(function(){ var AccessorNode, ArrayNode, AssignNode, BaseNode, CallNode, ClassNode, ClosureNode, CodeNode, CommentNode, CurryNode, ExistenceNode, Expressions, ExtendsNode, ForNode, IDENTIFIER, IfNode, IndexNode, LiteralNode, ObjectNode, OpNode, ParentheticalNode, PushNode, RangeNode, ReturnNode, Scope, SliceNode, SplatNode, TAB, TRAILING_WHITESPACE, ThrowNode, TryNode, ValueNode, WhileNode, compact, del, flatten, helpers, literal, merge, statement; var __extends = function(child, parent) { var ctor = function(){ }; ctor.prototype = parent.prototype; child.__superClass__ = parent.prototype; child.prototype = new ctor(); child.prototype.constructor = child; }; // `nodes.coffee` contains all of the node classes for the syntax tree. Most // nodes are created as the result of actions in the [grammar](grammar.html), // but some are created by other nodes as a method of code generation. To convert // the syntax tree into a string of JavaScript code, call `compile()` on the root. // Set up for both **Node.js** and the browser, by // including the [Scope](scope.html) class. if ((typeof process !== "undefined" && process !== null)) { Scope = require('./scope').Scope; helpers = require('./helpers').helpers; } else { this.exports = this; helpers = this.helpers; Scope = this.Scope; } // Import the helpers we need. compact = helpers.compact; flatten = helpers.flatten; merge = helpers.merge; del = helpers.del; // Helper function that marks a node as a JavaScript *statement*, or as a // *pure_statement*. Statements must be wrapped in a closure when used as an // expression, and nodes tagged as *pure_statement* cannot be closure-wrapped // without losing their meaning. statement = function statement(klass, only) { klass.prototype.is_statement = function is_statement() { return true; }; if (only) { klass.prototype.is_pure_statement = function is_pure_statement() { return true; }; return klass.prototype.is_pure_statement; } return null; }; //### BaseNode // The **BaseNode** is the abstract base class for all nodes in the syntax tree. // Each subclass implements the `compile_node` method, which performs the // code generation for that node. To compile a node to JavaScript, // call `compile` on it, which wraps `compile_node` in some generic extra smarts, // to know when the generated code needs to be wrapped up in a closure. // An options hash is passed and cloned throughout, containing information about // the environment from higher in the tree (such as if a returned value is // being requested by the surrounding function), information about the current // scope, and indentation level. exports.BaseNode = (function() { BaseNode = function BaseNode() { return null; }; // Common logic for determining whether to wrap this node in a closure before // compiling it, or to compile directly. We need to wrap if this node is a // *statement*, and it's not a *pure_statement*, and we're not at // the top level of a block (which would be unnecessary), and we haven't // already been asked to return the result (because statements know how to // return results). // If a Node is *top_sensitive*, that means that it needs to compile differently // depending on whether it's being used as part of a larger expression, or is a // top-level statement within the function body. BaseNode.prototype.compile = function compile(o) { var closure, top; this.options = merge(o || {}); this.tab = o.indent; if (!(this instanceof ValueNode)) { del(this.options, 'operation'); } top = this.top_sensitive() ? this.options.top : del(this.options, 'top'); closure = this.is_statement() && !this.is_pure_statement() && !top && !this.options.as_statement && !(this instanceof CommentNode); if (closure) { return this.compile_closure(this.options); } else { return this.compile_node(this.options); } }; // Statements converted into expressions via closure-wrapping share a scope // object with their parent closure, to preserve the expected lexical scope. BaseNode.prototype.compile_closure = function compile_closure(o) { this.tab = o.indent; o.shared_scope = o.scope; return ClosureNode.wrap(this).compile(o); }; // If the code generation wishes to use the result of a complex expression // in multiple places, ensure that the expression is only ever evaluated once, // by assigning it to a temporary variable. BaseNode.prototype.compile_reference = function compile_reference(o) { var compiled, reference; reference = literal(o.scope.free_variable()); compiled = new AssignNode(reference, this); return [compiled, reference]; }; // Convenience method to grab the current indentation level, plus tabbing in. BaseNode.prototype.idt = function idt(tabs) { var idt, num; idt = this.tab || ''; num = (tabs || 0) + 1; while (num -= 1) { idt += TAB; } return idt; }; // construct a node that returns the current node's result // note that this is overridden for smarter behaviour for // many statement nodes (eg IfNode, ForNode) BaseNode.prototype.make_return = function make_return() { if (this.is_statement()) { throw new Error("Can't convert statement " + (this) + " into a return value!"); } return new ReturnNode(this); }; // Does this node, or any of its children, contain a node of a certain kind? // Recursively traverses down the *children* of the nodes, yielding to a block // and returning true when the block finds a match. `contains` does not cross // scope boundaries. BaseNode.prototype.contains = function contains(block) { var _a, _b, _c, node; _a = this.children; for (_b = 0, _c = _a.length; _b < _c; _b++) { node = _a[_b]; if (block(node)) { return true; } if (node.contains && node.contains(block)) { return true; } } return false; }; // Perform an in-order traversal of the AST. Crosses scope boundaries. BaseNode.prototype.traverse = function traverse(block) { var _a, _b, _c, _d, node; _a = []; _b = this.children; for (_c = 0, _d = _b.length; _c < _d; _c++) { node = _b[_c]; _a.push((function() { block(node); if (node.traverse) { return node.traverse(block); } return null; }).call(this)); } return _a; return null; }; // `toString` representation of the node, for inspecting the parse tree. // This is what `coffee --nodes` prints out. BaseNode.prototype.toString = function toString(idt) { var _a, _b, _c, _d, child; idt = idt || ''; return '\n' + idt + this.type + (function() { _a = []; _b = this.children; for (_c = 0, _d = _b.length; _c < _d; _c++) { child = _b[_c]; _a.push(child.toString(idt + TAB)); } return _a; return null; }).call(this).join(''); }; // Default implementations of the common node identification methods. Nodes // will override these with custom logic, if needed. BaseNode.prototype.unwrap = function unwrap() { return this; }; BaseNode.prototype.children = []; BaseNode.prototype.is_statement = function is_statement() { return false; }; BaseNode.prototype.is_pure_statement = function is_pure_statement() { return false; }; BaseNode.prototype.top_sensitive = function top_sensitive() { return false; }; return BaseNode; return null; }).call(this); //### Expressions // The expressions body is the list of expressions that forms the body of an // indented block of code -- the implementation of a function, a clause in an // `if`, `switch`, or `try`, and so on... exports.Expressions = (function() { Expressions = function Expressions(nodes) { this.children = (this.expressions = compact(flatten(nodes || []))); return this; }; __extends(Expressions, BaseNode); Expressions.prototype.type = 'Expressions'; // Tack an expression on to the end of this expression list. Expressions.prototype.push = function push(node) { this.expressions.push(node); return this; }; // Add an expression at the beginning of this expression list. Expressions.prototype.unshift = function unshift(node) { this.expressions.unshift(node); return this; }; // If this Expressions consists of just a single node, unwrap it by pulling // it back out. Expressions.prototype.unwrap = function unwrap() { if (this.expressions.length === 1) { return this.expressions[0]; } else { return this; } }; // Is this an empty block of code? Expressions.prototype.empty = function empty() { return this.expressions.length === 0; }; // make a copy of this node Expressions.prototype.copy = function copy() { return new Expressions(this.children.slice()); }; // an Expressions node does not return its entire body, rather it // ensures that the final expression is returned Expressions.prototype.make_return = function make_return() { var _a, _b, _c, _d, converted, i, last_expr, last_expr_idx; last_expr_idx = -1; _c = this.expressions.length - 1; _d = 0; for (_b = 0, i = _c; (_c <= _d ? i <= _d : i >= _d); (_c <= _d ? i += 1 : i -= 1), _b++) { if (!