moby--moby/builder/dockerfile/dispatchers.go

800 lines
22 KiB
Go
Raw Normal View History

package dockerfile
// This file contains the dispatchers for each command. Note that
// `nullDispatch` is not actually a command, but support for commands we parse
// but do nothing with.
//
// See evaluator.go for a higher level discussion of the whole evaluator
// package.
import (
"fmt"
"regexp"
"runtime"
"sort"
Add support for user-defined healthchecks This PR adds support for user-defined health-check probes for Docker containers. It adds a `HEALTHCHECK` instruction to the Dockerfile syntax plus some corresponding "docker run" options. It can be used with a restart policy to automatically restart a container if the check fails. The `HEALTHCHECK` instruction has two forms: * `HEALTHCHECK [OPTIONS] CMD command` (check container health by running a command inside the container) * `HEALTHCHECK NONE` (disable any healthcheck inherited from the base image) The `HEALTHCHECK` instruction tells Docker how to test a container to check that it is still working. This can detect cases such as a web server that is stuck in an infinite loop and unable to handle new connections, even though the server process is still running. When a container has a healthcheck specified, it has a _health status_ in addition to its normal status. This status is initially `starting`. Whenever a health check passes, it becomes `healthy` (whatever state it was previously in). After a certain number of consecutive failures, it becomes `unhealthy`. The options that can appear before `CMD` are: * `--interval=DURATION` (default: `30s`) * `--timeout=DURATION` (default: `30s`) * `--retries=N` (default: `1`) The health check will first run **interval** seconds after the container is started, and then again **interval** seconds after each previous check completes. If a single run of the check takes longer than **timeout** seconds then the check is considered to have failed. It takes **retries** consecutive failures of the health check for the container to be considered `unhealthy`. There can only be one `HEALTHCHECK` instruction in a Dockerfile. If you list more than one then only the last `HEALTHCHECK` will take effect. The command after the `CMD` keyword can be either a shell command (e.g. `HEALTHCHECK CMD /bin/check-running`) or an _exec_ array (as with other Dockerfile commands; see e.g. `ENTRYPOINT` for details). The command's exit status indicates the health status of the container. The possible values are: - 0: success - the container is healthy and ready for use - 1: unhealthy - the container is not working correctly - 2: starting - the container is not ready for use yet, but is working correctly If the probe returns 2 ("starting") when the container has already moved out of the "starting" state then it is treated as "unhealthy" instead. For example, to check every five minutes or so that a web-server is able to serve the site's main page within three seconds: HEALTHCHECK --interval=5m --timeout=3s \ CMD curl -f http://localhost/ || exit 1 To help debug failing probes, any output text (UTF-8 encoded) that the command writes on stdout or stderr will be stored in the health status and can be queried with `docker inspect`. Such output should be kept short (only the first 4096 bytes are stored currently). When the health status of a container changes, a `health_status` event is generated with the new status. The health status is also displayed in the `docker ps` output. Signed-off-by: Thomas Leonard <thomas.leonard@docker.com> Signed-off-by: Sebastiaan van Stijn <github@gone.nl>
2016-04-18 09:48:13 +00:00
"strconv"
"strings"
Add support for user-defined healthchecks This PR adds support for user-defined health-check probes for Docker containers. It adds a `HEALTHCHECK` instruction to the Dockerfile syntax plus some corresponding "docker run" options. It can be used with a restart policy to automatically restart a container if the check fails. The `HEALTHCHECK` instruction has two forms: * `HEALTHCHECK [OPTIONS] CMD command` (check container health by running a command inside the container) * `HEALTHCHECK NONE` (disable any healthcheck inherited from the base image) The `HEALTHCHECK` instruction tells Docker how to test a container to check that it is still working. This can detect cases such as a web server that is stuck in an infinite loop and unable to handle new connections, even though the server process is still running. When a container has a healthcheck specified, it has a _health status_ in addition to its normal status. This status is initially `starting`. Whenever a health check passes, it becomes `healthy` (whatever state it was previously in). After a certain number of consecutive failures, it becomes `unhealthy`. The options that can appear before `CMD` are: * `--interval=DURATION` (default: `30s`) * `--timeout=DURATION` (default: `30s`) * `--retries=N` (default: `1`) The health check will first run **interval** seconds after the container is started, and then again **interval** seconds after each previous check completes. If a single run of the check takes longer than **timeout** seconds then the check is considered to have failed. It takes **retries** consecutive failures of the health check for the container to be considered `unhealthy`. There can only be one `HEALTHCHECK` instruction in a Dockerfile. If you list more than one then only the last `HEALTHCHECK` will take effect. The command after the `CMD` keyword can be either a shell command (e.g. `HEALTHCHECK CMD /bin/check-running`) or an _exec_ array (as with other Dockerfile commands; see e.g. `ENTRYPOINT` for details). The command's exit status indicates the health status of the container. The possible values are: - 0: success - the container is healthy and ready for use - 1: unhealthy - the container is not working correctly - 2: starting - the container is not ready for use yet, but is working correctly If the probe returns 2 ("starting") when the container has already moved out of the "starting" state then it is treated as "unhealthy" instead. For example, to check every five minutes or so that a web-server is able to serve the site's main page within three seconds: HEALTHCHECK --interval=5m --timeout=3s \ CMD curl -f http://localhost/ || exit 1 To help debug failing probes, any output text (UTF-8 encoded) that the command writes on stdout or stderr will be stored in the health status and can be queried with `docker inspect`. Such output should be kept short (only the first 4096 bytes are stored currently). When the health status of a container changes, a `health_status` event is generated with the new status. The health status is also displayed in the `docker ps` output. Signed-off-by: Thomas Leonard <thomas.leonard@docker.com> Signed-off-by: Sebastiaan van Stijn <github@gone.nl>
2016-04-18 09:48:13 +00:00
"time"
"github.com/Sirupsen/logrus"
"github.com/docker/docker/api"
"github.com/docker/docker/api/types"
"github.com/docker/docker/api/types/container"
"github.com/docker/docker/api/types/strslice"
"github.com/docker/docker/builder"
"github.com/docker/docker/pkg/signal"
runconfigopts "github.com/docker/docker/runconfig/opts"
"github.com/docker/go-connections/nat"
)
// ENV foo bar
//
// Sets the environment variable foo to bar, also makes interpolation
// in the dockerfile available from the next statement on via ${foo}.
//
func env(b *Builder, args []string, attributes map[string]bool, original string) error {
if len(args) == 0 {
Remove static errors from errors package. Moving all strings to the errors package wasn't a good idea after all. Our custom implementation of Go errors predates everything that's nice and good about working with errors in Go. Take as an example what we have to do to get an error message: ```go func GetErrorMessage(err error) string { switch err.(type) { case errcode.Error: e, _ := err.(errcode.Error) return e.Message case errcode.ErrorCode: ec, _ := err.(errcode.ErrorCode) return ec.Message() default: return err.Error() } } ``` This goes against every good practice for Go development. The language already provides a simple, intuitive and standard way to get error messages, that is calling the `Error()` method from an error. Reinventing the error interface is a mistake. Our custom implementation also makes very hard to reason about errors, another nice thing about Go. I found several (>10) error declarations that we don't use anywhere. This is a clear sign about how little we know about the errors we return. I also found several error usages where the number of arguments was different than the parameters declared in the error, another clear example of how difficult is to reason about errors. Moreover, our custom implementation didn't really make easier for people to return custom HTTP status code depending on the errors. Again, it's hard to reason about when to set custom codes and how. Take an example what we have to do to extract the message and status code from an error before returning a response from the API: ```go switch err.(type) { case errcode.ErrorCode: daError, _ := err.(errcode.ErrorCode) statusCode = daError.Descriptor().HTTPStatusCode errMsg = daError.Message() case errcode.Error: // For reference, if you're looking for a particular error // then you can do something like : // import ( derr "github.com/docker/docker/errors" ) // if daError.ErrorCode() == derr.ErrorCodeNoSuchContainer { ... } daError, _ := err.(errcode.Error) statusCode = daError.ErrorCode().Descriptor().HTTPStatusCode errMsg = daError.Message default: // This part of will be removed once we've // converted everything over to use the errcode package // FIXME: this is brittle and should not be necessary. // If we need to differentiate between different possible error types, // we should create appropriate error types with clearly defined meaning errStr := strings.ToLower(err.Error()) for keyword, status := range map[string]int{ "not found": http.StatusNotFound, "no such": http.StatusNotFound, "bad parameter": http.StatusBadRequest, "conflict": http.StatusConflict, "impossible": http.StatusNotAcceptable, "wrong login/password": http.StatusUnauthorized, "hasn't been activated": http.StatusForbidden, } { if strings.Contains(errStr, keyword) { statusCode = status break } } } ``` You can notice two things in that code: 1. We have to explain how errors work, because our implementation goes against how easy to use Go errors are. 2. At no moment we arrived to remove that `switch` statement that was the original reason to use our custom implementation. This change removes all our status errors from the errors package and puts them back in their specific contexts. IT puts the messages back with their contexts. That way, we know right away when errors used and how to generate their messages. It uses custom interfaces to reason about errors. Errors that need to response with a custom status code MUST implementent this simple interface: ```go type errorWithStatus interface { HTTPErrorStatusCode() int } ``` This interface is very straightforward to implement. It also preserves Go errors real behavior, getting the message is as simple as using the `Error()` method. I included helper functions to generate errors that use custom status code in `errors/errors.go`. By doing this, we remove the hard dependency we have eeverywhere to our custom errors package. Yes, you can use it as a helper to generate error, but it's still very easy to generate errors without it. Please, read this fantastic blog post about errors in Go: http://dave.cheney.net/2014/12/24/inspecting-errors Signed-off-by: David Calavera <david.calavera@gmail.com>
2016-02-25 15:53:35 +00:00
return errAtLeastOneArgument("ENV")
}
if len(args)%2 != 0 {
// should never get here, but just in case
Remove static errors from errors package. Moving all strings to the errors package wasn't a good idea after all. Our custom implementation of Go errors predates everything that's nice and good about working with errors in Go. Take as an example what we have to do to get an error message: ```go func GetErrorMessage(err error) string { switch err.(type) { case errcode.Error: e, _ := err.(errcode.Error) return e.Message case errcode.ErrorCode: ec, _ := err.(errcode.ErrorCode) return ec.Message() default: return err.Error() } } ``` This goes against every good practice for Go development. The language already provides a simple, intuitive and standard way to get error messages, that is calling the `Error()` method from an error. Reinventing the error interface is a mistake. Our custom implementation also makes very hard to reason about errors, another nice thing about Go. I found several (>10) error declarations that we don't use anywhere. This is a clear sign about how little we know about the errors we return. I also found several error usages where the number of arguments was different than the parameters declared in the error, another clear example of how difficult is to reason about errors. Moreover, our custom implementation didn't really make easier for people to return custom HTTP status code depending on the errors. Again, it's hard to reason about when to set custom codes and how. Take an example what we have to do to extract the message and status code from an error before returning a response from the API: ```go switch err.(type) { case errcode.ErrorCode: daError, _ := err.(errcode.ErrorCode) statusCode = daError.Descriptor().HTTPStatusCode errMsg = daError.Message() case errcode.Error: // For reference, if you're looking for a particular error // then you can do something like : // import ( derr "github.com/docker/docker/errors" ) // if daError.ErrorCode() == derr.ErrorCodeNoSuchContainer { ... } daError, _ := err.(errcode.Error) statusCode = daError.ErrorCode().Descriptor().HTTPStatusCode errMsg = daError.Message default: // This part of will be removed once we've // converted everything over to use the errcode package // FIXME: this is brittle and should not be necessary. // If we need to differentiate between different possible error types, // we should create appropriate error types with clearly defined meaning errStr := strings.ToLower(err.Error()) for keyword, status := range map[string]int{ "not found": http.StatusNotFound, "no such": http.StatusNotFound, "bad parameter": http.StatusBadRequest, "conflict": http.StatusConflict, "impossible": http.StatusNotAcceptable, "wrong login/password": http.StatusUnauthorized, "hasn't been activated": http.StatusForbidden, } { if strings.Contains(errStr, keyword) { statusCode = status break } } } ``` You can notice two things in that code: 1. We have to explain how errors work, because our implementation goes against how easy to use Go errors are. 2. At no moment we arrived to remove that `switch` statement that was the original reason to use our custom implementation. This change removes all our status errors from the errors package and puts them back in their specific contexts. IT puts the messages back with their contexts. That way, we know right away when errors used and how to generate their messages. It uses custom interfaces to reason about errors. Errors that need to response with a custom status code MUST implementent this simple interface: ```go type errorWithStatus interface { HTTPErrorStatusCode() int } ``` This interface is very straightforward to implement. It also preserves Go errors real behavior, getting the message is as simple as using the `Error()` method. I included helper functions to generate errors that use custom status code in `errors/errors.go`. By doing this, we remove the hard dependency we have eeverywhere to our custom errors package. Yes, you can use it as a helper to generate error, but it's still very easy to generate errors without it. Please, read this fantastic blog post about errors in Go: http://dave.cheney.net/2014/12/24/inspecting-errors Signed-off-by: David Calavera <david.calavera@gmail.com>
2016-02-25 15:53:35 +00:00
return errTooManyArguments("ENV")
}
if err := b.flags.Parse(); err != nil {
return err
}
// TODO/FIXME/NOT USED
// Just here to show how to use the builder flags stuff within the
// context of a builder command. Will remove once we actually add
// a builder command to something!
