module CoffeeScript # The abstract base class for all CoffeeScript nodes. # All nodes are implement a "compile_node" method, which performs the # code generation for that node. To compile a node, call the "compile" # method, which wraps "compile_node" in some extra smarts, to know when the # generated code should be wrapped up in a closure. An options hash is passed # and cloned throughout, containing messages from higher in the AST, # information about the current scope, and indentation level. class Node # Tabs are two spaces for pretty-printing. TAB = ' ' # Tag this node as a statement, meaning that it can't be used directly as # the result of an expression. def self.statement class_eval "def statement?; true; end" end # Tag this node as a statement that cannot be transformed into an expression. # (break, continue, etc.) It doesn't make sense to try to transform it. def self.statement_only statement class_eval "def statement_only?; true; end" end def write(code) puts "#{self.class.to_s}:\n#{@options.inspect}\n#{code}\n\n" if ENV['VERBOSE'] code end # This is extremely important -- we convert JS statements into expressions # by wrapping them in a closure, only if it's possible, and we're not at # the top level of a block (which would be unnecessary), and we haven't # already been asked to return the result. def compile(o={}) @options = o.dup @indent = o[:indent] top = self.is_a?(ForNode) ? @options[:top] : @options.delete(:top) closure = statement? && !statement_only? && !top && !@options[:return] closure ? compile_closure(@options) : compile_node(@options) end def compile_closure(o={}) indent = o[:indent] @indent = (o[:indent] = idt(1)) "(function() {\n#{compile_node(o.merge(:return => true))}\n#{indent}})()" end # Quick short method for the current indentation level, plus tabbing in. def idt(tabs=0) @indent + (TAB * tabs) end # Default implementations of the common node methods. def unwrap; self; end def statement?; false; end def statement_only?; false; end end # A collection of nodes, each one representing an expression. class Expressions < Node statement attr_reader :expressions TRAILING_WHITESPACE = /\s+$/ UPPERCASE = /[A-Z]/ # Wrap up a node as an Expressions, unless it already is. def self.wrap(*nodes) return nodes[0] if nodes.length == 1 && nodes[0].is_a?(Expressions) Expressions.new(*nodes) end def initialize(*nodes) @expressions = nodes.flatten end # Tack an expression on to the end of this expression list. def <<(node) @expressions << node self end # Tack an expression on to the beginning of this expression list. def unshift(node) @expressions.unshift(node) self end # If this Expressions consists of a single node, pull it back out. def unwrap @expressions.length == 1 ? @expressions.first : self end # Is the node last in this block of expressions. def last?(node) @last_index ||= @expressions.last.is_a?(CommentNode) ? -2 : -1 node == @expressions[@last_index] end # Determine if this is the expressions body within a constructor function. # Constructors are capitalized by CoffeeScript convention. def constructor?(o) o[:top] && o[:last_assign] && o[:last_assign][0..0][UPPERCASE] end def compile(o={}) o[:scope] ? super(o) : compile_root(o) end # Compile each expression in the Expressions body. def compile_node(options={}) write(@expressions.map {|n| compile_expression(n, options.dup) }.join("\n")) end # If this is the top-level Expressions, wrap everything in a safety closure. def compile_root(o={}) indent = o[:no_wrap] ? '' : TAB @indent = indent o.merge!(:indent => indent, :scope => Scope.new(nil, self)) code = o[:globals] ? compile_node(o) : compile_with_declarations(o) code.gsub!(TRAILING_WHITESPACE, '') write(o[:no_wrap] ? code : "(function(){\n#{code}\n})();") end # Compile the expressions body, with declarations of all inner variables # at the top. def compile_with_declarations(o={}) code = compile_node(o) return code unless o[:scope].declarations?