(this.expressions[i] instanceof CommentNode)) { last_expr_idx = i; last_expr = this.expressions[i]; break; } } if (last_expr_idx < 0) { // just add a return null to ensure return is always called this.push(new ReturnNode(literal(null))); } else { if ((last_expr instanceof ReturnNode)) { return this; } if (last_expr.is_statement()) { this.push(new ReturnNode(literal(null))); } // we still make an attempt at converting statements, // since many are able to be returned in some fashion try { converted = last_expr.make_return(); this.expressions[last_expr_idx] = converted; } catch (e) { // ignore } } return this; }; // An **Expressions** is the only node that can serve as the root. Expressions.prototype.compile = function compile(o) { o = o || {}; if (o.scope) { return Expressions.__superClass__.compile.call(this, o); } else { return this.compile_root(o); } }; Expressions.prototype.compile_node = function compile_node(o) { var _a, _b, _c, _d, node; return (function() { _a = []; _b = this.expressions; for (_c = 0, _d = _b.length; _c < _d; _c++) { node = _b[_c]; _a.push(this.compile_expression(node, merge(o))); } return _a; return null; }).call(this).join("\n"); }; // If we happen to be the top-level **Expressions**, wrap everything in // a safety closure, unless requested not to. Expressions.prototype.compile_root = function compile_root(o) { var code; o.indent = (this.tab = o.no_wrap ? '' : TAB); o.scope = new Scope(null, this, null); code = o.globals ? this.compile_node(o) : this.compile_with_declarations(o); code = code.replace(TRAILING_WHITESPACE, ''); if (o.no_wrap) { return code; } else { return "(function(){\n" + code + "\n})();\n"; } }; // Compile the expressions body for the contents of a function, with // declarations of all inner variables pushed up to the top. Expressions.prototype.compile_with_declarations = function compile_with_declarations(o) { var code; code = this.compile_node(o); if (o.scope.has_assignments(this)) { code = '' + (this.tab) + "var " + (o.scope.compiled_assignments()) + ";\n" + code; } if (o.scope.has_declarations(this)) { code = '' + (this.tab) + "var " + (o.scope.compiled_declarations()) + ";\n" + code; } return code; }; // Compiles a single expression within the expressions body. If we need to // return the result, and it's an expression, simply return it. If it's a // statement, ask the statement to do so. Expressions.prototype.compile_expression = function compile_expression(node, o) { var compiled_node, stmt; this.tab = o.indent; stmt = node.is_statement(); compiled_node = node.compile(merge(o, { top: true })); if (stmt) { return compiled_node; } return '' + (this.idt()) + (compiled_node) + ";"; }; return Expressions; return null; }).call(this); // Wrap up the given nodes as an **Expressions**, unless it already happens // to be one. Expressions.wrap = function wrap(nodes) { if (nodes.length === 1 && nodes[0] instanceof Expressions) { return nodes[0]; } return new Expressions(nodes); }; statement(Expressions); //### LiteralNode // Literals are static values that can be passed through directly into // JavaScript without translation, such as: strings, numbers, // `true`, `false`, `null`... exports.LiteralNode = (function() { LiteralNode = function LiteralNode(value) { this.value = value; return this; }; __extends(LiteralNode, BaseNode); LiteralNode.prototype.type = 'Literal'; // Break and continue must be treated as pure statements -- they lose their // meaning when wrapped in a closure. LiteralNode.prototype.is_statement = function is_statement() { return this.value === 'break' || this.value === 'continue'; }; LiteralNode.prototype.is_pure_statement = LiteralNode.prototype.is_statement; LiteralNode.prototype.compile_node = function compile_node(o) { var end, idt; idt = this.is_statement() ? this.idt() : ''; end = this.is_statement() ? ';' : ''; return '' + idt + this.value + end; }; LiteralNode.prototype.toString = function toString(idt) { return " \"" + this.value + "\""; }; return LiteralNode; return null; }).call(this); //### ReturnNode // A `return` is a *pure_statement* -- wrapping it in a closure wouldn't // make sense. exports.ReturnNode = (function() { ReturnNode = function ReturnNode(expression) { this.children = [(this.expression = expression)]; return this; }; __extends(ReturnNode, BaseNode); ReturnNode.prototype.type = 'Return'; ReturnNode.prototype.compile_node = function compile_node(o) { var compiled_expr; if (this.expression.is_statement()) { return this.compile_statement(o); } else { compiled_expr = this.expression.compile(o); return '' + (this.tab) + "return " + (compiled_expr) + ";"; } return null; }; ReturnNode.prototype.compile_statement = function compile_statement(o) { var assign, ret, temp_var; // split statement into computation and return, via a temporary variable temp_var = literal(o.scope.free_variable()); assign = new AssignNode(temp_var, this.expression); ret = new ReturnNode(temp_var); return [assign.compile(merge(o, { as_statement: true })), ret.compile(o) ].join("\n"); }; return ReturnNode; return null; }).call(this); statement(ReturnNode, true); //### ValueNode // A value, variable or literal or parenthesized, indexed or dotted into, // or vanilla. exports.ValueNode = (function() { ValueNode = function ValueNode(base, properties) { this.children = flatten([(this.base = base), (this.properties = (properties || []))]); return this; }; __extends(ValueNode, BaseNode); ValueNode.prototype.type = 'Value'; ValueNode.prototype.SOAK = " == undefined ? undefined : "; // A **ValueNode** has a base and a list of property accesses. // Add a property access to the list. ValueNode.prototype.push = function push(prop) { this.properties.push(prop); this.children.push(prop); return this; }; ValueNode.prototype.has_properties = function has_properties() { return !!this.properties.length; }; // Some boolean checks for the benefit of other nodes. ValueNode.prototype.is_array = function is_array() { return this.base instanceof ArrayNode && !this.has_properties(); }; ValueNode.prototype.is_object = function is_object() { return this.base instanceof ObjectNode && !this.has_properties(); }; ValueNode.prototype.is_splice = function is_splice() { return this.has_properties() && this.properties[this.properties.length - 1] instanceof SliceNode; }; ValueNode.prototype.make_return = function make_return() { if (!this.has_properties()) { return this.base.make_return(); } else { return ValueNode.__superClass__.make_return.call(this); } return null; }; // The value can be unwrapped as its inner node, if there are no attached // properties. ValueNode.prototype.unwrap = function unwrap() { if (this.properties.length) { return this; } else { return this.base; } }; // Values are considered to be statements if their base is a statement. ValueNode.prototype.is_statement = function is_statement() { return this.base.is_statement && this.base.is_statement() && !this.has_properties(); }; // We compile a value to JavaScript by compiling and joining each property. // Things get much more insteresting if the chain of properties has *soak* // operators `?.