1
0
Fork 0
mirror of https://github.com/moby/moby.git synced 2022-11-09 12:21:53 -05:00
moby--moby/libnetwork/networkdb/cluster.go

760 lines
19 KiB
Go
Raw Normal View History

package networkdb
import (
"bytes"
"context"
"crypto/rand"
"encoding/hex"
"fmt"
"log"
"math/big"
rnd "math/rand"
"net"
"strings"
"time"
"github.com/hashicorp/memberlist"
"github.com/sirupsen/logrus"
)
const (
reapPeriod = 5 * time.Second
retryInterval = 1 * time.Second
nodeReapInterval = 24 * time.Hour
nodeReapPeriod = 2 * time.Hour
// considering a cluster with > 20 nodes and a drain speed of 100 msg/s
// the following is roughly 1 minute
maxQueueLenBroadcastOnSync = 500
)
type logWriter struct{}
func (l *logWriter) Write(p []byte) (int, error) {
str := string(p)
str = strings.TrimSuffix(str, "\n")
switch {
case strings.HasPrefix(str, "[WARN] "):
str = strings.TrimPrefix(str, "[WARN] ")
logrus.Warn(str)
case strings.HasPrefix(str, "[DEBUG] "):
str = strings.TrimPrefix(str, "[DEBUG] ")
logrus.Debug(str)
case strings.HasPrefix(str, "[INFO] "):
str = strings.TrimPrefix(str, "[INFO] ")
logrus.Info(str)
case strings.HasPrefix(str, "[ERR] "):
str = strings.TrimPrefix(str, "[ERR] ")
logrus.Warn(str)
}
return len(p), nil
}
// SetKey adds a new key to the key ring
func (nDB *NetworkDB) SetKey(key []byte) {
logrus.Debugf("Adding key %.5s", hex.EncodeToString(key))
nDB.Lock()
defer nDB.Unlock()
for _, dbKey := range nDB.config.Keys {
if bytes.Equal(key, dbKey) {
return
}
}
nDB.config.Keys = append(nDB.config.Keys, key)
if nDB.keyring != nil {
nDB.keyring.AddKey(key)
}
}
// SetPrimaryKey sets the given key as the primary key. This should have
// been added apriori through SetKey
func (nDB *NetworkDB) SetPrimaryKey(key []byte) {
logrus.Debugf("Primary Key %.5s", hex.EncodeToString(key))
nDB.RLock()
defer nDB.RUnlock()
for _, dbKey := range nDB.config.Keys {
if bytes.Equal(key, dbKey) {
if nDB.keyring != nil {
nDB.keyring.UseKey(dbKey)
}
break
}
}
}
// RemoveKey removes a key from the key ring. The key being removed
// can't be the primary key
func (nDB *NetworkDB) RemoveKey(key []byte) {
logrus.Debugf("Remove Key %.5s", hex.EncodeToString(key))
nDB.Lock()
defer nDB.Unlock()
for i, dbKey := range nDB.config.Keys {
if bytes.Equal(key, dbKey) {
nDB.config.Keys = append(nDB.config.Keys[:i], nDB.config.Keys[i+1:]...)
if nDB.keyring != nil {
nDB.keyring.RemoveKey(dbKey)
}
break
}
}
}
func (nDB *NetworkDB) clusterInit() error {
nDB.lastStatsTimestamp = time.Now()
nDB.lastHealthTimestamp = nDB.lastStatsTimestamp
config := memberlist.DefaultLANConfig()
config.Name = nDB.config.NodeID
config.BindAddr = nDB.config.BindAddr
config.AdvertiseAddr = nDB.config.AdvertiseAddr
config.UDPBufferSize = nDB.config.PacketBufferSize
if nDB.config.BindPort != 0 {
config.BindPort = nDB.config.BindPort
}
config.ProtocolVersion = memberlist.ProtocolVersion2Compatible
config.Delegate = &delegate{nDB: nDB}
config.Events = &eventDelegate{nDB: nDB}
// custom logger that does not add time or date, so they are not
// duplicated by logrus
config.Logger = log.New(&logWriter{}, "", 0)
var err error
if len(nDB.config.Keys) > 0 {
for i, key := range nDB.config.Keys {
logrus.Debugf("Encryption key %d: %.5s", i+1, hex.EncodeToString(key))
}
nDB.keyring, err = memberlist.NewKeyring(nDB.config.Keys, nDB.config.Keys[0])
if err != nil {
return err
}
config.Keyring = nDB.keyring
}
nDB.networkBroadcasts = &memberlist.TransmitLimitedQueue{
NumNodes: func() int {
nDB.RLock()
num := len(nDB.nodes)
nDB.RUnlock()
return num
},
RetransmitMult: config.RetransmitMult,
}
nDB.nodeBroadcasts = &memberlist.TransmitLimitedQueue{
NumNodes: func() int {
nDB.RLock()
num := len(nDB.nodes)
nDB.RUnlock()
return num
},
RetransmitMult: config.RetransmitMult,
}
mlist, err := memberlist.Create(config)
if err != nil {
return fmt.Errorf("failed to create memberlist: %v", err)
}
nDB.ctx, nDB.cancelCtx = context.WithCancel(context.Background())
nDB.memberlist = mlist
for _, trigger := range []struct {
interval time.Duration
fn func()
}{
{reapPeriod, nDB.reapState},
{config.GossipInterval, nDB.gossip},
{config.PushPullInterval, nDB.bulkSyncTables},
{retryInterval, nDB.reconnectNode},
{nodeReapPeriod, nDB.reapDeadNode},
{nDB.config.rejoinClusterInterval, nDB.rejoinClusterBootStrap},
} {
t := time.NewTicker(trigger.interval)
go nDB.triggerFunc(trigger.interval, t.C, trigger.fn)
nDB.tickers = append(nDB.tickers, t)
}
return nil
}
func (nDB *NetworkDB) retryJoin(ctx context.Context, members []string) {
t := time.NewTicker(retryInterval)
defer t.Stop()
for {
select {
case <-t.C:
if _, err := nDB.memberlist.Join(members); err != nil {
logrus.Errorf("Failed to join memberlist %s on retry: %v", members, err)
continue
}
if err := nDB.sendNodeEvent(NodeEventTypeJoin); err != nil {
logrus.Errorf("failed to send node join on retry: %v", err)
continue
}
return
case <-ctx.Done():
return
}
}
}
func (nDB *NetworkDB) clusterJoin(members []string) error {
mlist := nDB.memberlist
if _, err := mlist.Join(members); err != nil {
// In case of failure, we no longer need to explicitly call retryJoin.