(self) write("#{idt}var #{o[:scope].declared_variables.join(', ')};\n#{code}") end # Compiles a single expression within the expression list. def compile_expression(node, o) @indent = o[:indent] stmt = node.statement? # We need to return the result if this is the last node in the expressions body. returns = o.delete(:return) && last?(node) && !node.statement_only? # Return the regular compile of the node, unless we need to return the result. return "#{stmt ? '' : idt}#{node.compile(o.merge(:top => true))}#{stmt ? '' : ';'}" unless returns # If it's a statement, the node knows how to return itself. return node.compile(o.merge(:return => true)) if node.statement? # If it's not part of a constructor, we can just return the value of the expression. return "#{idt}return #{node.compile(o)};" unless constructor?(o) # It's the last line of a constructor, add a safety check. temp = o[:scope].free_variable "#{idt}#{temp} = #{node.compile(o)};\n#{idt}return #{o[:last_assign]} === this.constructor ? this : #{temp};" end end # Literals are static values that have a Ruby representation, eg.: a string, a number, # true, false, nil, etc. class LiteralNode < Node # Values of a literal node that much be treated as a statement -- no # sense returning or assigning them. STATEMENTS = ['break', 'continue'] # If we get handed a literal reference to an arguments object, convert # it to an array. ARG_ARRAY = 'Array.prototype.slice.call(arguments, 0)' attr_reader :value # Wrap up a compiler-generated string as a LiteralNode. def self.wrap(string) self.new(Value.new(string)) end def initialize(value) @value = value end def statement? STATEMENTS.include?(@value.to_s) end alias_method :statement_only?, :statement? def compile_node(o) @value = ARG_ARRAY if @value.to_s.to_sym == :arguments indent = statement? ? idt : '' ending = statement? ? ';' : '' write "#{indent}#{@value}#{ending}" end end # Return an expression, or wrap it in a closure and return it. class ReturnNode < Node statement_only attr_reader :expression def initialize(expression) @expression = expression end def compile_node(o) return write(@expression.compile(o.merge(:return => true))) if @expression.statement? compiled = @expression.compile(o) write(@expression.statement? ? "#{compiled}\n#{idt}return null;" : "#{idt}return #{compiled};") end end # Pass through CoffeeScript comments into JavaScript comments at the # same position. class CommentNode < Node statement_only def initialize(lines) @lines = lines.value end def compile_node(o={}) delimiter = "\n#{idt}//" write("#{delimiter}#{@lines.join(delimiter)}") end end # Node for a function invocation. Takes care of converting super() calls into # calls against the prototype's function of the same name. class CallNode < Node attr_reader :variable, :arguments def initialize(variable, arguments=[]) @variable, @arguments = variable, arguments end def new_instance @new = true self end def super? @variable == :super end def prefix @new ? "new " : '' end def splat? @arguments.any? {|a| a.is_a?(ArgSplatNode) } end def <<(argument) @arguments << argument end # Compile a vanilla function call. def compile_node(o) return write(compile_splat(o)) if splat? args = @arguments.map{|a| a.compile(o) }.join(', ') return write(compile_super(args, o)) if super? write("#{prefix}#{@variable.compile(o)}(#{args})") end # Compile a call against the superclass's implementation of the current function. def compile_super(args, o) methname = o[:last_assign] arg_part = args.empty? ? '' : ", #{args}" meth = o[:proto_assign] ? "#{o[:proto_assign]}.__superClass__.#{methname}" : "#{methname}.__superClass__.constructor" "#{meth}.call(this#{arg_part})" end # Compile a function call being passed variable arguments. def compile_splat(o) meth = @variable.compile(o) obj = @variable.source || 'this' args = @arguments.map do |arg| code = arg.compile(o) code = arg.is_a?(ArgSplatNode) ? code : "[#{code}]" arg.equal?