` interspersed. Then we have to take care not to accidentally // evaluate a anything twice when building the soak chain. ValueNode.prototype.compile_node = function compile_node(o) { var _a, _b, _c, baseline, complete, only, op, part, prop, props, soaked, temp; soaked = false; only = del(o, 'only_first'); op = del(o, 'operation'); props = only ? this.properties.slice(0, this.properties.length - 1) : this.properties; baseline = this.base.compile(o); if (this.base instanceof ObjectNode && this.has_properties()) { baseline = "(" + baseline + ")"; } complete = (this.last = baseline); _a = props; for (_b = 0, _c = _a.length; _b < _c; _b++) { prop = _a[_b]; this.source = baseline; if (prop.soak_node) { soaked = true; if (this.base instanceof CallNode && prop === props[0]) { temp = o.scope.free_variable(); complete = "(" + temp + " = " + complete + ")" + this.SOAK + ((baseline = temp + prop.compile(o))); } else { complete = complete + this.SOAK + (baseline += prop.compile(o)); } } else { part = prop.compile(o); baseline += part; complete += part; this.last = part; } } if (op && soaked) { return "(" + complete + ")"; } else { return complete; } }; return ValueNode; return null; }).call(this); //### CommentNode // CoffeeScript passes through comments as JavaScript comments at the // same position. exports.CommentNode = (function() { CommentNode = function CommentNode(lines) { this.lines = lines; this; return this; }; __extends(CommentNode, BaseNode); CommentNode.prototype.type = 'Comment'; CommentNode.prototype.compile_node = function compile_node(o) { return '' + this.tab + "//" + this.lines.join("\n" + this.tab + "//"); }; return CommentNode; return null; }).call(this); statement(CommentNode); //### CallNode // Node for a function invocation. Takes care of converting `super()` calls into // calls against the prototype's function of the same name. exports.CallNode = (function() { CallNode = function CallNode(variable, args) { this.children = flatten([(this.variable = variable), (this.args = (args || []))]); this.is_new = false; return this; }; __extends(CallNode, BaseNode); CallNode.prototype.type = 'Call'; // Tag this invocation as creating a new instance. CallNode.prototype.new_instance = function new_instance() { this.is_new = true; return this; }; CallNode.prototype.prefix = function prefix() { if (this.is_new) { return 'new '; } else { return ''; } }; // Compile a vanilla function call. CallNode.prototype.compile_node = function compile_node(o) { var _a, _b, _c, _d, _e, _f, _g, arg, args; _a = this.args; for (_b = 0, _c = _a.length; _b < _c; _b++) { arg = _a[_b]; if (arg instanceof SplatNode) { return this.compile_splat(o); } } args = (function() { _d = []; _e = this.args; for (_f = 0, _g = _e.length; _f < _g; _f++) { arg = _e[_f]; _d.push(arg.compile(o)); } return _d; return null; }).call(this).join(', '); if (this.variable === 'super') { return this.compile_super(args, o); } return '' + (this.prefix()) + (this.variable.compile(o)) + "(" + args + ")"; }; // `super()` is converted into a call against the superclass's implementation // of the current function. CallNode.prototype.compile_super = function compile_super(args, o) { var meth, methname; methname = o.scope.method.name; meth = o.scope.method.proto ? '' + (o.scope.method.proto) + ".__superClass__." + methname : '' + (methname) + ".__superClass__.constructor"; return '' + (meth) + ".call(this" + (args.length ? ', ' : '') + args + ")"; }; // If you call a function with a splat, it's converted into a JavaScript // `.apply()` call to allow an array of arguments to be passed. CallNode.prototype.compile_splat = function compile_splat(o) { var meth, obj, temp; meth = this.variable.compile(o); obj = this.variable.source || 'this'; if (obj.match(/\(/)) { temp = o.scope.free_variable(); obj = temp; meth = "(" + temp + " = " + (this.variable.source) + ")" + (this.variable.last); } return '' + (this.prefix()) + (meth) + ".apply(" + obj + ", " + (this.compile_splat_arguments(o)) + ")"; }; // Converts arbitrary number of arguments, mixed with splats, to // a proper array to pass to an `.apply()` call CallNode.prototype.compile_splat_arguments = function compile_splat_arguments(o) { var _a, _b, _c, arg, args, code, i, prev; args = []; i = 0; _a = this.args; for (_b = 0, _c = _a.length; _b < _c; _b++) { arg = _a[_b]; code = arg.compile(o); if (!(arg instanceof SplatNode)) { prev = args[i - 1]; if (i === 1 && prev.substr(0, 1) === '[' && prev.substr(prev.length - 1, 1) === ']') { args[i - 1] = '' + (prev.substr(0, prev.length - 1)) + ", " + code + "]"; continue; } else if (i > 1 && prev.substr(0, 9) === '.concat([' && prev.substr(prev.length - 2, 2) === '])') { args[i - 1] = '' + (prev.substr(0, prev.length - 2)) + ", " + code + "])"; continue; } else { code = "[" + code + "]"; } } args.push(i === 0 ? code : ".concat(" + code + ")"); i += 1; } return args.join(''); }; return CallNode; return null; }).call(this); //### CurryNode // Node to bind an context and/or some arguments to a function, returning a new function // After `Underscore.bind` from [Underscore](http://documentcloud.github.com/underscore/). exports.CurryNode = (function() { CurryNode = function CurryNode(meth, args) { this.children = flatten([(this.meth = meth), (this.context = args[0]), (this.args = (args.slice(1) || []))]); return this; }; __extends(CurryNode, CallNode); CurryNode.prototype.type = 'Curry'; CurryNode.prototype.body = 'func.apply(obj, args.concat(Array.prototype.slice.call(arguments, 0)))'; CurryNode.prototype.arguments = function arguments(o) { var _a, _b, _c, arg; _a = this.args; for (_b = 0, _c = _a.length; _b < _c; _b++) { arg = _a[_b]; if (arg instanceof SplatNode) { return this.compile_splat_arguments(o); } } return (new ArrayNode(this.args)).compile(o); }; CurryNode.prototype.compile_node = function compile_node(o) { var body, curried, curry; body = Expressions.wrap([literal(this.body)]); curried = new CodeNode([], body); curry = new CodeNode([literal('func'), literal('obj'), literal('args')], Expressions.wrap([curried])); return (new ParentheticalNode(new CallNode(curry, [this.meth, this.context, literal(this.arguments(o))]))).compile(o); }; return CurryNode; return null; }).call(this); //### ExtendsNode // Node to extend an object's prototype with an ancestor object. // After `goog.inherits` from the // [Closure Library](http://closure-library.googlecode.com/svn/docs/closure_goog_base.js.html). exports.ExtendsNode = (function() { ExtendsNode = function ExtendsNode(child, parent) { this.children = [(this.child = child), (this.parent = parent)]; return this; }; __extends(ExtendsNode, BaseNode); ExtendsNode.prototype.type = 'Extends'; ExtendsNode.prototype.code = 'function(child, parent) {\n var ctor = function(){ };\n ctor.prototype = parent.prototype;\n child.__superClass__ = parent.prototype;\n child.prototype = new ctor();\n child.prototype.constructor = child;\n }'; // Hooks one constructor into another's prototype chain. ExtendsNode.prototype.compile_node = function compile_node(o) { var call, ref; o.scope.assign('__extends', this.code, true); ref = new ValueNode(literal('__extends')); call = new CallNode(ref, [this.child, this.parent]); return call.compile(o); }; return ExtendsNode; return null; }).call(this); //### AccessorNode // A `.` accessor into a property of a value, or the `::` shorthand for // an accessor into the object's prototype. exports.AccessorNode = (function() { AccessorNode = function AccessorNode(name, tag) { this.children = [(this.name = name)]; this.prototype = tag === 'prototype'; this.soak_node = tag === 'soak'; this; return this; }; __extends(AccessorNode, BaseNode); AccessorNode.prototype.type = 'Accessor'; AccessorNode.prototype.compile_node = function compile_node(o) { var proto_part; proto_part = this.prototype ? 