/*
flBool1 := b.flags.AddBool("bool1", false)
flStr1 := b.flags.AddString("str1", "HI")
if err := b.flags.Parse(); err != nil {
return err
}
fmt.Printf("Bool1:%v\n", flBool1)
fmt.Printf("Str1:%v\n", flStr1)
*/
commitStr := "ENV"
for j := 0; j < len(args); j++ {
// name ==> args[j]
// value ==> args[j+1]
if len(args[j]) == 0 {
return errBlankCommandNames("ENV")
}
newVar := args[j] + "=" + args[j+1] + ""
commitStr += " " + newVar
gotOne := false
for i, envVar := range b.runConfig.Env {
envParts := strings.SplitN(envVar, "=", 2)
if envParts[0] == args[j] {
b.runConfig.Env[i] = newVar
gotOne = true
break
}
}
if !gotOne {
b.runConfig.Env = append(b.runConfig.Env, newVar)
}
j++
}
return b.commit("", b.runConfig.Cmd, commitStr)
}
// MAINTAINER some text <maybe@an.email.address>
//
// Sets the maintainer metadata.
func maintainer(b *Builder, args []string, attributes map[string]bool, original string) error {
if len(args) != 1 {
Remove static errors from errors package. Moving all strings to the errors package wasn't a good idea after all. Our custom implementation of Go errors predates everything that's nice and good about working with errors in Go. Take as an example what we have to do to get an error message: ```go func GetErrorMessage(err error) string { switch err.(type) { case errcode.Error: e, _ := err.(errcode.Error) return e.Message case errcode.ErrorCode: ec, _ := err.(errcode.ErrorCode) return ec.Message() default: return err.Error() } } ``` This goes against every good practice for Go development. The language already provides a simple, intuitive and standard way to get error messages, that is calling the `Error()` method from an error. Reinventing the error interface is a mistake. Our custom implementation also makes very hard to reason about errors, another nice thing about Go. I found several (>10) error declarations that we don't use anywhere. This is a clear sign about how little we know about the errors we return. I also found several error usages where the number of arguments was different than the parameters declared in the error, another clear example of how difficult is to reason about errors. Moreover, our custom implementation didn't really make easier for people to return custom HTTP status code depending on the errors. Again, it's hard to reason about when to set custom codes and how. Take an example what we have to do to extract the message and status code from an error before returning a response from the API: ```go switch err.(type) { case errcode.ErrorCode: daError, _ := err.(errcode.ErrorCode) statusCode = daError.Descriptor().HTTPStatusCode errMsg = daError.Message() case errcode.Error: // For reference, if you're looking for a particular error // then you can do something like : // import ( derr "github.com/docker/docker/errors" ) // if daError.ErrorCode() == derr.ErrorCodeNoSuchContainer { ... } daError, _ := err.(errcode.Error) statusCode = daError.ErrorCode().Descriptor().HTTPStatusCode errMsg = daError.Message default: // This part of will be removed once we've // converted everything over to use the errcode package // FIXME: this is brittle and should not be necessary. // If we need to differentiate between different possible error types, // we should create appropriate error types with clearly defined meaning errStr := strings.ToLower(err.Error()) for keyword, status := range map[string]int{ "not found": http.StatusNotFound, "no such": http.StatusNotFound, "bad parameter": http.StatusBadRequest, "conflict": http.StatusConflict, "impossible": http.StatusNotAcceptable, "wrong login/password": http.StatusUnauthorized, "hasn't been activated": http.StatusForbidden, } { if strings.Contains(errStr, keyword) { statusCode = status break } } } ``` You can notice two things in that code: 1. We have to explain how errors work, because our implementation goes against how easy to use Go errors are. 2. At no moment we arrived to remove that `switch` statement that was the original reason to use our custom implementation. This change removes all our status errors from the errors package and puts them back in their specific contexts. IT puts the messages back with their contexts. That way, we know right away when errors used and how to generate their messages. It uses custom interfaces to reason about errors. Errors that need to response with a custom status code MUST implementent this simple interface: ```go type errorWithStatus interface { HTTPErrorStatusCode() int } ``` This interface is very straightforward to implement. It also preserves Go errors real behavior, getting the message is as simple as using the `Error()` method. I included helper functions to generate errors that use custom status code in `errors/errors.go`. By doing this, we remove the hard dependency we have eeverywhere to our custom errors package. Yes, you can use it as a helper to generate error, but it's still very easy to generate errors without it. Please, read this fantastic blog post about errors in Go: http://dave.cheney.net/2014/12/24/inspecting-errors Signed-off-by: David Calavera <david.calavera@gmail.com>
2016-02-25 15:53:35 +00:00
return errExactlyOneArgument("MAINTAINER")
}
if err := b.flags.Parse(); err != nil {
return err
}
b.maintainer = args[0]
return b.commit("", b.runConfig.Cmd, fmt.Sprintf("MAINTAINER %s", b.maintainer))
}
// LABEL some json data describing the image
//
// Sets the Label variable foo to bar,
//
func label(b *Builder, args []string, attributes map[string]bool, original string) error {
if len(args) == 0 {
Remove static errors from errors package. Moving all strings to the errors package wasn't a good idea after all. Our custom implementation of Go errors predates everything that's nice and good about working with errors in Go. Take as an example what we have to do to get an error message: ```go func GetErrorMessage(err error) string { switch err.(type) { case errcode.Error: e, _ := err.(errcode.Error) return e.Message case errcode.ErrorCode: ec, _ := err.(errcode.ErrorCode) return ec.Message() default: return err.Error() } } ``` This goes against every good practice for Go development. The language already provides a simple, intuitive and standard way to get error messages, that is calling the `Error()` method from an error. Reinventing the error interface is a mistake. Our custom implementation also makes very hard to reason about errors, another nice thing about Go. I found several (>10) error declarations that we don't use anywhere. This is a clear sign about how little we know about the errors we return. I also found several error usages where the number of arguments was different than the parameters declared in the error, another clear example of how difficult is to reason about errors. Moreover, our custom implementation didn't really make easier for people to return custom HTTP status code depending on the errors. Again, it's hard to reason about when to set custom codes and how. Take an example what we have to do to extract the message and status code from an error before returning a response from the API: ```go switch err.(type) { case errcode.ErrorCode: daError, _ := err.(errcode.ErrorCode) statusCode = daError.Descriptor().HTTPStatusCode errMsg = daError.Message() case errcode.Error: // For reference, if you're looking for a particular error // then you can do something like : // import ( derr "github.com/docker/docker/errors" ) // if daError.ErrorCode() == derr.ErrorCodeNoSuchContainer { ... } daError, _ := err.(errcode.Error) statusCode = daError.ErrorCode().Descriptor().HTTPStatusCode errMsg = daError.Message default: // This part of will be removed once we've // converted everything over to use the errcode package // FIXME: this is brittle and should not be necessary. // If we need to differentiate between different possible error types, // we should create appropriate error types with clearly defined meaning errStr := strings.ToLower(err.Error()) for keyword, status := range map[string]int{ "not found": http.StatusNotFound, "no such": http.StatusNotFound, "bad parameter": http.StatusBadRequest, "conflict": http.StatusConflict, "impossible": http.StatusNotAcceptable, "wrong login/password": http.StatusUnauthorized, "hasn't been activated": http.StatusForbidden, } { if strings.Contains(errStr, keyword) { statusCode = status break } } } ``` You can notice two things in that code: 1. We have to explain how errors work, because our implementation goes against how easy to use Go errors are. 2. At no moment we arrived to remove that `switch` statement that was the original reason to use our custom implementation. This change removes all our status errors from the errors package and puts them back in their specific contexts. IT puts the messages back with their contexts. That way, we know right away when errors used and how to generate their messages. It uses custom interfaces to reason about errors. Errors that need to response with a custom status code MUST implementent this simple interface: ```go type errorWithStatus interface { HTTPErrorStatusCode() int } ``` This interface is very straightforward to implement. It also preserves Go errors real behavior, getting the message is as simple as using the `Error()` method. I included helper functions to generate errors that use custom status code in `errors/errors.go`. By doing this, we remove the hard dependency we have eeverywhere to our custom errors package. Yes, you can use it as a helper to generate error, but it's still very easy to generate errors without it. Please, read this fantastic blog post about errors in Go: http://dave.cheney.net/2014/12/24/inspecting-errors Signed-off-by: David Calavera <david.calavera@gmail.com>
2016-02-25 15:53:35 +00:00
return errAtLeastOneArgument("LABEL")
}
if len(args)%2 != 0 {
// should never get here, but just in case
Remove static errors from errors package. Moving all strings to the errors package wasn't a good idea after all. Our custom implementation of Go errors predates everything that's nice and good about working with errors in Go. Take as an example what we have to do to get an error message: ```go func GetErrorMessage(err error) string { switch err.(type) { case errcode.Error: e, _ := err.(errcode.Error) return e.Message case errcode.ErrorCode: ec, _ := err.(errcode.ErrorCode) return ec.Message() default: return err.Error() } } ``` This goes against every good practice for Go development. The language already provides a simple, intuitive and standard way to get error messages, that is calling the `Error()` method from an error. Reinventing the error interface is a mistake. Our custom implementation also makes very hard to reason about errors, another nice thing about Go. I found several (>10) error declarations that we don't use anywhere. This is a clear sign about how little we know about the errors we return. I also found several error usages where the number of arguments was different than the parameters declared in the error, another clear example of how difficult is to reason about errors. Moreover, our custom implementation didn't really make easier for people to return custom HTTP status code depending on the errors. Again, it's hard to reason about when to set custom codes and how. Take an example what we have to do to extract the message and status code from an error before returning a response from the API: ```go switch err.(type) { case errcode.ErrorCode: daError, _ := err.(errcode.ErrorCode) statusCode = daError.Descriptor().HTTPStatusCode errMsg = daError.Message() case errcode.Error: // For reference, if you're looking for a particular error // then you can do something like : // import ( derr "github.com/docker/docker/errors" ) // if daError.ErrorCode() == derr.ErrorCodeNoSuchContainer { ... } daError, _ := err.(errcode.Error) statusCode = daError.ErrorCode().Descriptor().HTTPStatusCode errMsg = daError.Message default: // This part of will be removed once we've // converted everything over to use the errcode package // FIXME: this is brittle and should not be necessary. // If we need to differentiate between different possible error types, // we should create appropriate error types with clearly defined meaning errStr := strings.ToLower(err.Error()) for keyword, status := range map[string]int{ "not found": http.StatusNotFound, "no such": http.StatusNotFound, "bad parameter": http.StatusBadRequest, "conflict": http.StatusConflict, "impossible": http.StatusNotAcceptable, "wrong login/password": http.StatusUnauthorized, "hasn't been activated": http.StatusForbidden, } { if strings.Contains(errStr, keyword) { statusCode = status break } } } ``` You can notice two things in that code: 1. We have to explain how errors work, because our implementation goes against how easy to use Go errors are. 2. At no moment we arrived to remove that `switch` statement that was the original reason to use our custom implementation. This change removes all our status errors from the errors package and puts them back in their specific contexts. IT puts the messages back with their contexts. That way, we know right away when errors used and how to generate their messages. It uses custom interfaces to reason about errors. Errors that need to response with a custom status code MUST implementent this simple interface: ```go type errorWithStatus interface { HTTPErrorStatusCode() int } ``` This interface is very straightforward to implement. It also preserves Go errors real behavior, getting the message is as simple as using the `Error()` method. I included helper functions to generate errors that use custom status code in `errors/errors.go`. By doing this, we remove the hard dependency we have eeverywhere to our custom errors package. Yes, you can use it as a helper to generate error, but it's still very easy to generate errors without it. Please, read this fantastic blog post about errors in Go: http://dave.cheney.net/2014/12/24/inspecting-errors Signed-off-by: David Calavera <david.calavera@gmail.com>
2016-02-25 15:53:35 +00:00
return errTooManyArguments("LABEL")
}
if err := b.flags.Parse(); err != nil {
return err
}
commitStr := "LABEL"
if b.runConfig.Labels == nil {
b.runConfig.Labels = map[string]string{}
}
for j := 0; j < len(args); j++ {
// name ==> args[j]
// value ==> args[j+1]
if len(args[j]) == 0 {
return errBlankCommandNames("LABEL")
}
newVar := args[j] + "=" + args[j+1] + ""
commitStr += " " + newVar
b.runConfig.Labels[args[j]] = args[j+1]
j++
}
return b.commit("", b.runConfig.Cmd, commitStr)
}
// ADD foo /path
//
// Add the file 'foo' to '/path'. Tarball and Remote URL (git, http) handling
// exist here. If you do not wish to have this automatic handling, use COPY.