(@arguments.first) ? code : ".concat(#{code})" end "#{prefix}#{meth}.apply(#{obj}, #{args.join('')})" end end # Node to extend an object's prototype with an ancestor object. # After goog.inherits from the Closure Library. class ExtendsNode < Node statement attr_reader :sub_object, :super_object def initialize(sub_object, super_object) @sub_object, @super_object = sub_object, super_object end # Hooking one constructor into another's prototype chain. def compile_node(o={}) constructor = o[:scope].free_variable sub, sup = @sub_object.compile(o), @super_object.compile(o) "#{idt}#{constructor} = function(){};\n#{idt}" + "#{constructor}.prototype = #{sup}.prototype;\n#{idt}" + "#{sub}.__superClass__ = #{sup}.prototype;\n#{idt}" + "#{sub}.prototype = new #{constructor}();\n#{idt}" + "#{sub}.prototype.constructor = #{sub};" end end # A value, indexed or dotted into, or vanilla. class ValueNode < Node attr_reader :base, :properties, :last, :source def initialize(base, properties=[]) @base, @properties = base, properties end def <<(other) @properties << other self end def properties? return !@properties.empty? end # Values are statements if their base is a statement. def statement? @base.is_a?(Node) && @base.statement? && !properties? end def compile_node(o) only = o.delete(:only_first) props = only ? @properties[0...-1] : @properties parts = [@base, props].flatten.map {|val| val.compile(o) } @last = parts.last @source = parts.length > 1 ? parts[0...-1].join('') : nil write(parts.join('')) end end # A dotted accessor into a part of a value, or the :: shorthand for # an accessor into the object's prototype. class AccessorNode < Node attr_reader :name def initialize(name, prototype=false) @name, @prototype = name, prototype end def compile_node(o) proto = @prototype ? "prototype." : '' write(".#{proto}#{@name}") end end # An indexed accessor into a part of an array or object. class IndexNode < Node attr_reader :index def initialize(index) @index = index end def compile_node(o) write("[#{@index.compile(o)}]") end end # A range literal. Ranges can be used to extract portions (slices) of arrays, # or to specify a range for array comprehensions. class RangeNode < Node attr_reader :from, :to def initialize(from, to, exclusive=false) @from, @to, @exclusive = from, to, exclusive end def exclusive? @exclusive end def compile_variables(o) @indent = o[:indent] @from_var, @to_var = o[:scope].free_variable, o[:scope].free_variable from_val, to_val = @from.compile(o), @to.compile(o) write("#{@from_var} = #{from_val}; #{@to_var} = #{to_val};\n#{idt}") end def compile_node(o) return compile_array(o) unless o[:index] idx, step = o.delete(:index), o.delete(:step) vars = "#{idx}=#{@from_var}" step = step ? step.compile(o) : '1' equals = @exclusive ? '' : '=' compare = "(#{@from_var} <= #{@to_var} ? #{idx} <#{equals} #{@to_var} : #{idx} >#{equals} #{@to_var})" incr = "(#{@from_var} <= #{@to_var} ? #{idx} += #{step} : #{idx} -= #{step})" write("#{vars}; #{compare}; #{incr}") end # Expand the range into the equivalent array, if it's not being used as # part of a comprehension, slice, or splice. # TODO: This generates pretty ugly code ... shrink it. def compile_array(o) body = Expressions.wrap(LiteralNode.wrap('i')) arr = Expressions.wrap(ForNode.new(body, {:source => ValueNode.new(self)}, Value.new('i'))) ParentheticalNode.new(CallNode.new(CodeNode.new([], arr))).compile(o) end end # An array slice literal. Unlike JavaScript's Array#slice, the second parameter # specifies the index of the end of the slice (just like the first parameter) # is the index of the beginning. class SliceNode < Node attr_reader :range def initialize(range) @range = range end def compile_node(o) from = @range.from.compile(o) to = @range.to.compile(o) plus_part = @range.exclusive? ? '' : ' + 1' write(".slice(#{from}, #{to}#{plus_part})") end end # Setting the value of a local variable, or the value of an object property. class AssignNode < Node PROTO_ASSIGN = /\A(\S+)\.prototype/ LEADING_DOT = /\A\.