'prototype.' : ''; return "." + proto_part + (this.name.compile(o)); }; return AccessorNode; return null; }).call(this); //### IndexNode // A `[ ... ]` indexed accessor into an array or object. exports.IndexNode = (function() { IndexNode = function IndexNode(index, tag) { this.children = [(this.index = index)]; this.soak_node = tag === 'soak'; return this; }; __extends(IndexNode, BaseNode); IndexNode.prototype.type = 'Index'; IndexNode.prototype.compile_node = function compile_node(o) { var idx; idx = this.index.compile(o); return "[" + idx + "]"; }; return IndexNode; return null; }).call(this); //### RangeNode // A range literal. Ranges can be used to extract portions (slices) of arrays, // to specify a range for comprehensions, or as a value, to be expanded into the // corresponding array of integers at runtime. exports.RangeNode = (function() { RangeNode = function RangeNode(from, to, exclusive) { this.children = [(this.from = from), (this.to = to)]; this.exclusive = !!exclusive; return this; }; __extends(RangeNode, BaseNode); RangeNode.prototype.type = 'Range'; // Compiles the range's source variables -- where it starts and where it ends. RangeNode.prototype.compile_variables = function compile_variables(o) { var _a, _b, from, to; this.tab = o.indent; _a = [o.scope.free_variable(), o.scope.free_variable()]; this.from_var = _a[0]; this.to_var = _a[1]; _b = [this.from.compile(o), this.to.compile(o)]; from = _b[0]; to = _b[1]; return '' + this.from_var + " = " + from + "; " + this.to_var + " = " + to + ";\n" + this.tab; }; // When compiled normally, the range returns the contents of the *for loop* // needed to iterate over the values in the range. Used by comprehensions. RangeNode.prototype.compile_node = function compile_node(o) { var compare, equals, idx, incr, intro, step, vars; if (!(o.index)) { return this.compile_array(o); } idx = del(o, 'index'); step = del(o, 'step'); vars = '' + idx + " = " + this.from_var; step = step ? step.compile(o) : '1'; equals = this.exclusive ? '' : '='; intro = "(" + this.from_var + " <= " + this.to_var + " ? " + idx; compare = '' + intro + " <" + equals + " " + this.to_var + " : " + idx + " >" + equals + " " + this.to_var + ")"; incr = '' + intro + " += " + step + " : " + idx + " -= " + step + ")"; return '' + vars + "; " + compare + "; " + incr; }; // When used as a value, expand the range into the equivalent array. In the // future, the code this generates should probably be cleaned up by handwriting // it instead of wrapping nodes. RangeNode.prototype.compile_array = function compile_array(o) { var arr, body, name; name = o.scope.free_variable(); body = Expressions.wrap([literal(name)]); arr = Expressions.wrap([new ForNode(body, { source: (new ValueNode(this)) }, literal(name)) ]); return (new ParentheticalNode(new CallNode(new CodeNode([], arr.make_return())))).compile(o); }; return RangeNode; return null; }).call(this); //### SliceNode // An array slice literal. Unlike JavaScript's `Array#slice`, the second parameter // specifies the index of the end of the slice, just as the first parameter // is the index of the beginning. exports.SliceNode = (function() { SliceNode = function SliceNode(range) { this.children = [(this.range = range)]; this; return this; }; __extends(SliceNode, BaseNode); SliceNode.prototype.type = 'Slice'; SliceNode.prototype.compile_node = function compile_node(o) { var from, plus_part, to; from = this.range.from.compile(o); to = this.range.to.compile(o); plus_part = this.range.exclusive ? '' : ' + 1'; return ".slice(" + from + ", " + to + plus_part + ")"; }; return SliceNode; return null; }).call(this); //### ObjectNode // An object literal, nothing fancy. exports.ObjectNode = (function() { ObjectNode = function ObjectNode(props) { this.children = (this.objects = (this.properties = props || [])); return this; }; __extends(ObjectNode, BaseNode); ObjectNode.prototype.type = 'Object'; // All the mucking about with commas is to make sure that CommentNodes and // AssignNodes get interleaved correctly, with no trailing commas or // commas affixed to comments. // *TODO: Extract this and add it to ArrayNode*. ObjectNode.prototype.compile_node = function compile_node(o) { var _a, _b, _c, _d, _e, _f, _g, i, indent, inner, join, last_noncom, non_comments, prop, props; o.indent = this.idt(1); non_comments = (function() { _a = []; _b = this.properties; for (_c = 0, _d = _b.length; _c < _d; _c++) { prop = _b[_c]; !(prop instanceof CommentNode) ? _a.push(prop) : null; } return _a; return null; }).call(this); last_noncom = non_comments[non_comments.length - 1]; props = (function() { _e = []; _f = this.properties; for (i = 0, _g = _f.length; i < _g; i++) { prop = _f[i]; _e.push((function() { join = ",\n"; if ((prop === last_noncom) || (prop instanceof CommentNode)) { join = "\n"; } if (i === this.properties.length - 1) { join = ''; } indent = prop instanceof CommentNode ? '' : this.idt(1); return indent + prop.compile(o) + join; }).call(this)); } return _e; return null; }).call(this); props = props.join(''); inner = props ? '\n' + props + '\n' + this.idt() : ''; return "{" + inner + "}"; }; return ObjectNode; return null; }).call(this); //### ArrayNode // An array literal. exports.ArrayNode = (function() { ArrayNode = function ArrayNode(objects) { this.children = (this.objects = objects || []); return this; }; __extends(ArrayNode, BaseNode); ArrayNode.prototype.type = 'Array'; ArrayNode.prototype.compile_node = function compile_node(o) { var _a, _b, _c, code, ending, i, obj, objects; o.indent = this.idt(1); objects = (function() { _a = []; _b = this.objects; for (i = 0, _c = _b.length; i < _c; i++) { obj = _b[i]; _a.push((function() { code = obj.compile(o); if (obj instanceof CommentNode) { return "\n" + code + "\n" + o.indent; } else if (i === this.objects.length - 1) { return code; } else { return '' + code + ", "; } return null; }).call(this)); } return _a; return null; }).call(this); objects = objects.join(''); ending = objects.indexOf('\n') >= 0 ? "\n" + this.tab + "]" : ']'; return "[" + objects + ending; }; return ArrayNode; return null; }).call(this); //### ClassNode // The CoffeeScript class definition. exports.ClassNode = (function() { ClassNode = function ClassNode(variable, parent, props) { this.children = compact(flatten([(this.variable = variable), (this.parent = parent), (this.properties = props || [])])); this.do_return = false; return this; }; __extends(ClassNode, BaseNode); ClassNode.prototype.type = 'Class'; // Initialize a **ClassNode** with its name, an optional superclass, and a // list of prototype property assignments. ClassNode.prototype.make_return = function make_return() { this.do_return = true; return this; }; // Instead of generating the JavaScript string directly, we build up the // equivalent syntax tree and compile that, in pieces. You can see the // constructor, property assignments, and inheritance getting built out below. ClassNode.prototype.compile_node = function compile_node(o) { var _a, _b, _c, applied, construct, extension, func, prop, props, returns, val; extension = this.parent && new ExtendsNode(this.variable, this.parent); constructor = null; props = new Expressions(); o.top = true; _a = this.properties; for (_b = 0, _c = _a.length; _b < _c; _b++) { prop = _a[_b]; if (prop.variable && prop.variable.base.value === 'constructor') { func = prop.value; func.body.push(new ReturnNode(literal('this'))); constructor = new AssignNode(this.variable, func); } else { if (prop.variable) { val = new ValueNode(this.variable, [new AccessorNode(prop.variable, 'prototype')]); prop = new AssignNode(val, prop.value); } props.push(prop); } } if (!constructor) { if (this.parent) { applied = new ValueNode(this.parent, [new AccessorNode(literal('apply'))]); constructor = new AssignNode(this.variable, new CodeNode([], new Expressions([new CallNode(applied, [literal('this'), literal('arguments')])]))); } else { constructor = new AssignNode(this.variable, new CodeNode()); } } this.do_return ? (returns = new ReturnNode(this.variable).compile(o)) : (returns = ''); construct = this.idt() + constructor.compile(o) + ';\n'; props = props.empty() ? '' : props.compile(o) + '\n'; extension = extension ? this.idt() + extension.compile(o) + ';\n' : ''; return '' + construct + extension + props + returns; }; return ClassNode; return null; }).call(this); statement(ClassNode); //### AssignNode // The **AssignNode** is used to assign a local variable to value, or to set the // property of an object -- including within object literals. exports.AssignNode = (function() { AssignNode = function AssignNode(variable, value, context) { this.children = [(this.variable = variable), (this.value = value)]; this.context = context; return this; }; __extends(AssignNode, BaseNode); AssignNode.prototype.type = 'Assign'; // Matchers for detecting prototype assignments. AssignNode.prototype.PROTO_ASSIGN = /^(\S+)\.prototype/; AssignNode.prototype.LEADING_DOT = /^\.(prototype\.)?/; AssignNode.prototype.top_sensitive = function top_sensitive() { return true; }; AssignNode.prototype.is_value = function is_value() { return this.variable instanceof ValueNode; }; AssignNode.prototype.make_return = function make_return() { return new Expressions([this, new ReturnNode(this.variable)]); }; AssignNode.prototype.is_statement = function is_statement() { return this.is_value() && (this.variable.is_array() || this.variable.is_object()); }; // Compile an assignment, delegating to `compile_pattern_match` or // `compile_splice` if appropriate. Keep track of the name of the base object // we've been assigned to, for correct internal references. If the variable // has not been seen yet within the current scope, declare it. AssignNode.prototype.compile_node = function compile_node(o) { var last, match, name, proto, stmt, top, val; top = del(o, 'top'); if (this.is_statement()) { return this.compile_pattern_match(o); } if (this.is_value() && this.variable.is_splice()) { return this.compile_splice(o); } stmt = del(o, 'as_statement'); name = this.variable.compile(o); last = this.is_value() ? this.variable.last.replace(this.LEADING_DOT, '') : name; match = name.match(this.PROTO_ASSIGN); proto = match && match[1]; if (this.value instanceof CodeNode) { if (last.match(IDENTIFIER)) { this.value.name = last; } if (proto) { this.value.proto = proto; } } val = this.value.compile(o); if (this.context === 'object') { return '' + name + ": " + val; } if (!(this.is_value() && this.variable.has_properties())) { o.scope.find(name); } val = '' + name + " = " + val; if (stmt) { return '' + this.tab + val + ";"; } if (!top) { val = "(" + val + ")"; } return val; }; // Brief implementation of recursive pattern matching, when assigning array or // object literals to a value. Peeks at their properties to assign inner names. // See the [ECMAScript Harmony Wiki](http://wiki.ecmascript.org/doku.php?id=harmony:destructuring) // for details. AssignNode.prototype.compile_pattern_match = function compile_pattern_match(o) { var _a, _b, _c, access_class, assigns, code, i, idx, obj, val, val_var, value; val_var = o.scope.free_variable(); value = this.value.is_statement() ? ClosureNode.wrap(this.value) : this.value; assigns = ['' + this.tab + val_var + " = " + (value.compile(o)) + ";"]; o.top = true; o.as_statement = true; _a = this.variable.base.objects; for (i = 0, _b = _a.length; i < _b; i++) { obj = _a[i]; idx = i; if (this.variable.is_object()) { _c = [obj.value, obj.variable.base]; obj = _c[0]; idx = _c[1]; } access_class = this.variable.is_array() ? IndexNode : AccessorNode; if (obj instanceof SplatNode) { val = literal(obj.compile_value(o, val_var, this.variable.base.objects.indexOf(obj))); } else { if (!(typeof idx === 'object')) { idx = literal(idx); } val = new ValueNode(literal(val_var), [new access_class(idx)]); } assigns.push(new AssignNode(obj, val).compile(o)); } code = assigns.join("\n"); return code; }; // Compile the assignment from an array splice literal, using JavaScript's // `Array#splice` method. AssignNode.prototype.compile_splice = function compile_splice(o) { var from, l, name, plus, range, to, val; name = this.variable.compile(merge(o, { only_first: true })); l = this.variable.properties.length; range = this.variable.properties[l - 1].range; plus = range.exclusive ? '' : ' + 1'; from = range.from.compile(o); to = range.to.compile(o) + ' - ' + from + plus; val = this.value.compile(o); return '' + (name) + ".splice.apply(" + name + ", [" + from + ", " + to + "].concat(" + val + "))"; }; return AssignNode; return null; }).call(this); //### CodeNode // A function definition. This is the only node that creates a new Scope. // When for the purposes of walking the contents of a function body, the CodeNode // has no *children* -- they're within the inner scope. exports.CodeNode = (function() { CodeNode = function CodeNode(params, body, tag) { this.params = params || []; this.body = body || new Expressions(); this.bound = tag === 'boundfunc'; return this; }; __extends(CodeNode, BaseNode); CodeNode.prototype.type = 'Code'; // Compilation creates a new scope unless explicitly asked to share with the // outer scope. Handles splat parameters in the parameter list by peeking at // the JavaScript `arguments` objects. If the function is bound with the `=>` // arrow, generates a wrapper that saves the current value of `this` through // a closure. CodeNode.prototype.compile_node = function compile_node(o) { var _a, _b, _c, _d, _e, _f, _g, _h, _i, _j, code, func, i, inner, name_part, param, params, shared_scope, splat, top; shared_scope = del(o, 'shared_scope'); top = del(o, 'top'); o.scope = shared_scope || new Scope(o.scope, this.body, this); o.top = true; o.indent = this.idt(this.bound ? 2 : 1); del(o, 'no_wrap'); del(o, 'globals'); i = 0; splat = undefined; params = []; _a = this.params; for (_b = 0, _c = _a.length; _b < _c; _b++) { param = _a[_b]; if (param instanceof SplatNode && !(typeof splat !== "undefined" && splat !== null)) { splat = param; splat.index = i; this.body.unshift(splat); splat.trailings = []; } else if ((typeof splat !== "undefined" && splat !== null)) { splat.trailings.push(param); } else { params.push(param); } i += 1; } params = (function() { _d = []; _e = params; for (_f = 0, _g = _e.length; _f < _g; _f++) { param = _e[_f]; _d.push(param.compile(o)); } return _d; return null; }).call(this); this.body.make_return(); _h = params; for (_i = 0, _j = _h.length; _i < _j; _i++) { param = _h[_i]; (o.scope.parameter(param)); } code = this.body.expressions.length ? "\n" + (this.body.compile_with_declarations(o)) + "\n" : ''; name_part = this.name ? ' ' + this.name : ''; func = "function" + (this.bound ? '' : name_part) + "(" + (params.join(', ')) + ") {" + code + (this.idt(this.bound ? 1 : 0)) + "}"; if (top && !this.bound) { func = "(" + func + ")"; } if (!