//
func add(b *Builder, args []string, attributes map[string]bool, original string) error {
if len(args) < 2 {
return errAtLeastTwoArguments("ADD")
}
if err := b.flags.Parse(); err != nil {
return err
}
return b.runContextCommand(args, true, true, "ADD")
}
// COPY foo /path
//
// Same as 'ADD' but without the tar and remote url handling.
//
func dispatchCopy(b *Builder, args []string, attributes map[string]bool, original string) error {
if len(args) < 2 {
return errAtLeastTwoArguments("COPY")
}
if err := b.flags.Parse(); err != nil {
return err
}
return b.runContextCommand(args, false, false, "COPY")
}
// FROM imagename
//
// This sets the image the dockerfile will build on top of.
//
func from(b *Builder, args []string, attributes map[string]bool, original string) error {
if len(args) != 1 {
Remove static errors from errors package. Moving all strings to the errors package wasn't a good idea after all. Our custom implementation of Go errors predates everything that's nice and good about working with errors in Go. Take as an example what we have to do to get an error message: ```go func GetErrorMessage(err error) string { switch err.(type) { case errcode.Error: e, _ := err.(errcode.Error) return e.Message case errcode.ErrorCode: ec, _ := err.(errcode.ErrorCode) return ec.Message() default: return err.Error() } } ``` This goes against every good practice for Go development. The language already provides a simple, intuitive and standard way to get error messages, that is calling the `Error()` method from an error. Reinventing the error interface is a mistake. Our custom implementation also makes very hard to reason about errors, another nice thing about Go. I found several (>10) error declarations that we don't use anywhere. This is a clear sign about how little we know about the errors we return. I also found several error usages where the number of arguments was different than the parameters declared in the error, another clear example of how difficult is to reason about errors. Moreover, our custom implementation didn't really make easier for people to return custom HTTP status code depending on the errors. Again, it's hard to reason about when to set custom codes and how. Take an example what we have to do to extract the message and status code from an error before returning a response from the API: ```go switch err.(type) { case errcode.ErrorCode: daError, _ := err.(errcode.ErrorCode) statusCode = daError.Descriptor().HTTPStatusCode errMsg = daError.Message() case errcode.Error: // For reference, if you're looking for a particular error // then you can do something like : // import ( derr "github.com/docker/docker/errors" ) // if daError.ErrorCode() == derr.ErrorCodeNoSuchContainer { ... } daError, _ := err.(errcode.Error) statusCode = daError.ErrorCode().Descriptor().HTTPStatusCode errMsg = daError.Message default: // This part of will be removed once we've // converted everything over to use the errcode package // FIXME: this is brittle and should not be necessary. // If we need to differentiate between different possible error types, // we should create appropriate error types with clearly defined meaning errStr := strings.ToLower(err.Error()) for keyword, status := range map[string]int{ "not found": http.StatusNotFound, "no such": http.StatusNotFound, "bad parameter": http.StatusBadRequest, "conflict": http.StatusConflict, "impossible": http.StatusNotAcceptable, "wrong login/password": http.StatusUnauthorized, "hasn't been activated": http.StatusForbidden, } { if strings.Contains(errStr, keyword) { statusCode = status break } } } ``` You can notice two things in that code: 1. We have to explain how errors work, because our implementation goes against how easy to use Go errors are. 2. At no moment we arrived to remove that `switch` statement that was the original reason to use our custom implementation. This change removes all our status errors from the errors package and puts them back in their specific contexts. IT puts the messages back with their contexts. That way, we know right away when errors used and how to generate their messages. It uses custom interfaces to reason about errors. Errors that need to response with a custom status code MUST implementent this simple interface: ```go type errorWithStatus interface { HTTPErrorStatusCode() int } ``` This interface is very straightforward to implement. It also preserves Go errors real behavior, getting the message is as simple as using the `Error()` method. I included helper functions to generate errors that use custom status code in `errors/errors.go`. By doing this, we remove the hard dependency we have eeverywhere to our custom errors package. Yes, you can use it as a helper to generate error, but it's still very easy to generate errors without it. Please, read this fantastic blog post about errors in Go: http://dave.cheney.net/2014/12/24/inspecting-errors Signed-off-by: David Calavera <david.calavera@gmail.com>
2016-02-25 15:53:35 +00:00
return errExactlyOneArgument("FROM")
}
if err := b.flags.Parse(); err != nil {
return err
}
name := args[0]
var (
image builder.Image
err error
)
// Windows cannot support a container with no base image.
if name == api.NoBaseImageSpecifier {
if runtime.GOOS == "windows" {
return fmt.Errorf("Windows does not support FROM scratch")
}
b.image = ""
b.noBaseImage = true
} else {
// TODO: don't use `name`, instead resolve it to a digest
if !b.options.PullParent {
image, err = b.docker.GetImageOnBuild(name)
// TODO: shouldn't we error out if error is different from "not found" ?
}
if image == nil {
image, err = b.docker.PullOnBuild(b.clientCtx, name, b.options.AuthConfigs, b.Output)
if err != nil {
return err
}
}
}
b.from = image
return b.processImageFrom(image)
}
// ONBUILD RUN echo yo
//
// ONBUILD triggers run when the image is used in a FROM statement.
//
// ONBUILD handling has a lot of special-case functionality, the heading in
// evaluator.go and comments around dispatch() in the same file explain the
// special cases. search for 'OnBuild' in internals.go for additional special
// cases.
//
func onbuild(b *Builder, args []string, attributes map[string]bool, original string) error {
if len(args) == 0 {
Remove static errors from errors package. Moving all strings to the errors package wasn't a good idea after all. Our custom implementation of Go errors predates everything that's nice and good about working with errors in Go. Take as an example what we have to do to get an error message: ```go func GetErrorMessage(err error) string { switch err.(type) { case errcode.Error: e, _ := err.(errcode.Error) return e.Message case errcode.ErrorCode: ec, _ := err.(errcode.ErrorCode) return ec.Message() default: return err.Error() } } ``` This goes against every good practice for Go development. The language already provides a simple, intuitive and standard way to get error messages, that is calling the `Error()` method from an error. Reinventing the error interface is a mistake. Our custom implementation also makes very hard to reason about errors, another nice thing about Go. I found several (>10) error declarations that we don't use anywhere. This is a clear sign about how little we know about the errors we return. I also found several error usages where the number of arguments was different than the parameters declared in the error, another clear example of how difficult is to reason about errors. Moreover, our custom implementation didn't really make easier for people to return custom HTTP status code depending on the errors. Again, it's hard to reason about when to set custom codes and how. Take an example what we have to do to extract the message and status code from an error before returning a response from the API: ```go switch err.(type) { case errcode.ErrorCode: daError, _ := err.(errcode.ErrorCode) statusCode = daError.Descriptor().HTTPStatusCode errMsg = daError.Message() case errcode.Error: // For reference, if you're looking for a particular error // then you can do something like : // import ( derr "github.com/docker/docker/errors" ) // if daError.ErrorCode() == derr.ErrorCodeNoSuchContainer { ... } daError, _ := err.(errcode.Error) statusCode = daError.ErrorCode().Descriptor().HTTPStatusCode errMsg = daError.Message default: // This part of will be removed once we've // converted everything over to use the errcode package // FIXME: this is brittle and should not be necessary. // If we need to differentiate between different possible error types, // we should create appropriate error types with clearly defined meaning errStr := strings.ToLower(err.Error()) for keyword, status := range map[string]int{ "not found": http.StatusNotFound, "no such": http.StatusNotFound, "bad parameter": http.StatusBadRequest, "conflict": http.StatusConflict, "impossible": http.StatusNotAcceptable, "wrong login/password": http.StatusUnauthorized, "hasn't been activated": http.StatusForbidden, } { if strings.Contains(errStr, keyword) { statusCode = status break } } } ``` You can notice two things in that code: 1. We have to explain how errors work, because our implementation goes against how easy to use Go errors are. 2. At no moment we arrived to remove that `switch` statement that was the original reason to use our custom implementation. This change removes all our status errors from the errors package and puts them back in their specific contexts. IT puts the messages back with their contexts. That way, we know right away when errors used and how to generate their messages. It uses custom interfaces to reason about errors. Errors that need to response with a custom status code MUST implementent this simple interface: ```go type errorWithStatus interface { HTTPErrorStatusCode() int } ``` This interface is very straightforward to implement. It also preserves Go errors real behavior, getting the message is as simple as using the `Error()` method. I included helper functions to generate errors that use custom status code in `errors/errors.go`. By doing this, we remove the hard dependency we have eeverywhere to our custom errors package. Yes, you can use it as a helper to generate error, but it's still very easy to generate errors without it. Please, read this fantastic blog post about errors in Go: http://dave.cheney.net/2014/12/24/inspecting-errors Signed-off-by: David Calavera <david.calavera@gmail.com>
2016-02-25 15:53:35 +00:00
return errAtLeastOneArgument("ONBUILD")
}
if err := b.flags.Parse(); err != nil {
return err
}
triggerInstruction := strings.ToUpper(strings.TrimSpace(args[0]))
switch triggerInstruction {
case "ONBUILD":
