function() { return new AccessorNode($2, 'prototype'); }), o("::", function() { return new AccessorNode(new LiteralNode('prototype')); }), o("SOAK_ACCESS Identifier", function() { return new AccessorNode($2, 'soak'); }), o("Index"), o("Slice", function() { return new SliceNode($1); }) ], // Indexing into an object or array using bracket notation. Index: [ o("INDEX_START Expression INDEX_END", function() { return new IndexNode($2); }), o("SOAKED_INDEX_START Expression SOAKED_INDEX_END", function() { return new IndexNode($2, 'soak'); }) ], // In CoffeeScript, an object literal is simply a list of assignments. Object: [ o("{ AssignList OptComma }", function() { return new ObjectNode($2); }) ], // Assignment of properties within an object literal can be separated by // comma, as in JavaScript, or simply by newline. AssignList: [ o("", function() { return []; }), o("AssignObj", function() { return [$1]; }), o("AssignList , AssignObj", function() { return $1.concat([$3]); }), o("AssignList TERMINATOR AssignObj", function() { return $1.concat([$3]); }), o("AssignList , TERMINATOR AssignObj", function() { return $1.concat([$4]); }), o("INDENT AssignList OptComma OUTDENT", function() { return $2; }) ], // Class definitions have optional bodies of prototype property assignments, // and optional references to the superclass. Class: [ o("CLASS SimpleAssignable", function() { return new ClassNode($2); }), o("CLASS SimpleAssignable EXTENDS Value", function() { return new ClassNode($2, $4); }), o("CLASS SimpleAssignable INDENT ClassBody OUTDENT", function() { return new ClassNode($2, null, $4); }), o("CLASS SimpleAssignable EXTENDS Value INDENT ClassBody OUTDENT", function() { return new ClassNode($2, $4, $6); }) ], // Assignments that can happen directly inside a class declaration. ClassAssign: [ o("AssignObj", function() { return $1; }), o("ThisProperty ASSIGN Expression", function() { return new AssignNode(new ValueNode($1), $3, 'this'); }) ], // A list of assignments to a class. ClassBody: [ o("", function() { return []; }), o("ClassAssign", function() { return [$1]; }), o("ClassBody TERMINATOR ClassAssign", function() { return $1.concat($3); }) ], // The three flavors of function call: normal, object instantiation with `new`, // and calling `super()` Call: [ o("Invocation"), o("NEW Invocation", function() { return $2.new_instance(); }), o("Super") ], // Binds a function call to a context and/or arguments. Curry: [ o("Value <- Arguments", function() { return new CurryNode($1, $3); }) ], // Extending an object by setting its prototype chain to reference a parent // object. Extends: [ o("SimpleAssignable EXTENDS Value", function() { return new ExtendsNode($1, $3); }) ], // Ordinary function invocation, or a chained series of calls. Invocation: [ o("Value Arguments", function() { return new CallNode($1, $2); }), o("Invocation Arguments", function() { return new CallNode($1, $2); }) ], // The list of arguments to a function call. Arguments: [ o("CALL_START ArgList OptComma CALL_END", function() { return $2; }) ], // Calling super. Super: [ o("SUPER CALL_START ArgList OptComma CALL_END", function() { return new CallNode('super', $3); }) ], // A reference to the *this* current object. This: [ o("THIS", function() { return new ValueNode(new LiteralNode('this')); }), o("@", function() { return new ValueNode(new LiteralNode('this')); }) ], // A reference to a property on *this*. ThisProperty: [ o("@ Identifier", function() { return new ValueNode(new LiteralNode('this'), [new AccessorNode($2)]); }) ], // The CoffeeScript range literal. Range: [ o("[ Expression . . Expression ]", function() { return new RangeNode($2, $5); }), o("[ Expression . . . Expression ]", function() { return new RangeNode($2, $6, true); }) ], // The slice literal. Slice: [ o("INDEX_START Expression . . Expression INDEX_END", function() { return new RangeNode($2, $5); }), o("INDEX_START Expression . . . Expression INDEX_END", function() { return new RangeNode($2, $6, true); }) ], // The array literal. Array: [ o("[ ArgList OptComma ]", function() { return new ArrayNode($2); }) ], // The **ArgList** is both the list of objects passed into a function call, // as well as the contents of an