(prototype\.)?/ attr_reader :variable, :value, :context def initialize(variable, value, context=nil) @variable, @value, @context = variable, value, context end def compile_node(o) return compile_splice(o) if @variable.properties.last.is_a?(SliceNode) name = @variable.compile(o) last = @variable.last.to_s.sub(LEADING_DOT, '') proto = name[PROTO_ASSIGN, 1] o = o.merge(:last_assign => last, :proto_assign => proto) o[:immediate_assign] = last if @value.is_a?(CodeNode) && last.match(Lexer::IDENTIFIER) return write("#{name}: #{@value.compile(o)}") if @context == :object o[:scope].find(name) unless @variable.properties? val = "#{name} = #{@value.compile(o)}" write(o[:return] ? "#{idt}return (#{val})" : val) end def compile_splice(o) var = @variable.compile(o.merge(:only_first => true)) range = @variable.properties.last.range plus = range.exclusive? ? '' : ' + 1' from = range.from.compile(o) to = "#{range.to.compile(o)} - #{from}#{plus}" write("#{var}.splice.apply(#{var}, [#{from}, #{to}].concat(#{@value.compile(o)}))") end end # Simple Arithmetic and logical operations. Performs some conversion from # CoffeeScript operations into their JavaScript equivalents. class OpNode < Node CONVERSIONS = { :== => "===", :'!=' => "!==", :and => '&&', :or => '||', :is => '===', :isnt => "!==", :not => '!' } CONDITIONALS = [:'||=', :'&&='] PREFIX_OPERATORS = [:typeof, :delete] attr_reader :operator, :first, :second def initialize(operator, first, second=nil, flip=false) @first, @second, @flip = first, second, flip @operator = CONVERSIONS[operator.to_sym] || operator end def unary? @second.nil? end def compile_node(o) return write(compile_conditional(o)) if CONDITIONALS.include?(@operator.to_sym) return write(compile_unary(o)) if unary? write("#{@first.compile(o)} #{@operator} #{@second.compile(o)}") end def compile_conditional(o) first, second = @first.compile(o), @second.compile(o) sym = @operator[0..1] "#{first} = #{first} #{sym} #{second}" end def compile_unary(o) space = PREFIX_OPERATORS.include?(@operator.to_sym) ? ' ' : '' parts = [@operator.to_s, space, @first.compile(o)] parts.reverse! if @flip parts.join('') end end # A function definition. The only node that creates a new Scope. class CodeNode < Node attr_reader :params, :body def initialize(params, body) @params = params @body = body end def compile_node(o) shared_scope = o.delete(:shared_scope) o[:scope] = shared_scope || Scope.new(o[:scope], @body) o[:return] = true o[:top] = true o[:indent] = idt(1) o.delete(:no_wrap) o.delete(:globals) name = o.delete(:immediate_assign) if @params.last.is_a?(ParamSplatNode) splat = @params.pop splat.index = @params.length @body.unshift(splat) end @params.each {|id| o[:scope].parameter(id.to_s) } code = @body.compile_with_declarations(o) name_part = name ? " #{name}" : '' write("function#{name_part}(#{@params.join(', ')}) {\n#{code}\n#{idt}}") end end # A parameter splat in a function definition. class ParamSplatNode < Node attr_accessor :index attr_reader :name def initialize(name) @name = name end def compile_node(o={}) o[:scope].find(@name) write("#{@name} = Array.prototype.slice.call(arguments, #{@index})") end end class ArgSplatNode < Node attr_reader :value def initialize(value) @value = value end def compile_node(o={}) write(@value.compile(o)) end end # An object literal. class ObjectNode < Node attr_reader :properties def initialize(properties = []) @properties = properties end # All the mucking about with commas is to make sure that CommentNodes and # AssignNodes get interleaved correctly, with no trailing commas or # commas affixed to comments. TODO: Extract this and add it to ArrayNode. def compile_node(o) o[:indent] = idt(1) joins = Hash.new("\n") non_comments = @properties.select {|p| !p.is_a?