Remove static errors from errors package. Moving all strings to the errors package wasn't a good idea after all. Our custom implementation of Go errors predates everything that's nice and good about working with errors in Go. Take as an example what we have to do to get an error message: ```go func GetErrorMessage(err error) string { switch err.(type) { case errcode.Error: e, _ := err.(errcode.Error) return e.Message case errcode.ErrorCode: ec, _ := err.(errcode.ErrorCode) return ec.Message() default: return err.Error() } } ``` This goes against every good practice for Go development. The language already provides a simple, intuitive and standard way to get error messages, that is calling the `Error()` method from an error. Reinventing the error interface is a mistake. Our custom implementation also makes very hard to reason about errors, another nice thing about Go. I found several (>10) error declarations that we don't use anywhere. This is a clear sign about how little we know about the errors we return. I also found several error usages where the number of arguments was different than the parameters declared in the error, another clear example of how difficult is to reason about errors. Moreover, our custom implementation didn't really make easier for people to return custom HTTP status code depending on the errors. Again, it's hard to reason about when to set custom codes and how. Take an example what we have to do to extract the message and status code from an error before returning a response from the API: ```go switch err.(type) { case errcode.ErrorCode: daError, _ := err.(errcode.ErrorCode) statusCode = daError.Descriptor().HTTPStatusCode errMsg = daError.Message() case errcode.Error: // For reference, if you're looking for a particular error // then you can do something like : // import ( derr "github.com/docker/docker/errors" ) // if daError.ErrorCode() == derr.ErrorCodeNoSuchContainer { ... } daError, _ := err.(errcode.Error) statusCode = daError.ErrorCode().Descriptor().HTTPStatusCode errMsg = daError.Message default: // This part of will be removed once we've // converted everything over to use the errcode package // FIXME: this is brittle and should not be necessary. // If we need to differentiate between different possible error types, // we should create appropriate error types with clearly defined meaning errStr := strings.ToLower(err.Error()) for keyword, status := range map[string]int{ "not found": http.StatusNotFound, "no such": http.StatusNotFound, "bad parameter": http.StatusBadRequest, "conflict": http.StatusConflict, "impossible": http.StatusNotAcceptable, "wrong login/password": http.StatusUnauthorized, "hasn't been activated": http.StatusForbidden, } { if strings.Contains(errStr, keyword) { statusCode = status break } } } ``` You can notice two things in that code: 1. We have to explain how errors work, because our implementation goes against how easy to use Go errors are. 2. At no moment we arrived to remove that `switch` statement that was the original reason to use our custom implementation. This change removes all our status errors from the errors package and puts them back in their specific contexts. IT puts the messages back with their contexts. That way, we know right away when errors used and how to generate their messages. It uses custom interfaces to reason about errors. Errors that need to response with a custom status code MUST implementent this simple interface: ```go type errorWithStatus interface { HTTPErrorStatusCode() int } ``` This interface is very straightforward to implement. It also preserves Go errors real behavior, getting the message is as simple as using the `Error()` method. I included helper functions to generate errors that use custom status code in `errors/errors.go`. By doing this, we remove the hard dependency we have eeverywhere to our custom errors package. Yes, you can use it as a helper to generate error, but it's still very easy to generate errors without it. Please, read this fantastic blog post about errors in Go: http://dave.cheney.net/2014/12/24/inspecting-errors Signed-off-by: David Calavera <david.calavera@gmail.com>
2016-02-25 15:53:35 +00:00
return fmt.Errorf("Chaining ONBUILD via `ONBUILD ONBUILD` isn't allowed")
case "MAINTAINER", "FROM":
Remove static errors from errors package. Moving all strings to the errors package wasn't a good idea after all. Our custom implementation of Go errors predates everything that's nice and good about working with errors in Go. Take as an example what we have to do to get an error message: ```go func GetErrorMessage(err error) string { switch err.(type) { case errcode.Error: e, _ := err.(errcode.Error) return e.Message case errcode.ErrorCode: ec, _ := err.(errcode.ErrorCode) return ec.Message() default: return err.Error() } } ``` This goes against every good practice for Go development. The language already provides a simple, intuitive and standard way to get error messages, that is calling the `Error()` method from an error. Reinventing the error interface is a mistake. Our custom implementation also makes very hard to reason about errors, another nice thing about Go. I found several (>10) error declarations that we don't use anywhere. This is a clear sign about how little we know about the errors we return. I also found several error usages where the number of arguments was different than the parameters declared in the error, another clear example of how difficult is to reason about errors. Moreover, our custom implementation didn't really make easier for people to return custom HTTP status code depending on the errors. Again, it's hard to reason about when to set custom codes and how. Take an example what we have to do to extract the message and status code from an error before returning a response from the API: ```go switch err.(type) { case errcode.ErrorCode: daError, _ := err.(errcode.ErrorCode) statusCode = daError.Descriptor().HTTPStatusCode errMsg = daError.Message() case errcode.Error: // For reference, if you're looking for a particular error // then you can do something like : // import ( derr "github.com/docker/docker/errors" ) // if daError.ErrorCode() == derr.ErrorCodeNoSuchContainer { ... } daError, _ := err.(errcode.Error) statusCode = daError.ErrorCode().Descriptor().HTTPStatusCode errMsg = daError.Message default: // This part of will be removed once we've // converted everything over to use the errcode package // FIXME: this is brittle and should not be necessary. // If we need to differentiate between different possible error types, // we should create appropriate error types with clearly defined meaning errStr := strings.ToLower(err.Error()) for keyword, status := range map[string]int{ "not found": http.StatusNotFound, "no such": http.StatusNotFound, "bad parameter": http.StatusBadRequest, "conflict": http.StatusConflict, "impossible": http.StatusNotAcceptable, "wrong login/password": http.StatusUnauthorized, "hasn't been activated": http.StatusForbidden, } { if strings.Contains(errStr, keyword) { statusCode = status break } } } ``` You can notice two things in that code: 1. We have to explain how errors work, because our implementation goes against how easy to use Go errors are. 2. At no moment we arrived to remove that `switch` statement that was the original reason to use our custom implementation. This change removes all our status errors from the errors package and puts them back in their specific contexts. IT puts the messages back with their contexts. That way, we know right away when errors used and how to generate their messages. It uses custom interfaces to reason about errors. Errors that need to response with a custom status code MUST implementent this simple interface: ```go type errorWithStatus interface { HTTPErrorStatusCode() int } ``` This interface is very straightforward to implement. It also preserves Go errors real behavior, getting the message is as simple as using the `Error()` method. I included helper functions to generate errors that use custom status code in `errors/errors.go`. By doing this, we remove the hard dependency we have eeverywhere to our custom errors package. Yes, you can use it as a helper to generate error, but it's still very easy to generate errors without it. Please, read this fantastic blog post about errors in Go: http://dave.cheney.net/2014/12/24/inspecting-errors Signed-off-by: David Calavera <david.calavera@gmail.com>
2016-02-25 15:53:35 +00:00
return fmt.Errorf("%s isn't allowed as an ONBUILD trigger", triggerInstruction)
}
original = regexp.MustCompile(`(?i)^\s*ONBUILD\s*`).ReplaceAllString(original, "")
b.runConfig.OnBuild = append(b.runConfig.OnBuild, original)
return b.commit("", b.runConfig.Cmd, fmt.Sprintf("ONBUILD %s", original))
}
// WORKDIR /tmp
//
// Set the working directory for future RUN/CMD/etc statements.
//
func workdir(b *Builder, args []string, attributes map[string]bool, original string) error {
if len(args) != 1 {
Remove static errors from errors package. Moving all strings to the errors package wasn't a good idea after all. Our custom implementation of Go errors predates everything that's nice and good about working with errors in Go. Take as an example what we have to do to get an error message: ```go func GetErrorMessage(err error) string { switch err.(type) { case errcode.Error: e, _ := err.(errcode.Error) return e.Message case errcode.ErrorCode: ec, _ := err.(errcode.ErrorCode) return ec.Message() default: return err.Error() } } ``` This goes against every good practice for Go development. The language already provides a simple, intuitive and standard way to get error messages, that is calling the `Error()` method from an error. Reinventing the error interface is a mistake. Our custom implementation also makes very hard to reason about errors, another nice thing about Go. I found several (>10) error declarations that we don't use anywhere. This is a clear sign about how little we know about the errors we return. I also found several error usages where the number of arguments was different than the parameters declared in the error, another clear example of how difficult is to reason about errors. Moreover, our custom implementation didn't really make easier for people to return custom HTTP status code depending on the errors. Again, it's hard to reason about when to set custom codes and how. Take an example what we have to do to extract the message and status code from an error before returning a response from the API: ```go switch err.(type) { case errcode.ErrorCode: daError, _ := err.(errcode.ErrorCode) statusCode = daError.Descriptor().HTTPStatusCode errMsg = daError.Message() case errcode.Error: // For reference, if you're looking for a particular error // then you can do something like : // import ( derr "github.com/docker/docker/errors" ) // if daError.ErrorCode() == derr.ErrorCodeNoSuchContainer { ... } daError, _ := err.(errcode.Error) statusCode = daError.ErrorCode().Descriptor().HTTPStatusCode errMsg = daError.Message default: // This part of will be removed once we've // converted everything over to use the errcode package // FIXME: this is brittle and should not be necessary. // If we need to differentiate between different possible error types, // we should create appropriate error types with clearly defined meaning errStr := strings.ToLower(err.Error()) for keyword, status := range map[string]int{ "not found": http.StatusNotFound, "no such": http.StatusNotFound, "bad parameter": http.StatusBadRequest, "conflict": http.StatusConflict, "impossible": http.StatusNotAcceptable, "wrong login/password": http.StatusUnauthorized, "hasn't been activated": http.StatusForbidden, } { if strings.Contains(errStr, keyword) { statusCode = status break } } } ``` You can notice two things in that code: 1. We have to explain how errors work, because our implementation goes against how easy to use Go errors are. 2. At no moment we arrived to remove that `switch` statement that was the original reason to use our custom implementation. This change removes all our status errors from the errors package and puts them back in their specific contexts. IT puts the messages back with their contexts. That way, we know right away when errors used and how to generate their messages. It uses custom interfaces to reason about errors. Errors that need to response with a custom status code MUST implementent this simple interface: ```go type errorWithStatus interface { HTTPErrorStatusCode() int } ``` This interface is very straightforward to implement. It also preserves Go errors real behavior, getting the message is as simple as using the `Error()` method. I included helper functions to generate errors that use custom status code in `errors/errors.go`. By doing this, we remove the hard dependency we have eeverywhere to our custom errors package. Yes, you can use it as a helper to generate error, but it's still very easy to generate errors without it. Please, read this fantastic blog post about errors in Go: http://dave.cheney.net/2014/12/24/inspecting-errors Signed-off-by: David Calavera <david.calavera@gmail.com>
2016-02-25 15:53:35 +00:00
return errExactlyOneArgument("WORKDIR")
}
err := b.flags.Parse()
if err != nil {
return err
}
// This is from the Dockerfile and will not necessarily be in platform
// specific semantics, hence ensure it is converted.
b.runConfig.WorkingDir, err = normaliseWorkdir(b.runConfig.WorkingDir, args[0])
if err != nil {
return err
}
// For performance reasons, we explicitly do a create/mkdir now
// This avoids having an unnecessary expensive mount/unmount calls
// (on Windows in particular) during each container create.
// Prior to 1.13, the mkdir was deferred and not executed at this step.
if b.disableCommit {
// Don't call back into the daemon if we're going through docker commit --change "WORKDIR /foo".