(this.bound)) { return func; } inner = "(function" + name_part + "() {\n" + (this.idt(2)) + "return __func.apply(__this, arguments);\n" + (this.idt(1)) + "});"; return "(function(__this) {\n" + (this.idt(1)) + "var __func = " + func + ";\n" + (this.idt(1)) + "return " + inner + "\n" + this.tab + "})(this)"; }; CodeNode.prototype.top_sensitive = function top_sensitive() { return true; }; // When traversing (for printing or inspecting), return the real children of // the function -- the parameters and body of expressions. CodeNode.prototype.real_children = function real_children() { return flatten([this.params, this.body.expressions]); }; // Custom `traverse` implementation that uses the `real_children`. CodeNode.prototype.traverse = function traverse(block) { var _a, _b, _c, _d, child; block(this); _a = []; _b = this.real_children(); for (_c = 0, _d = _b.length; _c < _d; _c++) { child = _b[_c]; _a.push(child.traverse(block)); } return _a; return null; }; CodeNode.prototype.toString = function toString(idt) { var _a, _b, _c, _d, child, children; idt = idt || ''; children = (function() { _a = []; _b = this.real_children(); for (_c = 0, _d = _b.length; _c < _d; _c++) { child = _b[_c]; _a.push(child.toString(idt + TAB)); } return _a; return null; }).call(this).join(''); return "\n" + idt + children; }; return CodeNode; return null; }).call(this); //### SplatNode // A splat, either as a parameter to a function, an argument to a call, // or as part of a destructuring assignment. exports.SplatNode = (function() { SplatNode = function SplatNode(name) { if (!(name.compile)) { name = literal(name); } this.children = [(this.name = name)]; return this; }; __extends(SplatNode, BaseNode); SplatNode.prototype.type = 'Splat'; SplatNode.prototype.compile_node = function compile_node(o) { var _a; if ((typeof (_a = this.index) !== "undefined" && _a !== null)) { return this.compile_param(o); } else { return this.name.compile(o); } }; // Compiling a parameter splat means recovering the parameters that succeed // the splat in the parameter list, by slicing the arguments object. SplatNode.prototype.compile_param = function compile_param(o) { var _a, _b, _c, i, name, trailing; name = this.name.compile(o); o.scope.find(name); i = 0; _a = this.trailings; for (_b = 0, _c = _a.length; _b < _c; _b++) { trailing = _a[_b]; o.scope.assign(trailing.compile(o), "arguments[arguments.length - " + this.trailings.length + " + " + i + "]"); i += 1; } return '' + name + " = Array.prototype.slice.call(arguments, " + this.index + ", arguments.length - " + (this.trailings.length) + ")"; }; // A compiling a splat as a destructuring assignment means slicing arguments // from the right-hand-side's corresponding array. SplatNode.prototype.compile_value = function compile_value(o, name, index) { return "Array.prototype.slice.call(" + name + ", " + index + ")"; }; return SplatNode; return null; }).call(this); //### WhileNode // A while loop, the only sort of low-level loop exposed by CoffeeScript. From // it, all other loops can be manufactured. Useful in cases where you need more // flexibility or more speed than a comprehension can provide. exports.WhileNode = (function() { WhileNode = function WhileNode(condition, opts) { this.children = [(this.condition = condition)]; this.filter = opts && opts.filter; return this; }; __extends(WhileNode, BaseNode); WhileNode.prototype.type = 'While'; WhileNode.prototype.add_body = function add_body(body) { this.children.push((this.body = body)); return this; }; WhileNode.prototype.make_return = function make_return() { this.do_return = true; return this; }; WhileNode.prototype.top_sensitive = function top_sensitive() { return true; }; // The main difference from a JavaScript *while* is that the CoffeeScript // *while* can be used as a part of a larger expression -- while loops may // return an array containing the computed result of each iteration. WhileNode.prototype.compile_node = function compile_node(o) { var cond, post, pre, rvar, set, top; top = del(o, 'top') && !this.do_return; o.indent = this.idt(1); o.top = true; cond = this.condition.compile(o); set = ''; if (!top) { rvar = o.scope.free_variable(); set = '' + this.tab + rvar + " = [];\n"; if (this.body) { this.body = PushNode.wrap(rvar, this.body); } } pre = '' + set + (this.tab) + "while (" + cond + ")"; if (!this.body) { return '' + pre + " null;" + post; } if (this.filter) { this.body = Expressions.wrap([new IfNode(this.filter, this.body)]); } this.do_return ? (post = new ReturnNode(literal(rvar)).compile(merge(o, { indent: this.idt() }))) : (post = ''); return '' + pre + " {\n" + (this.body.compile(o)) + "\n" + this.tab + "}\n" + post; }; return WhileNode; return null; }).call(this); statement(WhileNode); //### OpNode // Simple Arithmetic and logical operations. Performs some conversion from // CoffeeScript operations into their JavaScript equivalents. exports.OpNode = (function() { OpNode = function OpNode(operator, first, second, flip) { this.type += ' ' + operator; this.children = compact([(this.first = first), (this.second = second)]); this.operator = this.CONVERSIONS[operator] || operator; this.flip = !!flip; return this; }; __extends(OpNode, BaseNode); OpNode.prototype.type = 'Op'; // The map of conversions from CoffeeScript to JavaScript symbols. OpNode.prototype.CONVERSIONS = { '==': '===', '!=': '!==', 'and': '&&', 'or': '||', 'is': '===', 'isnt': '!==', 'not': '!' }; // The list of operators for which we perform // [Python-style comparison chaining](http://docs.python.org/reference/expressions.html#notin). OpNode.prototype.CHAINABLE = ['<', '>', '>=', '<=', '===', '!==']; // Our assignment operators that have no JavaScript equivalent. OpNode.prototype.ASSIGNMENT = ['||=', '&&=', '?=']; // Operators must come before their operands with a space. OpNode.prototype.PREFIX_OPERATORS = ['typeof', 'delete']; OpNode.prototype.is_unary = function is_unary() { return !this.second; }; OpNode.prototype.is_chainable = function is_chainable() { return this.CHAINABLE.indexOf(this.operator) >= 0; }; OpNode.prototype.compile_node = function compile_node(o) { o.operation = true; if (this.is_chainable() && this.first.unwrap() instanceof OpNode && this.first.unwrap().is_chainable()) { return this.compile_chain(o); } if (this.ASSIGNMENT.indexOf(this.operator) >= 0) { return this.compile_assignment(o); } if (this.is_unary()) { return this.compile_unary(o); } if (this.operator === '?') { return this.compile_existence(o); } return [this.first.compile(o), this.operator, this.second.compile(o)].join(' '); }; // Mimic Python's chained comparisons when multiple comparison operators are // used sequentially. For example: // bin/coffee -e "puts 50 < 65 > 10" // true OpNode.prototype.compile_chain = function compile_chain(o) { var _a, _b, first, second, shared; shared = this.first.unwrap().second; if (shared instanceof CallNode) { _a = shared.compile_reference(o); this.first.second = _a[0]; shared = _a[1]; } _b = [this.first.compile(o), this.second.compile(o), shared.compile(o)]; first = _b[0]; second = _b[1]; shared = _b[2]; return "(" + first + ") && (" + shared + " " + this.operator + " " + second + ")"; }; // When compiling a conditional assignment, take care to ensure that the // operands are only evaluated once, even though we have to reference them // more than once. OpNode.prototype.compile_assignment = function compile_assignment(o) { var _a, first, second; _a = [this.first.compile(o), this.second.compile(o)]; first = _a[0]; second = _a[1]; if (first.match(IDENTIFIER)) { o.scope.find(first); } if (this.operator === '?