(CommentNode) } non_comments.each {|p| joins[p] = p == non_comments.last ? "\n" : ",\n" } props = @properties.map { |prop| join = joins[prop] join = '' if prop == @properties.last indent = prop.is_a?(CommentNode) ? '' : idt(1) "#{indent}#{prop.compile(o)}#{join}" }.join('') write("{\n#{props}\n#{idt}}") end end # An array literal. class ArrayNode < Node attr_reader :objects def initialize(objects=[]) @objects = objects end def compile_node(o) o[:indent] = idt(1) objects = @objects.map { |obj| code = obj.compile(o) obj.is_a?(CommentNode) ? "\n#{code}\n#{o[:indent]}" : obj == @objects.last ? code : "#{code}, " }.join('') ending = objects.include?("\n") ? "\n#{idt}]" : ']' write("[#{objects}#{ending}") end end # A while loop, the only sort of low-level loop exposed by CoffeeScript. From # it, all other loops can be manufactured. class WhileNode < Node statement attr_reader :condition, :body def initialize(condition, body) @condition, @body = condition, body end def compile_node(o) returns = o.delete(:return) o[:indent] = idt(1) o[:top] = true cond = @condition.compile(o) post = returns ? "\n#{idt}return null;" : '' return write("#{idt}while (#{cond}) null;#{post}") if @body.nil? write("#{idt}while (#{cond}) {\n#{@body.compile(o)}\n#{idt}}#{post}") end end # The replacement for the for loop is an array comprehension (that compiles) # into a for loop. Also acts as an expression, able to return the result # of the comprehenion. Unlike Python array comprehensions, it's able to pass # the current index of the loop as a second parameter. class ForNode < Node statement attr_reader :body, :source, :name, :index, :filter, :step def initialize(body, source, name, index=nil) @body, @name, @index = body, name, index @source = source[:source] @filter = source[:filter] @step = source[:step] @object = !!source[:object] @name, @index = @index, @name if @object end def compile_node(o) top_level = o.delete(:top) && !o[:return] range = @source.is_a?(ValueNode) && @source.base.is_a?(RangeNode) && @source.properties.empty? source = range ? @source.base : @source scope = o[:scope] name_found = @name && scope.find(@name) index_found = @index && scope.find(@index) body_dent = idt(1) svar = scope.free_variable ivar = range ? name : @index ? @index : scope.free_variable rvar = scope.free_variable unless top_level if range index_var = scope.free_variable source_part = source.compile_variables(o) for_part = "#{index_var}=0, #{source.compile(o.merge(:index => ivar, :step => @step))}, #{index_var}++" var_part = '' else index_var = nil source_part = "#{svar} = #{source.compile(o)};\n#{idt}" for_part = @object ? "#{ivar} in #{svar}" : "#{ivar}=0; #{ivar}<#{svar}.length; #{ivar}++" var_part = @name ? "#{body_dent}#{@name} = #{svar}[#{ivar}];\n" : '' end body = @body set_result = rvar ? "#{idt}#{rvar} = []; " : idt return_result = rvar || '' if top_level body = Expressions.wrap(body) else body = Expressions.wrap(CallNode.new( ValueNode.new(LiteralNode.new(rvar), [AccessorNode.new('push')]), [body.unwrap] )) end if o[:return] return_result = "return #{return_result}" if o[:return] o.delete(:return) body = IfNode.new(@filter, body, nil, :statement => true) if @filter elsif @filter body = Expressions.wrap(IfNode.new(@filter, body)) end if @object body = Expressions.wrap(IfNode.new( CallNode.new(ValueNode.new(LiteralNode.wrap(svar), [AccessorNode.new(Value.new('hasOwnProperty'))]), [LiteralNode.wrap(ivar)]), Expressions.wrap(body), nil, {:statement => true} )) end return_result = "\n#{idt}#{return_result};" unless top_level body = body.compile(o.merge(:indent => body_dent, :top => true)) vars = range ? @name : "#{@name}, #{ivar}" return write(set_result + source_part + "for (#{for_part}) {\n#{var_part}#{body}\n#{idt}}\n#{idt}#{return_result}") end end # A try/catch/finally block. class TryNode < Node statement attr_reader :try, :error, :recovery, :finally def initialize(try, error, recovery, finally=nil) @try, @error, @recovery, @finally = try, error, recovery, finally end def compile_node(o) o[:indent] = idt(1) o[:top] = true error_part = @error ? " (#{@error}) " : ' ' catch_part = @recovery && " catch#{error_part}{\n#{@recovery.compile(o)}\n#{idt}}" finally_part = @finally && " finally {\n#{@finally.compile(o.merge(:return => nil))}\n#{idt}}" write("#{idt}try {\n#{@try.compile(o)}\n#{idt}}#{catch_part}#{finally_part}") end end # Throw an exception. class ThrowNode < Node statement_only attr_reader :expression def initialize(expression) @expression = expression end def compile_node(o) write("#{idt}throw #{@expression.compile(o)};") end end # Check an expression for existence (meaning not null or undefined). class ExistenceNode < Node attr_reader :expression def initialize(expression) @expression = expression end def compile_node(o) val = @expression.compile(o) write("(typeof #{val} !== \"undefined\" && #{val} !== null)") end end # An extra set of parentheses, supplied by the script source. # You can't wrap parentheses around bits that get compiled into JS statements, # unfortunately. class ParentheticalNode < Node attr_reader :expressions def initialize(expressions, line=nil) @expressions = expressions.unwrap @line = line end def compile_node(o) compiled = @expressions.compile(o) compiled = compiled[0...-1] if compiled[-1..-1] == ';' write("(#{compiled})") end end # If/else statements. Switch/whens get compiled into these. Acts as an # expression by pushing down requested returns to the expression bodies. # Single-expression IfNodes are compiled into ternary operators if possible, # because ternaries are first-class returnable assignable expressions. class IfNode < Node attr_reader :condition, :body, :else_body def initialize(condition, body, else_body=nil, tags={}) @condition = condition @body = body && body.unwrap @else_body = else_body && else_body.unwrap @tags = tags @condition = OpNode.new("!", ParentheticalNode.new(@condition)) if @tags[:invert] end def <<(else_body) eb = else_body.unwrap @else_body ? @else_body << eb : @else_body = eb self end def add_comment(comment) @comment = comment self end def force_statement @tags[:statement] = true self end # Rewrite a chain of IfNodes with their switch condition for equality. def rewrite_condition(expression) @condition = OpNode.new("is", expression, @condition) @else_body.rewrite_condition(expression) if chain? self end # Rewrite a chain of IfNodes to add a default case as the final else. def add_else(exprs) chain? ? @else_body.add_else(exprs) : @else_body = (exprs && exprs.unwrap) self end # If the else_body is an IfNode itself, then we've got an if-else chain. def chain? @chain ||= @else_body && @else_body.is_a?(IfNode) end # The IfNode only compiles into a statement if either of the bodies needs # to be a statement. def statement? @is_statement ||= !!(@comment || @tags[:statement] || @body.statement? || (@else_body && @else_body.statement?)) end def compile_node(o) write(statement? ? compile_statement(o) : compile_ternary(o)) end # Compile the IfNode as a regular if-else statement. Flattened chains # force sub-else bodies into statement form. def compile_statement(o) child = o.delete(:chain_child) cond_o = o.dup cond_o.delete(:return) o[:indent] = idt(1) o[:top] = true if_dent = child ? '' : idt com_dent = child ? idt : '' prefix = @comment ? @comment.compile(cond_o) + "\n#{com_dent}" : '' if_part = "#{prefix}#{if_dent}if (#{@condition.compile(cond_o)}) {\n#{Expressions.wrap(@body).compile(o)}\n#{idt}}" return if_part unless @else_body else_part = chain? ? " else #{@else_body.compile(o.merge(:indent => idt, :chain_child => true))}" : " else {\n#{Expressions.wrap(@else_body).compile(o)}\n#{idt}}" if_part + else_part end # Compile the IfNode into a ternary operator. def compile_ternary(o) if_part = "#{@condition.compile(o)} ? #{@body.compile(o)}" else_part = @else_body ? "#{@else_body.compile(o)}" : 'null' "#{if_part} : #{else_part}" end end end