// We've already updated the runConfig and that's enough.
return nil
}
b.runConfig.Image = b.image
container, err := b.docker.ContainerCreate(types.ContainerCreateConfig{Config: b.runConfig}, true)
if err != nil {
return err
}
b.tmpContainers[container.ID] = struct{}{}
if err := b.docker.ContainerCreateWorkdir(container.ID); err != nil {
return err
}
return b.commit(container.ID, b.runConfig.Cmd, "WORKDIR "+b.runConfig.WorkingDir)
}
// RUN some command yo
//
// run a command and commit the image. Args are automatically prepended with
// the current SHELL which defaults to 'sh -c' under linux or 'cmd /S /C' under
// Windows, in the event there is only one argument The difference in processing:
//
// RUN echo hi # sh -c echo hi (Linux)
// RUN echo hi # cmd /S /C echo hi (Windows)
// RUN [ "echo", "hi" ] # echo hi
//
func run(b *Builder, args []string, attributes map[string]bool, original string) error {
if b.image == "" && !b.noBaseImage {
Remove static errors from errors package. Moving all strings to the errors package wasn't a good idea after all. Our custom implementation of Go errors predates everything that's nice and good about working with errors in Go. Take as an example what we have to do to get an error message: ```go func GetErrorMessage(err error) string { switch err.(type) { case errcode.Error: e, _ := err.(errcode.Error) return e.Message case errcode.ErrorCode: ec, _ := err.(errcode.ErrorCode) return ec.Message() default: return err.Error() } } ``` This goes against every good practice for Go development. The language already provides a simple, intuitive and standard way to get error messages, that is calling the `Error()` method from an error. Reinventing the error interface is a mistake. Our custom implementation also makes very hard to reason about errors, another nice thing about Go. I found several (>10) error declarations that we don't use anywhere. This is a clear sign about how little we know about the errors we return. I also found several error usages where the number of arguments was different than the parameters declared in the error, another clear example of how difficult is to reason about errors. Moreover, our custom implementation didn't really make easier for people to return custom HTTP status code depending on the errors. Again, it's hard to reason about when to set custom codes and how. Take an example what we have to do to extract the message and status code from an error before returning a response from the API: ```go switch err.(type) { case errcode.ErrorCode: daError, _ := err.(errcode.ErrorCode) statusCode = daError.Descriptor().HTTPStatusCode errMsg = daError.Message() case errcode.Error: // For reference, if you're looking for a particular error // then you can do something like : // import ( derr "github.com/docker/docker/errors" ) // if daError.ErrorCode() == derr.ErrorCodeNoSuchContainer { ... } daError, _ := err.(errcode.Error) statusCode = daError.ErrorCode().Descriptor().HTTPStatusCode errMsg = daError.Message default: // This part of will be removed once we've // converted everything over to use the errcode package // FIXME: this is brittle and should not be necessary. // If we need to differentiate between different possible error types, // we should create appropriate error types with clearly defined meaning errStr := strings.ToLower(err.Error()) for keyword, status := range map[string]int{ "not found": http.StatusNotFound, "no such": http.StatusNotFound, "bad parameter": http.StatusBadRequest, "conflict": http.StatusConflict, "impossible": http.StatusNotAcceptable, "wrong login/password": http.StatusUnauthorized, "hasn't been activated": http.StatusForbidden, } { if strings.Contains(errStr, keyword) { statusCode = status break } } } ``` You can notice two things in that code: 1. We have to explain how errors work, because our implementation goes against how easy to use Go errors are. 2. At no moment we arrived to remove that `switch` statement that was the original reason to use our custom implementation. This change removes all our status errors from the errors package and puts them back in their specific contexts. IT puts the messages back with their contexts. That way, we know right away when errors used and how to generate their messages. It uses custom interfaces to reason about errors. Errors that need to response with a custom status code MUST implementent this simple interface: ```go type errorWithStatus interface { HTTPErrorStatusCode() int } ``` This interface is very straightforward to implement. It also preserves Go errors real behavior, getting the message is as simple as using the `Error()` method. I included helper functions to generate errors that use custom status code in `errors/errors.go`. By doing this, we remove the hard dependency we have eeverywhere to our custom errors package. Yes, you can use it as a helper to generate error, but it's still very easy to generate errors without it. Please, read this fantastic blog post about errors in Go: http://dave.cheney.net/2014/12/24/inspecting-errors Signed-off-by: David Calavera <david.calavera@gmail.com>
2016-02-25 15:53:35 +00:00
return fmt.Errorf("Please provide a source image with `from` prior to run")
}
if err := b.flags.Parse(); err != nil {
return err
}
args = handleJSONArgs(args, attributes)
if !attributes["json"] {
args = append(getShell(b.runConfig), args...)
}
config := &container.Config{
Cmd: strslice.StrSlice(args),
Image: b.image,
}
// stash the cmd
cmd := b.runConfig.Cmd
if len(b.runConfig.Entrypoint) == 0 && len(b.runConfig.Cmd) == 0 {
b.runConfig.Cmd = config.Cmd
}
// stash the config environment
env := b.runConfig.Env
defer func(cmd strslice.StrSlice) { b.runConfig.Cmd = cmd }(cmd)
defer func(env []string) { b.runConfig.Env = env }(env)
// derive the net build-time environment for this run. We let config
// environment override the build time environment.
// This means that we take the b.buildArgs list of env vars and remove
// any of those variables that are defined as part of the container. In other
// words, anything in b.Config.Env. What's left is the list of build-time env
// vars that we need to add to each RUN command - note the list could be empty.
//
// We don't persist the build time environment with container's config
// environment, but just sort and prepend it to the command string at time
// of commit.
// This helps with tracing back the image's actual environment at the time
// of RUN, without leaking it to the final image. It also aids cache
// lookup for same image built with same build time environment.
cmdBuildEnv := []string{}
configEnv := runconfigopts.ConvertKVStringsToMap(b.runConfig.Env)
for key, val := range b.options.BuildArgs {
if !b.isBuildArgAllowed(key) {
// skip build-args that are not in allowed list, meaning they have
// not been defined by an "ARG" Dockerfile command yet.
// This is an error condition but only if there is no "ARG" in the entire
// Dockerfile, so we'll generate any necessary errors after we parsed
// the entire file (see 'leftoverArgs' processing in evaluator.go )
continue
}
if _, ok := configEnv[key]; !ok {
cmdBuildEnv = append(cmdBuildEnv, fmt.Sprintf("%s=%s", key, val))
}
}
// derive the command to use for probeCache() and to commit in this container.
// Note that we only do this if there are any build-time env vars. Also, we
// use the special argument "|#" at the start of the args array. This will
// avoid conflicts with any RUN command since commands can not
// start with | (vertical bar). The "#" (number of build envs) is there to
// help ensure proper cache matches. We don't want a RUN command
// that starts with "foo=abc" to be considered part of a build-time env var.
saveCmd := config.Cmd
if len(cmdBuildEnv) > 0 {
sort.Strings(cmdBuildEnv)
tmpEnv := append([]string{fmt.Sprintf("|%d", len(cmdBuildEnv))}, cmdBuildEnv...)
saveCmd = strslice.StrSlice(append(tmpEnv, saveCmd...))
}
b.runConfig.Cmd = saveCmd
hit, err := b.probeCache()
if err != nil {
return err
}
if hit {
return nil
}
// set Cmd manually, this is special case only for Dockerfiles
b.runConfig.Cmd = config.Cmd
// set build-time environment for 'run'.
b.runConfig.Env = append(b.runConfig.Env, cmdBuildEnv...)
// set config as already being escaped, this prevents double escaping on windows
b.runConfig.ArgsEscaped = true
logrus.Debugf("[BUILDER] Command to be executed: %v", b.runConfig.Cmd)
cID, err := b.create()
if err != nil {
return err
}
if err := b.run(cID); err != nil {
return err
}
// revert to original config environment and set the command string to
// have the build-time env vars in it (if any) so that future cache look-ups
// properly match it.
b.runConfig.Env = env
b.runConfig.Cmd = saveCmd
return b.commit(cID, cmd, "run")
}
// CMD foo
//
// Set the default command to run in the container (which may be empty).
// Argument handling is the same as RUN.
//
func cmd(b *Builder, args []string, attributes map[string]bool, original string) error {
if err := b.flags.Parse(); err != nil {
return err
}
cmdSlice := handleJSONArgs(args, attributes)
if !attributes["json"] {
cmdSlice = append(getShell(b.runConfig), cmdSlice...)
}
b.runConfig.Cmd = strslice.StrSlice(cmdSlice)
// set config as already being escaped, this prevents double escaping on windows
b.runConfig.ArgsEscaped = true
if err := b.commit("", b.runConfig.Cmd, fmt.Sprintf("CMD %q", cmdSlice)); err != nil {
return err
}
if len(args) != 0 {
b.cmdSet = true
}
return nil
}
Add support for user-defined healthchecks This PR adds support for user-defined health-check probes for Docker containers. It adds a `HEALTHCHECK` instruction to the Dockerfile syntax plus some corresponding "docker run" options. It can be used with a restart policy to automatically restart a container if the check fails. The `HEALTHCHECK` instruction has two forms: * `HEALTHCHECK [OPTIONS] CMD command` (check container health by running a command inside the container) * `HEALTHCHECK NONE` (disable any healthcheck inherited from the base image) The `HEALTHCHECK` instruction tells Docker how to test a container to check that it is still working. This can detect cases such as a web server that is stuck in an infinite loop and unable to handle new connections, even though the server process is still running. When a container has a healthcheck specified, it has a _health status_ in addition to its normal status. This status is initially `starting`. Whenever a health check passes, it becomes `healthy` (whatever state it was previously in). After a certain number of consecutive failures, it becomes `unhealthy`. The options that can appear before `CMD` are: * `--interval=DURATION` (default: `30s`) * `--timeout=DURATION` (default: `30s`) * `--retries=N` (default: `1`) The health check will first run **interval** seconds after the container is started, and then again **interval** seconds after each previous check completes. If a single run of the check takes longer than **timeout** seconds then the check is considered to have failed. It takes **retries** consecutive failures of the health check for the container to be considered `unhealthy`. There can only be one `HEALTHCHECK` instruction in a Dockerfile. If you list more than one then only the last `HEALTHCHECK` will take effect. The command after the `CMD` keyword can be either a shell command (e.g. `HEALTHCHECK CMD /bin/check-running`) or an _exec_ array (as with other Dockerfile commands; see e.g. `ENTRYPOINT` for details). The command's exit status indicates the health status of the container. The possible values are: - 0: success - the container is healthy and ready for use - 1: unhealthy - the container is not working correctly - 2: starting - the container is not ready for use yet, but is working correctly If the probe returns 2 ("starting") when the container has already moved out of the "starting" state then it is treated as "unhealthy" instead. For example, to check every five minutes or so that a web-server is able to serve the site's main page within three seconds: HEALTHCHECK --interval=5m --timeout=3s \ CMD curl -f http://localhost/ || exit 1 To help debug failing probes, any output text (UTF-8 encoded) that the command writes on stdout or stderr will be stored in the health status and can be queried with `docker inspect`. Such output should be kept short (only the first 4096 bytes are stored currently). When the health status of a container changes, a `health_status` event is generated with the new status. The health status is also displayed in the `docker ps` output. Signed-off-by: Thomas Leonard <thomas.leonard@docker.com> Signed-off-by: Sebastiaan van Stijn <github@gone.nl>
2016-04-18 09:48:13 +00:00
// parseOptInterval(flag) is the duration of flag.Value, or 0 if
// empty. An error is reported if the value is given and is not positive.
func parseOptInterval(f *Flag) (time.Duration, error) {
s := f.Value
if s == "" {
return 0, nil
}
d, err := time.ParseDuration(s)
if err != nil {
return 0, err
}
if d <= 0 {
return 0, fmt.Errorf("Interval %#v must be positive", f.name)
}
return d, nil
}
// HEALTHCHECK foo
//
// Set the default healthcheck command to run in the container (which may be empty).