=') { return '' + first + " = " + (ExistenceNode.compile_test(o, this.first)) + " ? " + first + " : " + second; } return '' + first + " = " + first + " " + (this.operator.substr(0, 2)) + " " + second; }; // If this is an existence operator, we delegate to `ExistenceNode.compile_test` // to give us the safe references for the variables. OpNode.prototype.compile_existence = function compile_existence(o) { var _a, first, second, test; _a = [this.first.compile(o), this.second.compile(o)]; first = _a[0]; second = _a[1]; test = ExistenceNode.compile_test(o, this.first); return '' + test + " ? " + first + " : " + second; }; // Compile a unary **OpNode**. OpNode.prototype.compile_unary = function compile_unary(o) { var parts, space; space = this.PREFIX_OPERATORS.indexOf(this.operator) >= 0 ? ' ' : ''; parts = [this.operator, space, this.first.compile(o)]; if (this.flip) { parts = parts.reverse(); } return parts.join(''); }; return OpNode; return null; }).call(this); //### TryNode // A classic *try/catch/finally* block. exports.TryNode = (function() { TryNode = function TryNode(attempt, error, recovery, ensure) { this.children = compact([(this.attempt = attempt), (this.recovery = recovery), (this.ensure = ensure)]); this.error = error; this; return this; }; __extends(TryNode, BaseNode); TryNode.prototype.type = 'Try'; TryNode.prototype.make_return = function make_return() { if (this.attempt) { this.attempt = this.attempt.make_return(); } if (this.recovery) { this.recovery = this.recovery.make_return(); } return this; }; // Compilation is more or less as you would expect -- the *finally* clause // is optional, the *catch* is not. TryNode.prototype.compile_node = function compile_node(o) { var attempt_part, catch_part, error_part, finally_part; o.indent = this.idt(1); o.top = true; attempt_part = this.attempt.compile(o); error_part = this.error ? " (" + (this.error.compile(o)) + ") " : ' '; catch_part = this.recovery ? " catch" + error_part + "{\n" + (this.recovery.compile(o)) + "\n" + this.tab + "}" : ''; finally_part = (this.ensure || '') && ' finally {\n' + this.ensure.compile(merge(o)) + "\n" + this.tab + "}"; return '' + (this.tab) + "try {\n" + attempt_part + "\n" + this.tab + "}" + catch_part + finally_part; }; return TryNode; return null; }).call(this); statement(TryNode); //### ThrowNode // Simple node to throw an exception. exports.ThrowNode = (function() { ThrowNode = function ThrowNode(expression) { this.children = [(this.expression = expression)]; return this; }; __extends(ThrowNode, BaseNode); ThrowNode.prototype.type = 'Throw'; ThrowNode.prototype.make_return = function make_return() { // a throw is already a return... return this; }; ThrowNode.prototype.compile_node = function compile_node(o) { return '' + (this.tab) + "throw " + (this.expression.compile(o)) + ";"; }; return ThrowNode; return null; }).call(this); statement(ThrowNode); //### ExistenceNode // Checks a variable for existence -- not *null* and not *undefined*. This is // similar to `.nil?` in Ruby, and avoids having to consult a JavaScript truth // table. exports.ExistenceNode = (function() { ExistenceNode = function ExistenceNode(expression) { this.children = [(this.expression = expression)]; return this; }; __extends(ExistenceNode, BaseNode); ExistenceNode.prototype.type = 'Existence'; ExistenceNode.prototype.compile_node = function compile_node(o) { return ExistenceNode.compile_test(o, this.expression); }; return ExistenceNode; return null; }).call(this); // The meat of the **ExistenceNode** is in this static `compile_test` method // because other nodes like to check the existence of their variables as well. // Be careful not to double-evaluate anything. ExistenceNode.compile_test = function compile_test(o, variable) { var _a, _b, _c, first, second; _a = [variable, variable]; first = _a[0]; second = _a[1]; if (variable instanceof CallNode || (variable instanceof ValueNode && variable.has_properties())) { _b = variable.compile_reference(o); first = _b[0]; second = _b[1]; } _c = [first.compile(o), second.compile(o)]; first = _c[0]; second = _c[1]; return "(typeof " + first + " !== \"undefined\" && " + second + " !== null)"; }; //### ParentheticalNode // An extra set of parentheses, specified explicitly in the source. At one time // we tried to clean up the results by detecting and removing redundant // parentheses, but no longer -- you can put in as many as you please. // Parentheses are a good way to force any statement to become an expression. exports.ParentheticalNode = (function() { ParentheticalNode = function ParentheticalNode(expression) { this.children = [(this.expression = expression)]; return this; }; __extends(ParentheticalNode, BaseNode); ParentheticalNode.prototype.type = 'Paren'; ParentheticalNode.prototype.is_statement = function is_statement() { return this.expression.is_statement(); }; ParentheticalNode.prototype.make_return = function make_return() { return this.expression.make_return(); }; ParentheticalNode.prototype.compile_node = function compile_node(o) { var code, l; code = this.expression.compile(o); if (this.is_statement()) { return code; } l = code.length; if (code.substr(l - 1, 1) === ';') { code = code.substr(o, l - 1); } return "(" + code + ")"; }; return ParentheticalNode; return null; }).call(this); //### ForNode // CoffeeScript's replacement for the *for* loop is our array and object // comprehensions, that compile into *for* loops here. They also act as an // expression, able to return the result of each filtered iteration. // Unlike Python array comprehensions, they can be multi-line, and you can pass // the current index of the loop as a second parameter. Unlike Ruby blocks, // you can map and filter in a single pass. exports.ForNode = (function() { ForNode = function ForNode(body, source, name, index) { var _a; this.body = body; this.name = name; this.index = index || null; this.source = source.source; this.filter = source.filter; this.step = source.step; this.object = !!source.object; if (this.object) { _a = [this.index, this.name]; this.name = _a[0]; this.index = _a[1]; } this.children = compact([this.body, this.source, this.filter]); this.do_return = false; return this; }; __extends(ForNode, BaseNode); ForNode.prototype.type = 'For'; ForNode.prototype.top_sensitive = function top_sensitive() { return true; }; ForNode.prototype.make_return = function make_return() { this.do_return = true; return this; }; ForNode.prototype.compile_return_value = function compile_return_value(retvar, o) { if (this.do_return) { return new ReturnNode(literal(retvar)).compile(o); } else { return retvar || ''; } return null; }; // Welcome to the hairiest method in all of CoffeeScript. Handles the inner // loop, filtering, stepping, and result saving for array, object, and range // comprehensions. Some of the generated code can be shared in common, and // some cannot. ForNode.prototype.compile_node = function compile_node(o) { var body, body_dent, close, for_part, index, index_var, ivar, lvar, name, range, return_result, rvar, scope, set_result, source, source_part, step_part, svar, top_level, var_part, vars; top_level = del(o, 'top') && !this.do_return; range = this.source instanceof ValueNode && this.source.base instanceof RangeNode && !this.source.properties.length; source = range ? this.source.base : this.source; scope = o.scope; name = this.name && this.name.compile(o); index = this.index && this.index.compile(o); if (name) { scope.find(name); } if (index) { scope.find(index); } body_dent = this.idt(1); if (!(top_level)) { rvar = scope.free_variable(); } svar = scope.free_variable(); ivar = range ? name : index || scope.free_variable(); var_part = ''; body = Expressions.wrap([this.body]); if (range) { index_var = scope.free_variable(); source_part = source.compile_variables(o); for_part = source.compile(merge(o, { index: ivar, step: this.step })); for_part = '' + index_var + " = 0, " + for_part + ", " + index_var + "++"; } else { index_var = null; source_part = '' + svar + " = " + (this.source.compile(o)) + ";\n" + this.tab; if (name) { var_part = '' + body_dent + name + " = " + svar + "[" + ivar + "];\n"; } if (!this.object) { lvar = scope.free_variable(); step_part = this.step ? '' + ivar + " += " + (this.step.compile(o)) : '' + ivar + "++"; for_part = '' + ivar + " = 0, " + lvar + " = " + (svar) + ".length; " + ivar + " < " + lvar + "; " + step_part; } } set_result = rvar ? this.idt() + rvar + ' = []; ' : this.idt(); return_result = this.compile_return_value(rvar, o); if (top_level && body.contains(function(n) { return n instanceof CodeNode; })) { body = ClosureNode.wrap(body, true); } if (!