array literal // (i.e. comma-separated expressions). Newlines work as well. ArgList: [ o("", function() { return []; }), o("Expression", function() { return [$1]; }), o("INDENT Expression", function() { return [$2]; }), o("ArgList , Expression", function() { return $1.concat([$3]); }), o("ArgList TERMINATOR Expression", function() { return $1.concat([$3]); }), o("ArgList , TERMINATOR Expression", function() { return $1.concat([$4]); }), o("ArgList , INDENT Expression", function() { return $1.concat([$4]); }), o("ArgList OptComma OUTDENT") ], // Just simple, comma-separated, required arguments (no fancy syntax). We need // this to be separate from the **ArgList** for use in **Switch** blocks, where // having the newlines wouldn't make sense. SimpleArgs: [ o("Expression"), o("SimpleArgs , Expression", function() { if ($1 instanceof Array) { return $1.concat([$3]); } else { return [$1].concat([$3]); } }) ], // The variants of *try/catch/finally* exception handling blocks. Try: [ o("TRY Block Catch", function() { return new TryNode($2, $3[0], $3[1]); }), o("TRY Block FINALLY Block", function() { return new TryNode($2, null, null, $4); }), o("TRY Block Catch FINALLY Block", function() { return new TryNode($2, $3[0], $3[1], $5); }) ], // A catch clause names its error and runs a block of code. Catch: [ o("CATCH Identifier Block", function() { return [$2, $3]; }) ], // Throw an exception object. Throw: [ o("THROW Expression", function() { return new ThrowNode($2); }) ], // Parenthetical expressions. Note that the **Parenthetical** is a **Value**, // not an **Expression**, so if you need to use an expression in a place // where only values are accepted, wrapping it in parentheses will always do // the trick. Parenthetical: [ o("( Line )", function() { return new ParentheticalNode($2); }) ], // A language extension to CoffeeScript from the outside. We simply pass // it through unaltered. Extension: [o("EXTENSION")], // The condition portion of a while loop. WhileSource: [ o("WHILE Expression", function() { return new WhileNode($2); }), o("WHILE Expression WHEN Expression", function() { return new WhileNode($2, { guard: $4 }); }), o("UNTIL Expression", function() { return new WhileNode($2, { invert: true }); }), o("UNTIL Expression WHEN Expression", function() { return new WhileNode($2, { invert: true, guard: $4 }); }) ], // The while loop can either be normal, with a block of expressions to execute, // or postfix, with a single expression. There is no do..while. While: [ o("WhileSource Block", function() { return $1.add_body($2); }), o("Statement WhileSource", function() { return $2.add_body(Expressions.wrap([$1])); }), o("Expression WhileSource", function() { return $2.add_body(Expressions.wrap([$1])); }) ], // Array, object, and range comprehensions, at the most generic level. // Comprehensions can either be normal, with a block of expressions to execute, // or postfix, with a single expression. For: [ o("Statement FOR ForVariables ForSource", function() { return new ForNode($1, $4, $3[0], $3[1]); }), o("Expression FOR ForVariables ForSource", function() { return new ForNode($1, $4, $3[0], $3[1]); }), o("FOR ForVariables ForSource Block", function() { return new ForNode($4, $3, $2[0], $2[1]); }) ], // An array of all accepted values for a variable inside the loop. This // enables support for pattern matching. ForValue: [ o("Identifier"), o("Array", function() { return new ValueNode($1); }), o("Object", function() { return new ValueNode($1); }) ], // An array or range comprehension has variables for the current element and // (optional) reference to the current index. Or, *key, value*, in the case // of object comprehensions. ForVariables: [ o("ForValue", function() { return [$1]; }), o("ForValue , ForValue", function() { return [$1, $3]; }) ], // The source of a comprehension is an array or object with an optional guard // clause. If it's an array comprehension, you can also choose to step through // in fixed-size increments. ForSource: [ o("IN Expression", function() { return { source: $2 }; }), o("OF Expression", function() { return { source: $2, object: true }; }), o("IN Expression WHEN Expression", function() { return { source: $2, guard: $4 }; }), o("OF Expression WHEN Expression", function() { return { source: $2, guard: $4, object: true }; }), o("IN Expression BY Expression", function() { return { source: $2, step: $4 }; }), o("IN Expression WHEN Expression BY Expression", function() { return { source: $2, guard: $4, step: $6 }; }), o("IN Expression BY Expression WHEN Expression", function() { return { source: $2, step: $4, guard: $6 }; }) ], // The CoffeeScript switch/when/else block replaces the JavaScript // switch/case/default by compiling into an if-else chain. Switch: [ o("SWITCH Expression INDENT Whens OUTDENT", function() { return $4.switches_over($2); }), o("SWITCH Expression INDENT Whens ELSE Block OUTDENT", function() { return $4.switches_over($2).add_else($6, true); }), o("SWITCH INDENT Whens OUTDENT", function() { return $3; }), o("SWITCH INDENT Whens ELSE Block OUTDENT", function() { return $3.add_else($5, true); }) ], // The inner list of whens is left recursive. At code-generation time, the // IfNode will rewrite them into a proper chain. Whens: [ o("When"), o("Whens When", function() { return $1.add_else($2); }) ], // An individual **When** clause, with action. When: [ o("LEADING_WHEN SimpleArgs Block", function() { return new IfNode($2, $3, { statement: true }); }), o("LEADING_WHEN SimpleArgs Block TERMINATOR", function() { return new IfNode($2, $3, { statement: true }); }), o("Comment TERMINATOR When", function() { $3.comment = $1; return $3; }) ], // The most basic form of *if* is a condition and an action. The following // if-related rules are broken up along these lines in order to avoid // ambiguity. IfStart: [ o("IF Expression Block", function() { return new IfNode($2, $3); }), o("UNLESS Expression Block", function() { return new IfNode($2, $3, { invert: true }); }), o("IfStart ElsIf", function() { return $1.add_else($2); }) ], // An **IfStart** can optionally be followed by an else block. IfBlock: [ o("IfStart"), o("IfStart ELSE Block", function() { return $1.add_else($3); }) ], // An *else if* continuation of the *if* expression. ElsIf: [ o("ELSE IF Expression Block", function() { return (new IfNode($3, $4)).force_statement(); }) ], // The full complement of *if* expressions, including postfix one-liner // *if* and *unless*. If: [ o("IfBlock"), o("Statement IF Expression", function() { return new IfNode($3, Expressions.wrap([$1]), { statement: true }); }), o("Expression IF Expression", function() { return new IfNode($3, Expressions.wrap([$1]), { statement: true }); }), o("Statement UNLESS Expression", function() { return new IfNode($3, Expressions.wrap([$1]), { statement: true, invert: true }); }), o("Expression UNLESS Expression", function() { return new IfNode($3, Expressions.wrap([$1]), { statement: true, invert: true }); }) ], // Arithmetic and logical operators, working on one or more operands. // Here they are grouped by order of precedence. The actual precedence rules // are defined at the bottom of the page. It would be shorter if we could // combine most of these rules into a single generic *Operand OpSymbol Operand* // -type rule, but in order to make the precedence binding possible, separate // rules are necessary. Operation: [ o("! Expression", function() { return new OpNode('!', $2); }), o("!! Expression", function() { return new OpNode('!!', $2); }), o("- Expression", (function() { return new OpNode('-', $2); }), { prec: 'UMINUS' }), o("+ Expression", (function() { return new OpNode('+', $2); }), { prec: 'UPLUS' }), o("~ Expression", function() { return new OpNode('~', $2); }), o("-- Expression", function() { return new OpNode('--', $2); }), o("++ Expression", function() { return new OpNode('++', $2); }), o("DELETE Expression", function() { return new OpNode('delete', $2); }), o("TYPEOF Expression", function() { return new OpNode('typeof', $2); }), o("Expression --", function() { return new OpNode('--', $1, null, true); }), o("Expression ++", function() { return new OpNode('++', $1, null, true); }), o("Expression * Expression", function() { return new OpNode('*', $1, $3); }), o("Expression / Expression", function() { return new OpNode('/', $1, $3); }), o("Expression % Expression", function() { return new OpNode('%', $1, $3); }), o("Expression + Expression", function() { return new OpNode('+', $1, $3); }), o("Expression - Expression", function() { return new OpNode('-', $1, $3); }), o("Expression << Expression", function() { return new OpNode('<<', $1, $3); }), o("Expression >> Expression", function() { return new OpNode('>>', $1, $3); }), o("Expression >>> Expression", function() { return new OpNode('>>>', $1, $3); }), o("Expression & Expression", function() { return new OpNode('&', $1, $3); }), o("Expression | Expression", function() { return new OpNode('|', $1, $3); }), o("Expression ^ Expression", function() { return new OpNode('^', $1, $3); }), o("Expression <= Expression", function() { return new OpNode('<=', $1, $3); }), o("Expression < Expression", function() { return new OpNode('<', $1, $3); }), o("Expression > Expression", function() { return new OpNode('>', $1, $3); }), o("Expression >= Expression", function() { return new OpNode('>=', $1, $3); }), o("Expression == Expression", function() { return new OpNode('==', $1, $3); }), o("Expression != Expression", function() { return new OpNode('!=', $1, $3); }), o("Expression && Expression", function() { return new OpNode('&&', $1, $3); }), o("Expression || Expression", function() { return new OpNode('||', $1, $3); }), o("Expression ? Expression", function() { return new OpNode('?', $1, $3); }), o("Expression -= Expression", function() { return new OpNode('-=', $1, $3); }), o("Expression += Expression", function() { return new OpNode('+=', $1, $3); }), o("Expression /= Expression", function() { return new OpNode('/=', $1, $3); }), o("Expression *= Expression", function() { return new OpNode('*=', $1, $3); }), o("Expression %= Expression", function() { return new OpNode('%=', $1, $3); }), o("Expression ||= Expression", function() { return new OpNode('||=', $1, $3); }), o("Expression &&= Expression", function() { return new OpNode('&&=', $1, $3); }), o("Expression ?= Expression", function() { return new OpNode('?=', $1, $3); }), o("Expression INSTANCEOF Expression", function() { return new OpNode('instanceof', $1, $3); }), o("Expression IN Expression", function() { return new OpNode('in', $1, $3); }) ] }; // Precedence // ---------- // Operators at the top of this list have higher precedence than the ones lower // down. Following these rules is what makes `2 + 3 * 4` parse as: // 2 + (3 * 4) // And not: // (2 + 3) * 4 operators = [["left", '?'], ["nonassoc", 'UMINUS', 'UPLUS', '!', '!!', '~', '++', '--'], ["left", '*', '/', '%'], ["left", '+', '-'], ["left", '<<', '>>', '>>>'], ["left", '&', '|', '^'], ["left", '<=', '<', '>', '>='], ["right", 'DELETE', 'INSTANCEOF', 'TYPEOF'], ["left", '==', '!='], ["left", '&&', '||'], ["right", '-=', '+=', '/=', '*=', '%=', '||=', '&&=', '?='], ["left", '.'], ["right", 'INDENT'], ["left", 'OUTDENT'], ["right", 'WHEN', 'LEADING_WHEN', 'IN', 'OF', 'BY', 'THROW'], ["right", 'FOR', 'WHILE', 'UNTIL', 'NEW', 'SUPER', 'CLASS'], ["left", 'EXTENDS'], ["right", 'ASSIGN', 'RETURN'], ["right", '->', '=>', '<-', 'UNLESS', 'IF', 'ELSE']]; // Wrapping Up // ----------- // Finally, now what we have our **grammar** and our **operators**, we can create // our **Jison.Parser**. We do this by processing all of our rules, recording all // terminals (every symbol which does not appear as the name of a rule above) // as "tokens". tokens = []; _a = grammar; for (name in _a) { if (__hasProp.call(_a, name)) { alternatives = _a[name]; grammar[name] = (function() { _b = []; _d = alternatives; for (_c = 0, _e = _d.length; _c < _e; _c++) { alt = _d[_c]; _b.push((function() { _g = alt[0].split(' '); for (_f = 0, _h = _g.length; _f < _h; _f++) { token = _g[_f]; if (!(grammar[token])) { tokens.push(token); } } if (name === 'Root') { alt[1] = ("return " + (alt[1])); } return alt; })()); } return _b; })(); }} // Initialize the **Parser** with our list of terminal **tokens**, our **grammar** // rules, and the name of the root. Reverse the operators because Jison orders // precedence from low to high, and we have it high to low // (as in [Yacc](http://dinosaur.compilertools.net/yacc/index.html)). exports.parser = new Parser({ tokens: tokens.join(' '), bnf: grammar, operators: operators.reverse(), startSymbol: 'Root' }); })();