// Argument handling is the same as RUN.
//
func healthcheck(b *Builder, args []string, attributes map[string]bool, original string) error {
if len(args) == 0 {
return errAtLeastOneArgument("HEALTHCHECK")
Add support for user-defined healthchecks This PR adds support for user-defined health-check probes for Docker containers. It adds a `HEALTHCHECK` instruction to the Dockerfile syntax plus some corresponding "docker run" options. It can be used with a restart policy to automatically restart a container if the check fails. The `HEALTHCHECK` instruction has two forms: * `HEALTHCHECK [OPTIONS] CMD command` (check container health by running a command inside the container) * `HEALTHCHECK NONE` (disable any healthcheck inherited from the base image) The `HEALTHCHECK` instruction tells Docker how to test a container to check that it is still working. This can detect cases such as a web server that is stuck in an infinite loop and unable to handle new connections, even though the server process is still running. When a container has a healthcheck specified, it has a _health status_ in addition to its normal status. This status is initially `starting`. Whenever a health check passes, it becomes `healthy` (whatever state it was previously in). After a certain number of consecutive failures, it becomes `unhealthy`. The options that can appear before `CMD` are: * `--interval=DURATION` (default: `30s`) * `--timeout=DURATION` (default: `30s`) * `--retries=N` (default: `1`) The health check will first run **interval** seconds after the container is started, and then again **interval** seconds after each previous check completes. If a single run of the check takes longer than **timeout** seconds then the check is considered to have failed. It takes **retries** consecutive failures of the health check for the container to be considered `unhealthy`. There can only be one `HEALTHCHECK` instruction in a Dockerfile. If you list more than one then only the last `HEALTHCHECK` will take effect. The command after the `CMD` keyword can be either a shell command (e.g. `HEALTHCHECK CMD /bin/check-running`) or an _exec_ array (as with other Dockerfile commands; see e.g. `ENTRYPOINT` for details). The command's exit status indicates the health status of the container. The possible values are: - 0: success - the container is healthy and ready for use - 1: unhealthy - the container is not working correctly - 2: starting - the container is not ready for use yet, but is working correctly If the probe returns 2 ("starting") when the container has already moved out of the "starting" state then it is treated as "unhealthy" instead. For example, to check every five minutes or so that a web-server is able to serve the site's main page within three seconds: HEALTHCHECK --interval=5m --timeout=3s \ CMD curl -f http://localhost/ || exit 1 To help debug failing probes, any output text (UTF-8 encoded) that the command writes on stdout or stderr will be stored in the health status and can be queried with `docker inspect`. Such output should be kept short (only the first 4096 bytes are stored currently). When the health status of a container changes, a `health_status` event is generated with the new status. The health status is also displayed in the `docker ps` output. Signed-off-by: Thomas Leonard <thomas.leonard@docker.com> Signed-off-by: Sebastiaan van Stijn <github@gone.nl>
2016-04-18 09:48:13 +00:00
}
typ := strings.ToUpper(args[0])
args = args[1:]
if typ == "NONE" {
if len(args) != 0 {
return fmt.Errorf("HEALTHCHECK NONE takes no arguments")
}
test := strslice.StrSlice{typ}
b.runConfig.Healthcheck = &container.HealthConfig{
Test: test,
}
} else {
if b.runConfig.Healthcheck != nil {
oldCmd := b.runConfig.Healthcheck.Test
if len(oldCmd) > 0 && oldCmd[0] != "NONE" {
fmt.Fprintf(b.Stdout, "Note: overriding previous HEALTHCHECK: %v\n", oldCmd)
}
}
healthcheck := container.HealthConfig{}
flInterval := b.flags.AddString("interval", "")
flTimeout := b.flags.AddString("timeout", "")
flRetries := b.flags.AddString("retries", "")
if err := b.flags.Parse(); err != nil {
return err
}
switch typ {
case "CMD":
cmdSlice := handleJSONArgs(args, attributes)
if len(cmdSlice) == 0 {
return fmt.Errorf("Missing command after HEALTHCHECK CMD")
}
if !attributes["json"] {
typ = "CMD-SHELL"
}
healthcheck.Test = strslice.StrSlice(append([]string{typ}, cmdSlice...))
default:
return fmt.Errorf("Unknown type %#v in HEALTHCHECK (try CMD)", typ)
}
interval, err := parseOptInterval(flInterval)
if err != nil {
return err
}
healthcheck.Interval = interval
timeout, err := parseOptInterval(flTimeout)
if err != nil {
return err
}
healthcheck.Timeout = timeout
if flRetries.Value != "" {
retries, err := strconv.ParseInt(flRetries.Value, 10, 32)
if err != nil {
return err
}
if retries < 1 {
return fmt.Errorf("--retries must be at least 1 (not %d)", retries)
}
healthcheck.Retries = int(retries)
} else {
healthcheck.Retries = 0
}
b.runConfig.Healthcheck = &healthcheck
}
return b.commit("", b.runConfig.Cmd, fmt.Sprintf("HEALTHCHECK %q", b.runConfig.Healthcheck))
Add support for user-defined healthchecks This PR adds support for user-defined health-check probes for Docker containers. It adds a `HEALTHCHECK` instruction to the Dockerfile syntax plus some corresponding "docker run" options. It can be used with a restart policy to automatically restart a container if the check fails. The `HEALTHCHECK` instruction has two forms: * `HEALTHCHECK [OPTIONS] CMD command` (check container health by running a command inside the container) * `HEALTHCHECK NONE` (disable any healthcheck inherited from the base image) The `HEALTHCHECK` instruction tells Docker how to test a container to check that it is still working. This can detect cases such as a web server that is stuck in an infinite loop and unable to handle new connections, even though the server process is still running. When a container has a healthcheck specified, it has a _health status_ in addition to its normal status. This status is initially `starting`. Whenever a health check passes, it becomes `healthy` (whatever state it was previously in). After a certain number of consecutive failures, it becomes `unhealthy`. The options that can appear before `CMD` are: * `--interval=DURATION` (default: `30s`) * `--timeout=DURATION` (default: `30s`) * `--retries=N` (default: `1`) The health check will first run **interval** seconds after the container is started, and then again **interval** seconds after each previous check completes. If a single run of the check takes longer than **timeout** seconds then the check is considered to have failed. It takes **retries** consecutive failures of the health check for the container to be considered `unhealthy`. There can only be one `HEALTHCHECK` instruction in a Dockerfile. If you list more than one then only the last `HEALTHCHECK` will take effect. The command after the `CMD` keyword can be either a shell command (e.g. `HEALTHCHECK CMD /bin/check-running`) or an _exec_ array (as with other Dockerfile commands; see e.g. `ENTRYPOINT` for details). The command's exit status indicates the health status of the container. The possible values are: - 0: success - the container is healthy and ready for use - 1: unhealthy - the container is not working correctly - 2: starting - the container is not ready for use yet, but is working correctly If the probe returns 2 ("starting") when the container has already moved out of the "starting" state then it is treated as "unhealthy" instead. For example, to check every five minutes or so that a web-server is able to serve the site's main page within three seconds: HEALTHCHECK --interval=5m --timeout=3s \ CMD curl -f http://localhost/ || exit 1 To help debug failing probes, any output text (UTF-8 encoded) that the command writes on stdout or stderr will be stored in the health status and can be queried with `docker inspect`. Such output should be kept short (only the first 4096 bytes are stored currently). When the health status of a container changes, a `health_status` event is generated with the new status. The health status is also displayed in the `docker ps` output. Signed-off-by: Thomas Leonard <thomas.leonard@docker.com> Signed-off-by: Sebastiaan van Stijn <github@gone.nl>
2016-04-18 09:48:13 +00:00
}
// ENTRYPOINT /usr/sbin/nginx
//
// Set the entrypoint to /usr/sbin/nginx. Will accept the CMD as the arguments
// to /usr/sbin/nginx. Uses the default shell if not in JSON format.
//
// Handles command processing similar to CMD and RUN, only b.runConfig.Entrypoint
// is initialized at NewBuilder time instead of through argument parsing.
//
func entrypoint(b *Builder, args []string, attributes map[string]bool, original string) error {
if err := b.flags.Parse(); err != nil {
return err
}
parsed := handleJSONArgs(args, attributes)
switch {
case attributes["json"]:
// ENTRYPOINT ["echo", "hi"]
b.runConfig.Entrypoint = strslice.StrSlice(parsed)
case len(parsed) == 0:
// ENTRYPOINT []
b.runConfig.Entrypoint = nil
default:
// ENTRYPOINT echo hi
b.runConfig.Entrypoint = strslice.StrSlice(append(getShell(b.runConfig), parsed[0]))
}
// when setting the entrypoint if a CMD was not explicitly set then
// set the command to nil
if !b.cmdSet {
b.runConfig.Cmd = nil
}
if err := b.commit("", b.runConfig.Cmd, fmt.Sprintf("ENTRYPOINT %q", b.runConfig.Entrypoint)); err != nil {
return err
}
return nil
}
// EXPOSE 6667/tcp 7000/tcp
//
// Expose ports for links and port mappings. This all ends up in
// b.runConfig.ExposedPorts for runconfig.
//
func expose(b *Builder, args []string, attributes map[string]bool, original string) error {
portsTab := args
if len(args) == 0 {
Remove static errors from errors package. Moving all strings to the errors package wasn't a good idea after all. Our custom implementation of Go errors predates everything that's nice and good about working with errors in Go. Take as an example what we have to do to get an error message: ```go func GetErrorMessage(err error) string { switch err.(type) { case errcode.Error: e, _ := err.(errcode.Error) return e.Message case errcode.ErrorCode: ec, _ := err.(errcode.ErrorCode) return ec.Message() default: return err.Error() } } ``` This goes against every good practice for Go development. The language already provides a simple, intuitive and standard way to get error messages, that is calling the `Error()` method from an error. Reinventing the error interface is a mistake. Our custom implementation also makes very hard to reason about errors, another nice thing about Go. I found several (>10) error declarations that we don't use anywhere. This is a clear sign about how little we know about the errors we return. I also found several error usages where the number of arguments was different than the parameters declared in the error, another clear example of how difficult is to reason about errors. Moreover, our custom implementation didn't really make easier for people to return custom HTTP status code depending on the errors. Again, it's hard to reason about when to set custom codes and how. Take an example what we have to do to extract the message and status code from an error before returning a response from the API: ```go switch err.(type) { case errcode.ErrorCode: daError, _ := err.(errcode.ErrorCode) statusCode = daError.Descriptor().HTTPStatusCode errMsg = daError.Message() case errcode.Error: // For reference, if you're looking for a particular error // then you can do something like : // import ( derr "github.com/docker/docker/errors" ) // if daError.ErrorCode() == derr.ErrorCodeNoSuchContainer { ... } daError, _ := err.(errcode.Error) statusCode = daError.ErrorCode().Descriptor().HTTPStatusCode errMsg = daError.Message default: // This part of will be removed once we've // converted everything over to use the errcode package // FIXME: this is brittle and should not be necessary. // If we need to differentiate between different possible error types, // we should create appropriate error types with clearly defined meaning errStr := strings.ToLower(err.Error()) for keyword, status := range map[string]int{ "not found": http.StatusNotFound, "no such": http.StatusNotFound, "bad parameter": http.StatusBadRequest, "conflict": http.StatusConflict, "impossible": http.StatusNotAcceptable, "wrong login/password": http.StatusUnauthorized, "hasn't been activated": http.StatusForbidden, } { if strings.Contains(errStr, keyword) { statusCode = status break } } } ``` You can notice two things in that code: 1. We have to explain how errors work, because our implementation goes against how easy to use Go errors are. 2. At no moment we arrived to remove that `switch` statement that was the original reason to use our custom implementation. This change removes all our status errors from the errors package and puts them back in their specific contexts. IT puts the messages back with their contexts. That way, we know right away when errors used and how to generate their messages. It uses custom interfaces to reason about errors. Errors that need to response with a custom status code MUST implementent this simple interface: ```go type errorWithStatus interface { HTTPErrorStatusCode() int } ``` This interface is very straightforward to implement. It also preserves Go errors real behavior, getting the message is as simple as using the `Error()` method. I included helper functions to generate errors that use custom status code in `errors/errors.go`. By doing this, we remove the hard dependency we have eeverywhere to our custom errors package. Yes, you can use it as a helper to generate error, but it's still very easy to generate errors without it. Please, read this fantastic blog post about errors in Go: http://dave.cheney.net/2014/12/24/inspecting-errors Signed-off-by: David Calavera <david.calavera@gmail.com>
2016-02-25 15:53:35 +00:00
return errAtLeastOneArgument("EXPOSE")
}
if err := b.flags.Parse(); err != nil {
return err
}
if b.runConfig.ExposedPorts == nil {
b.runConfig.ExposedPorts = make(nat.PortSet)
}
ports, _, err := nat.ParsePortSpecs(portsTab)
if err != nil {
return err
}
// instead of using ports directly, we build a list of ports and sort it so
// the order is consistent. This prevents cache burst where map ordering
// changes between builds
portList := make([]string, len(ports))
var i int
for port := range ports {
if _, exists := b.runConfig.ExposedPorts[port]; !exists {
b.runConfig.ExposedPorts[port] = struct{}{}
}
portList[i] = string(port)
i++
}
sort.Strings(portList)
return b.commit("", b.runConfig.Cmd, fmt.Sprintf("EXPOSE %s", strings.Join(portList, " ")))
}
// USER foo
//
// Set the user to 'foo' for future commands and when running the
// ENTRYPOINT/CMD at container run time.