(top_level)) { body = PushNode.wrap(rvar, body); } this.filter ? (body = Expressions.wrap([new IfNode(this.filter, body)])) : null; if (this.object) { o.scope.assign('__hasProp', 'Object.prototype.hasOwnProperty', true); for_part = '' + ivar + " in " + svar + ") { if (__hasProp.call(" + svar + ", " + ivar + ")"; } body = body.compile(merge(o, { indent: body_dent, top: true })); vars = range ? name : '' + name + ", " + ivar; close = this.object ? '}}\n' : '}\n'; return '' + set_result + (source_part) + "for (" + for_part + ") {\n" + var_part + body + "\n" + this.tab + close + return_result; }; return ForNode; return null; }).call(this); statement(ForNode); //### IfNode // *If/else* statements. Our *switch/when* will be compiled into this. Acts as an // expression by pushing down requested returns to the last line of each clause. // Single-expression **IfNodes** are compiled into ternary operators if possible, // because ternaries are already proper expressions, and don't need conversion. exports.IfNode = (function() { IfNode = function IfNode(condition, body, else_body, tags) { this.condition = condition; this.body = body && body.unwrap(); this.else_body = else_body && else_body.unwrap(); this.children = compact([this.condition, this.body, this.else_body]); this.tags = tags || {}; if (this.condition instanceof Array) { this.multiple = true; } if (this.tags.invert) { this.condition = new OpNode('!', new ParentheticalNode(this.condition)); } return this; }; __extends(IfNode, BaseNode); IfNode.prototype.type = 'If'; // Add a new *else* clause to this **IfNode**, or push it down to the bottom // of the chain recursively. IfNode.prototype.push = function push(else_body) { var eb; eb = else_body.unwrap(); this.else_body ? this.else_body.push(eb) : (this.else_body = eb); return this; }; IfNode.prototype.force_statement = function force_statement() { this.tags.statement = true; return this; }; // Tag a chain of **IfNodes** with their object(s) to switch on for equality // tests. `rewrite_switch` will perform the actual change at compile time. IfNode.prototype.rewrite_condition = function rewrite_condition(expression) { this.switcher = expression; return this; }; // Rewrite a chain of **IfNodes** with their switch condition for equality. // Ensure that the switch expression isn't evaluated more than once. IfNode.prototype.rewrite_switch = function rewrite_switch(o) { var _a, _b, _c, assigner, cond, i, variable; assigner = this.switcher; if (!(this.switcher.unwrap() instanceof LiteralNode)) { variable = literal(o.scope.free_variable()); assigner = new AssignNode(variable, this.switcher); this.switcher = variable; } this.condition = (function() { if (this.multiple) { _a = []; _b = this.condition; for (i = 0, _c = _b.length; i < _c; i++) { cond = _b[i]; _a.push(new OpNode('is', (i === 0 ? assigner : this.switcher), cond)); } return _a; } else { return new OpNode('is', assigner, this.condition); } return null; }).call(this); if (this.is_chain()) { this.else_body.rewrite_condition(this.switcher); } return this; }; // Rewrite a chain of **IfNodes** to add a default case as the final *else*. IfNode.prototype.add_else = function add_else(exprs, statement) { if (this.is_chain()) { this.else_body.add_else(exprs, statement); } else { if (!(statement)) { exprs = exprs.unwrap(); } this.children.push((this.else_body = exprs)); } return this; }; // If the `else_body` is an **IfNode** itself, then we've got an *if-else* chain. IfNode.prototype.is_chain = function is_chain() { return this.chain = this.chain || this.else_body && this.else_body instanceof IfNode; }; // The **IfNode** only compiles into a statement if either of its bodies needs // to be a statement. Otherwise a ternary is safe. IfNode.prototype.is_statement = function is_statement() { return this.statement = this.statement || !!(this.comment || this.tags.statement || this.body.is_statement() || (this.else_body && this.else_body.is_statement())); }; IfNode.prototype.compile_condition = function compile_condition(o) { var _a, _b, _c, _d, cond; return (function() { _a = []; _b = flatten([this.condition]); for (_c = 0, _d = _b.length; _c < _d; _c++) { cond = _b[_c]; _a.push(cond.compile(o)); } return _a; return null; }).call(this).join(' || '); }; IfNode.prototype.compile_node = function compile_node(o) { if (this.is_statement()) { return this.compile_statement(o); } else { return this.compile_ternary(o); } }; IfNode.prototype.make_return = function make_return() { try { if (this.body) { this.body = this.body.make_return(); } } finally { if (this.else_body) { this.else_body = this.else_body.make_return(); } } return this; }; // Compile the **IfNode** as a regular *if-else* statement. Flattened chains // force inner *else* bodies into statement form. IfNode.prototype.compile_statement = function compile_statement(o) { var body, child, com_dent, cond_o, else_part, if_dent, if_part, prefix; if (this.switcher) { this.rewrite_switch(o); } child = del(o, 'chain_child'); cond_o = merge(o); o.indent = this.idt(1); o.top = true; if_dent = child ? '' : this.idt(); com_dent = child ? this.idt() : ''; prefix = this.comment ? '' + (this.comment.compile(cond_o)) + "\n" + com_dent : ''; body = Expressions.wrap([this.body]).compile(o); if_part = '' + prefix + (if_dent) + "if (" + (this.compile_condition(cond_o)) + ") {\n" + body + "\n" + this.tab + "}"; if (!(this.else_body)) { return if_part; } else_part = this.is_chain() ? ' else ' + this.else_body.compile(merge(o, { indent: this.idt(), chain_child: true })) : " else {\n" + (Expressions.wrap([this.else_body]).compile(o)) + "\n" + this.tab + "}"; return '' + if_part + else_part; }; // Compile the IfNode as a ternary operator. IfNode.prototype.compile_ternary = function compile_ternary(o) { var else_part, if_part; if_part = this.condition.compile(o) + ' ? ' + this.body.compile(o); else_part = this.else_body ? this.else_body.compile(o) : 'null'; return '' + if_part + " : " + else_part; }; return IfNode; return null; }).call(this); // Faux-Nodes // ---------- //### PushNode // Faux-nodes are never created by the grammar, but are used during code // generation to generate other combinations of nodes. The **PushNode** creates // the tree for `array.push(value)`, which is helpful for recording the result // arrays from comprehensions. PushNode = (exports.PushNode = { wrap: function wrap(array, expressions) { var expr; expr = expressions.unwrap(); if (expr.is_pure_statement() || expr.contains(function(n) { return n.is_pure_statement(); })) { return expressions; } return Expressions.wrap([new CallNode(new ValueNode(literal(array), [new AccessorNode(literal('push'))]), [expr])]); } }); //### ClosureNode // A faux-node used to wrap an expressions body in a closure. ClosureNode = (exports.ClosureNode = { // Wrap the expressions body, unless it contains a pure statement, // in which case, no dice. wrap: function wrap(expressions, statement) { var call, func; if (expressions.contains(function(n) { return n.is_pure_statement(); })) { return expressions; } func = new ParentheticalNode(new CodeNode([], Expressions.wrap([expressions]))); call = new CallNode(new ValueNode(func, [new AccessorNode(literal('call'))]), [literal('this')]); if (statement) { return Expressions.wrap([call]); } else { return call; } } }); // Constants // --------- // Tabs are two spaces for pretty printing. TAB = ' '; // Trim out all trailing whitespace, so that the generated code plays nice // with Git. TRAILING_WHITESPACE = /\s+$/gm; // Keep this identifier regex in sync with the Lexer. IDENTIFIER = /^[a-zA-Z\$_](\w|\$)*$/; // Utility Functions // ----------------- // Handy helper for a generating LiteralNode. literal = function literal(name) { return new LiteralNode(name); }; })();