//
func user(b *Builder, args []string, attributes map[string]bool, original string) error {
if len(args) != 1 {
Remove static errors from errors package. Moving all strings to the errors package wasn't a good idea after all. Our custom implementation of Go errors predates everything that's nice and good about working with errors in Go. Take as an example what we have to do to get an error message: ```go func GetErrorMessage(err error) string { switch err.(type) { case errcode.Error: e, _ := err.(errcode.Error) return e.Message case errcode.ErrorCode: ec, _ := err.(errcode.ErrorCode) return ec.Message() default: return err.Error() } } ``` This goes against every good practice for Go development. The language already provides a simple, intuitive and standard way to get error messages, that is calling the `Error()` method from an error. Reinventing the error interface is a mistake. Our custom implementation also makes very hard to reason about errors, another nice thing about Go. I found several (>10) error declarations that we don't use anywhere. This is a clear sign about how little we know about the errors we return. I also found several error usages where the number of arguments was different than the parameters declared in the error, another clear example of how difficult is to reason about errors. Moreover, our custom implementation didn't really make easier for people to return custom HTTP status code depending on the errors. Again, it's hard to reason about when to set custom codes and how. Take an example what we have to do to extract the message and status code from an error before returning a response from the API: ```go switch err.(type) { case errcode.ErrorCode: daError, _ := err.(errcode.ErrorCode) statusCode = daError.Descriptor().HTTPStatusCode errMsg = daError.Message() case errcode.Error: // For reference, if you're looking for a particular error // then you can do something like : // import ( derr "github.com/docker/docker/errors" ) // if daError.ErrorCode() == derr.ErrorCodeNoSuchContainer { ... } daError, _ := err.(errcode.Error) statusCode = daError.ErrorCode().Descriptor().HTTPStatusCode errMsg = daError.Message default: // This part of will be removed once we've // converted everything over to use the errcode package // FIXME: this is brittle and should not be necessary. // If we need to differentiate between different possible error types, // we should create appropriate error types with clearly defined meaning errStr := strings.ToLower(err.Error()) for keyword, status := range map[string]int{ "not found": http.StatusNotFound, "no such": http.StatusNotFound, "bad parameter": http.StatusBadRequest, "conflict": http.StatusConflict, "impossible": http.StatusNotAcceptable, "wrong login/password": http.StatusUnauthorized, "hasn't been activated": http.StatusForbidden, } { if strings.Contains(errStr, keyword) { statusCode = status break } } } ``` You can notice two things in that code: 1. We have to explain how errors work, because our implementation goes against how easy to use Go errors are. 2. At no moment we arrived to remove that `switch` statement that was the original reason to use our custom implementation. This change removes all our status errors from the errors package and puts them back in their specific contexts. IT puts the messages back with their contexts. That way, we know right away when errors used and how to generate their messages. It uses custom interfaces to reason about errors. Errors that need to response with a custom status code MUST implementent this simple interface: ```go type errorWithStatus interface { HTTPErrorStatusCode() int } ``` This interface is very straightforward to implement. It also preserves Go errors real behavior, getting the message is as simple as using the `Error()` method. I included helper functions to generate errors that use custom status code in `errors/errors.go`. By doing this, we remove the hard dependency we have eeverywhere to our custom errors package. Yes, you can use it as a helper to generate error, but it's still very easy to generate errors without it. Please, read this fantastic blog post about errors in Go: http://dave.cheney.net/2014/12/24/inspecting-errors Signed-off-by: David Calavera <david.calavera@gmail.com>
2016-02-25 15:53:35 +00:00
return errExactlyOneArgument("USER")
}
if err := b.flags.Parse(); err != nil {
return err
}
b.runConfig.User = args[0]
return b.commit("", b.runConfig.Cmd, fmt.Sprintf("USER %v", args))
}
// VOLUME /foo
//
// Expose the volume /foo for use. Will also accept the JSON array form.
//
func volume(b *Builder, args []string, attributes map[string]bool, original string) error {
if len(args) == 0 {
Remove static errors from errors package. Moving all strings to the errors package wasn't a good idea after all. Our custom implementation of Go errors predates everything that's nice and good about working with errors in Go. Take as an example what we have to do to get an error message: ```go func GetErrorMessage(err error) string { switch err.(type) { case errcode.Error: e, _ := err.(errcode.Error) return e.Message case errcode.ErrorCode: ec, _ := err.(errcode.ErrorCode) return ec.Message() default: return err.Error() } } ``` This goes against every good practice for Go development. The language already provides a simple, intuitive and standard way to get error messages, that is calling the `Error()` method from an error. Reinventing the error interface is a mistake. Our custom implementation also makes very hard to reason about errors, another nice thing about Go. I found several (>10) error declarations that we don't use anywhere. This is a clear sign about how little we know about the errors we return. I also found several error usages where the number of arguments was different than the parameters declared in the error, another clear example of how difficult is to reason about errors. Moreover, our custom implementation didn't really make easier for people to return custom HTTP status code depending on the errors. Again, it's hard to reason about when to set custom codes and how. Take an example what we have to do to extract the message and status code from an error before returning a response from the API: ```go switch err.(type) { case errcode.ErrorCode: daError, _ := err.(errcode.ErrorCode) statusCode = daError.Descriptor().HTTPStatusCode errMsg = daError.Message() case errcode.Error: // For reference, if you're looking for a particular error // then you can do something like : // import ( derr "github.com/docker/docker/errors" ) // if daError.ErrorCode() == derr.ErrorCodeNoSuchContainer { ... } daError, _ := err.(errcode.Error) statusCode = daError.ErrorCode().Descriptor().HTTPStatusCode errMsg = daError.Message default: // This part of will be removed once we've // converted everything over to use the errcode package // FIXME: this is brittle and should not be necessary. // If we need to differentiate between different possible error types, // we should create appropriate error types with clearly defined meaning errStr := strings.ToLower(err.Error()) for keyword, status := range map[string]int{ "not found": http.StatusNotFound, "no such": http.StatusNotFound, "bad parameter": http.StatusBadRequest, "conflict": http.StatusConflict, "impossible": http.StatusNotAcceptable, "wrong login/password": http.StatusUnauthorized, "hasn't been activated": http.StatusForbidden, } { if strings.Contains(errStr, keyword) { statusCode = status break } } } ``` You can notice two things in that code: 1. We have to explain how errors work, because our implementation goes against how easy to use Go errors are. 2. At no moment we arrived to remove that `switch` statement that was the original reason to use our custom implementation. This change removes all our status errors from the errors package and puts them back in their specific contexts. IT puts the messages back with their contexts. That way, we know right away when errors used and how to generate their messages. It uses custom interfaces to reason about errors. Errors that need to response with a custom status code MUST implementent this simple interface: ```go type errorWithStatus interface { HTTPErrorStatusCode() int } ``` This interface is very straightforward to implement. It also preserves Go errors real behavior, getting the message is as simple as using the `Error()` method. I included helper functions to generate errors that use custom status code in `errors/errors.go`. By doing this, we remove the hard dependency we have eeverywhere to our custom errors package. Yes, you can use it as a helper to generate error, but it's still very easy to generate errors without it. Please, read this fantastic blog post about errors in Go: http://dave.cheney.net/2014/12/24/inspecting-errors Signed-off-by: David Calavera <david.calavera@gmail.com>
2016-02-25 15:53:35 +00:00
return errAtLeastOneArgument("VOLUME")
}
if err := b.flags.Parse(); err != nil {
return err
}
if b.runConfig.Volumes == nil {
b.runConfig.Volumes = map[string]struct{}{}
}
for _, v := range args {
v = strings.TrimSpace(v)
if v == "" {
return fmt.Errorf("VOLUME specified can not be an empty string")
}
b.runConfig.Volumes[v] = struct{}{}
}
if err := b.commit("", b.runConfig.Cmd, fmt.Sprintf("VOLUME %v", args)); err != nil {
return err
}
return nil
}
// STOPSIGNAL signal
//
// Set the signal that will be used to kill the container.
func stopSignal(b *Builder, args []string, attributes map[string]bool, original string) error {
if len(args) != 1 {
return errExactlyOneArgument("STOPSIGNAL")
}
sig := args[0]
_, err := signal.ParseSignal(sig)
if err != nil {
return err
}
b.runConfig.StopSignal = sig
return b.commit("", b.runConfig.Cmd, fmt.Sprintf("STOPSIGNAL %v", args))
}
// ARG name[=value]
//
// Adds the variable foo to the trusted list of variables that can be passed
// to builder using the --build-arg flag for expansion/subsitution or passing to 'run'.
// Dockerfile author may optionally set a default value of this variable.
func arg(b *Builder, args []string, attributes map[string]bool, original string) error {
if len(args) != 1 {
return errExactlyOneArgument("ARG")
}
var (
name string
value string
hasDefault bool
)
arg := args[0]
// 'arg' can just be a name or name-value pair. Note that this is different
// from 'env' that handles the split of name and value at the parser level.
// The reason for doing it differently for 'arg' is that we support just
// defining an arg and not assign it a value (while 'env' always expects a
// name-value pair). If possible, it will be good to harmonize the two.
if strings.Contains(arg, "=") {
parts := strings.SplitN(arg, "=", 2)
if len(parts[0]) == 0 {
return errBlankCommandNames("ARG")
}
name = parts[0]
value = parts[1]
hasDefault = true
} else {
name = arg
hasDefault = false
}
// add the arg to allowed list of build-time args from this step on.
b.allowedBuildArgs[name] = true
// If there is a default value associated with this arg then add it to the
// b.buildArgs if one is not already passed to the builder. The args passed
// to builder override the default value of 'arg'.
if _, ok := b.options.BuildArgs[name]; !ok && hasDefault {
b.options.BuildArgs[name] = value
}
return b.commit("", b.runConfig.Cmd, fmt.Sprintf("ARG %s", arg))
}
Remove static errors from errors package. Moving all strings to the errors package wasn't a good idea after all. Our custom implementation of Go errors predates everything that's nice and good about working with errors in Go. Take as an example what we have to do to get an error message: ```go func GetErrorMessage(err error) string { switch err.(type) { case errcode.Error: e, _ := err.(errcode.Error) return e.Message case errcode.ErrorCode: ec, _ := err.(errcode.ErrorCode) return ec.Message() default: return err.Error() } } ``` This goes against every good practice for Go development. The language already provides a simple, intuitive and standard way to get error messages, that is calling the `Error()` method from an error. Reinventing the error interface is a mistake. Our custom implementation also makes very hard to reason about errors, another nice thing about Go. I found several (>10) error declarations that we don't use anywhere. This is a clear sign about how little we know about the errors we return. I also found several error usages where the number of arguments was different than the parameters declared in the error, another clear example of how difficult is to reason about errors. Moreover, our custom implementation didn't really make easier for people to return custom HTTP status code depending on the errors. Again, it's hard to reason about when to set custom codes and how. Take an example what we have to do to extract the message and status code from an error before returning a response from the API: ```go switch err.(type) { case errcode.ErrorCode: daError, _ := err.(errcode.ErrorCode) statusCode = daError.Descriptor().HTTPStatusCode errMsg = daError.Message() case errcode.Error: // For reference, if you're looking for a particular error // then you can do something like : // import ( derr "github.com/docker/docker/errors" ) // if daError.ErrorCode() == derr.ErrorCodeNoSuchContainer { ... } daError, _ := err.(errcode.Error) statusCode = daError.ErrorCode().Descriptor().HTTPStatusCode errMsg = daError.Message default: // This part of will be removed once we've // converted everything over to use the errcode package // FIXME: this is brittle and should not be necessary. // If we need to differentiate between different possible error types, // we should create appropriate error types with clearly defined meaning errStr := strings.ToLower(err.Error()) for keyword, status := range map[string]int{ "not found": http.StatusNotFound, "no such": http.StatusNotFound, "bad parameter": http.StatusBadRequest, "conflict": http.StatusConflict, "impossible": http.StatusNotAcceptable, "wrong login/password": http.StatusUnauthorized, "hasn't been activated": http.StatusForbidden, } { if strings.Contains(errStr, keyword) { statusCode = status break } } } ``` You can notice two things in that code: 1. We have to explain how errors work, because our implementation goes against how easy to use Go errors are. 2. At no moment we arrived to remove that `switch` statement that was the original reason to use our custom implementation. This change removes all our status errors from the errors package and puts them back in their specific contexts. IT puts the messages back with their contexts. That way, we know right away when errors used and how to generate their messages. It uses custom interfaces to reason about errors. Errors that need to response with a custom status code MUST implementent this simple interface: ```go type errorWithStatus interface { HTTPErrorStatusCode() int } ``` This interface is very straightforward to implement. It also preserves Go errors real behavior, getting the message is as simple as using the `Error()` method. I included helper functions to generate errors that use custom status code in `errors/errors.go`. By doing this, we remove the hard dependency we have eeverywhere to our custom errors package. Yes, you can use it as a helper to generate error, but it's still very easy to generate errors without it. Please, read this fantastic blog post about errors in Go: http://dave.cheney.net/2014/12/24/inspecting-errors Signed-off-by: David Calavera <david.calavera@gmail.com>
2016-02-25 15:53:35 +00:00
// SHELL powershell -command
//
// Set the non-default shell to use.
func shell(b *Builder, args []string, attributes map[string]bool, original string) error {
if err := b.flags.Parse(); err != nil {
return err
}
shellSlice := handleJSONArgs(args, attributes)
switch {
case len(shellSlice) == 0:
// SHELL []
return errAtLeastOneArgument("SHELL")
case attributes["json"]:
// SHELL ["powershell", "-command"]
b.runConfig.Shell = strslice.StrSlice(shellSlice)
default:
// SHELL powershell -command - not JSON
return errNotJSON("SHELL", original)
}
return b.commit("", b.runConfig.Cmd, fmt.Sprintf("SHELL %v", shellSlice))
}
Remove static errors from errors package. Moving all strings to the errors package wasn't a good idea after all. Our custom implementation of Go errors predates everything that's nice and good about working with errors in Go. Take as an example what we have to do to get an error message: ```go func GetErrorMessage(err error) string { switch err.(type) { case errcode.Error: e, _ := err.(errcode.Error) return e.Message case errcode.ErrorCode: ec, _ := err.(errcode.ErrorCode) return ec.Message() default: return err.Error() } } ``` This goes against every good practice for Go development. The language already provides a simple, intuitive and standard way to get error messages, that is calling the `Error()` method from an error. Reinventing the error interface is a mistake. Our custom implementation also makes very hard to reason about errors, another nice thing about Go. I found several (>10) error declarations that we don't use anywhere. This is a clear sign about how little we know about the errors we return. I also found several error usages where the number of arguments was different than the parameters declared in the error, another clear example of how difficult is to reason about errors. Moreover, our custom implementation didn't really make easier for people to return custom HTTP status code depending on the errors. Again, it's hard to reason about when to set custom codes and how. Take an example what we have to do to extract the message and status code from an error before returning a response from the API: ```go switch err.(type) { case errcode.ErrorCode: daError, _ := err.(errcode.ErrorCode) statusCode = daError.Descriptor().HTTPStatusCode errMsg = daError.Message() case errcode.Error: // For reference, if you're looking for a particular error // then you can do something like : // import ( derr "github.com/docker/docker/errors" ) // if daError.ErrorCode() == derr.ErrorCodeNoSuchContainer { ... } daError, _ := err.(errcode.Error) statusCode = daError.ErrorCode().Descriptor().HTTPStatusCode errMsg = daError.Message default: // This part of will be removed once we've // converted everything over to use the errcode package // FIXME: this is brittle and should not be necessary. // If we need to differentiate between different possible error types, // we should create appropriate error types with clearly defined meaning errStr := strings.ToLower(err.Error()) for keyword, status := range map[string]int{ "not found": http.StatusNotFound, "no such": http.StatusNotFound, "bad parameter": http.StatusBadRequest, "conflict": http.StatusConflict, "impossible": http.StatusNotAcceptable, "wrong login/password": http.StatusUnauthorized, "hasn't been activated": http.StatusForbidden, } { if strings.Contains(errStr, keyword) { statusCode = status break } } } ``` You can notice two things in that code: 1. We have to explain how errors work, because our implementation goes against how easy to use Go errors are. 2. At no moment we arrived to remove that `switch` statement that was the original reason to use our custom implementation. This change removes all our status errors from the errors package and puts them back in their specific contexts. IT puts the messages back with their contexts. That way, we know right away when errors used and how to generate their messages. It uses custom interfaces to reason about errors. Errors that need to response with a custom status code MUST implementent this simple interface: ```go type errorWithStatus interface { HTTPErrorStatusCode() int } ``` This interface is very straightforward to implement. It also preserves Go errors real behavior, getting the message is as simple as using the `Error()` method. I included helper functions to generate errors that use custom status code in `errors/errors.go`. By doing this, we remove the hard dependency we have eeverywhere to our custom errors package. Yes, you can use it as a helper to generate error, but it's still very easy to generate errors without it. Please, read this fantastic blog post about errors in Go: http://dave.cheney.net/2014/12/24/inspecting-errors Signed-off-by: David Calavera <david.calavera@gmail.com>
2016-02-25 15:53:35 +00:00
func errAtLeastOneArgument(command string) error {
return fmt.Errorf("%s requires at least one argument", command)
}
func errExactlyOneArgument(command string) error {
return fmt.Errorf("%s requires exactly one argument", command)
}
func errAtLeastTwoArguments(command string) error {
return fmt.Errorf("%s requires at least two arguments", command)
}
func errBlankCommandNames(command string) error {
return fmt.Errorf("%s names can not be blank", command)
}
Remove static errors from errors package. Moving all strings to the errors package wasn't a good idea after all. Our custom implementation of Go errors predates everything that's nice and good about working with errors in Go. Take as an example what we have to do to get an error message: ```go func GetErrorMessage(err error) string { switch err.(type) { case errcode.Error: e, _ := err.(errcode.Error) return e.Message case errcode.ErrorCode: ec, _ := err.(errcode.ErrorCode) return ec.Message() default: return err.Error() } } ``` This goes against every good practice for Go development. The language already provides a simple, intuitive and standard way to get error messages, that is calling the `Error()` method from an error. Reinventing the error interface is a mistake. Our custom implementation also makes very hard to reason about errors, another nice thing about Go. I found several (>10) error declarations that we don't use anywhere. This is a clear sign about how little we know about the errors we return. I also found several error usages where the number of arguments was different than the parameters declared in the error, another clear example of how difficult is to reason about errors. Moreover, our custom implementation didn't really make easier for people to return custom HTTP status code depending on the errors. Again, it's hard to reason about when to set custom codes and how. Take an example what we have to do to extract the message and status code from an error before returning a response from the API: ```go switch err.(type) { case errcode.ErrorCode: daError, _ := err.(errcode.ErrorCode) statusCode = daError.Descriptor().HTTPStatusCode errMsg = daError.Message() case errcode.Error: // For reference, if you're looking for a particular error // then you can do something like : // import ( derr "github.com/docker/docker/errors" ) // if daError.ErrorCode() == derr.ErrorCodeNoSuchContainer { ... } daError, _ := err.(errcode.Error) statusCode = daError.ErrorCode().Descriptor().HTTPStatusCode errMsg = daError.Message default: // This part of will be removed once we've // converted everything over to use the errcode package // FIXME: this is brittle and should not be necessary. // If we need to differentiate between different possible error types, // we should create appropriate error types with clearly defined meaning errStr := strings.ToLower(err.Error()) for keyword, status := range map[string]int{ "not found": http.StatusNotFound, "no such": http.StatusNotFound, "bad parameter": http.StatusBadRequest, "conflict": http.StatusConflict, "impossible": http.StatusNotAcceptable, "wrong login/password": http.StatusUnauthorized, "hasn't been activated": http.StatusForbidden, } { if strings.Contains(errStr, keyword) { statusCode = status break } } } ``` You can notice two things in that code: 1. We have to explain how errors work, because our implementation goes against how easy to use Go errors are. 2. At no moment we arrived to remove that `switch` statement that was the original reason to use our custom implementation. This change removes all our status errors from the errors package and puts them back in their specific contexts. IT puts the messages back with their contexts. That way, we know right away when errors used and how to generate their messages. It uses custom interfaces to reason about errors. Errors that need to response with a custom status code MUST implementent this simple interface: ```go type errorWithStatus interface { HTTPErrorStatusCode() int } ``` This interface is very straightforward to implement. It also preserves Go errors real behavior, getting the message is as simple as using the `Error()` method. I included helper functions to generate errors that use custom status code in `errors/errors.go`. By doing this, we remove the hard dependency we have eeverywhere to our custom errors package. Yes, you can use it as a helper to generate error, but it's still very easy to generate errors without it. Please, read this fantastic blog post about errors in Go: http://dave.cheney.net/2014/12/24/inspecting-errors Signed-off-by: David Calavera <david.calavera@gmail.com>
2016-02-25 15:53:35 +00:00
func errTooManyArguments(command string) error {
return fmt.Errorf("Bad input to %s, too many arguments", command)
}
// getShell is a helper function which gets the right shell for prefixing the
// shell-form of RUN, ENTRYPOINT and CMD instructions
func getShell(c *container.Config) []string {
if 0 == len(c.Shell) {
return defaultShell[:]
}
return c.Shell[:]
}