// rejoinClusterBootStrap, which runs every nDB.config.rejoinClusterInterval,
// will retryJoin for nDB.config.rejoinClusterDuration.
return fmt.Errorf("could not join node to memberlist: %v", err)
}
if err := nDB.sendNodeEvent(NodeEventTypeJoin); err != nil {
return fmt.Errorf("failed to send node join: %v", err)
}
return nil
}
func (nDB *NetworkDB) clusterLeave() error {
mlist := nDB.memberlist
if err := nDB.sendNodeEvent(NodeEventTypeLeave); err != nil {
logrus.Errorf("failed to send node leave: %v", err)
}
if err := mlist.Leave(time.Second); err != nil {
return err
}
// cancel the context
nDB.cancelCtx()
for _, t := range nDB.tickers {
t.Stop()
}
return mlist.Shutdown()
}
func (nDB *NetworkDB) triggerFunc(stagger time.Duration, C <-chan time.Time, f func()) {
// Use a random stagger to avoid synchronizing
randStagger := time.Duration(uint64(rnd.Int63()) % uint64(stagger)) //nolint:gosec // gosec complains about the use of rand here. It should be fine.
select {
case <-time.After(randStagger):
case <-nDB.ctx.Done():
return
}
for {
select {
case <-C:
f()
case <-nDB.ctx.Done():
return
}
}
}
func (nDB *NetworkDB) reapDeadNode() {
nDB.Lock()
defer nDB.Unlock()
for _, nodeMap := range []map[string]*node{
nDB.failedNodes,
nDB.leftNodes,
} {
for id, n := range nodeMap {
if n.reapTime > nodeReapPeriod {
n.reapTime -= nodeReapPeriod
continue
}
logrus.Debugf("Garbage collect node %v", n.Name)
delete(nodeMap, id)
}
}
}
// rejoinClusterBootStrap is called periodically to check if all bootStrap nodes are active in the cluster,
// if not, call the cluster join to merge 2 separate clusters that are formed when all managers
// stopped/started at the same time
func (nDB *NetworkDB) rejoinClusterBootStrap() {
nDB.RLock()
if len(nDB.bootStrapIP) == 0 {
nDB.RUnlock()
return
}
myself, ok := nDB.nodes[nDB.config.NodeID]
if !ok {
nDB.RUnlock()
logrus.Warnf("rejoinClusterBootstrap unable to find local node info using ID:%v", nDB.config.NodeID)
return
}
bootStrapIPs := make([]string, 0, len(nDB.bootStrapIP))
for _, bootIP := range nDB.bootStrapIP {
// botostrap IPs are usually IP:port from the Join
var bootstrapIP net.IP
ipStr, _, err := net.SplitHostPort(bootIP)
if err != nil {
// try to parse it as an IP with port
// Note this seems to be the case for swarm that do not specify any port
ipStr = bootIP
}
bootstrapIP = net.ParseIP(ipStr)
if bootstrapIP != nil {
for _, node := range nDB.nodes {
if node.Addr.Equal(bootstrapIP) && !node.Addr.Equal(myself.Addr) {
// One of the bootstrap nodes (and not myself) is part of the cluster, return
nDB.RUnlock()
return
}
}
bootStrapIPs = append(bootStrapIPs, bootIP)
}
}
nDB.RUnlock()
if len(bootStrapIPs) == 0 {
// this will also avoid to call the Join with an empty list erasing the current bootstrap ip list
logrus.Debug("rejoinClusterBootStrap did not find any valid IP")
return
}
// None of the bootStrap nodes are in the cluster, call memberlist join
logrus.Debugf("rejoinClusterBootStrap, calling cluster join with bootStrap %v", bootStrapIPs)
ctx, cancel := context.WithTimeout(nDB.ctx, nDB.config.rejoinClusterDuration)
defer cancel()
nDB.retryJoin(ctx, bootStrapIPs)
}
func (nDB *NetworkDB) reconnectNode() {
nDB.RLock()
if len(nDB.failedNodes) == 0 {
nDB.RUnlock()
return
}
nodes := make([]*node, 0, len(nDB.failedNodes))
for _, n := range nDB.failedNodes {
nodes = append(nodes, n)
}
nDB.RUnlock()
node := nodes[randomOffset(len(nodes))]
addr := net.UDPAddr{IP: node.Addr, Port: int(node.Port)}
if _, err := nDB.memberlist.Join([]string{addr.String()}); err != nil {
return
}
if err := nDB.sendNodeEvent(NodeEventTypeJoin); err != nil {
return
}
logrus.Debugf("Initiating bulk sync with node %s after reconnect", node.Name)
nDB.bulkSync([]string{node.Name}, true)
}
// For timing the entry deletion in the reaper APIs that doesn't use monotonic clock
// source (time.Now, Sub etc.) should be avoided. Hence we use reapTime in every
// entry which is set initially to reapInterval and decremented by reapPeriod every time
// the reaper runs. NOTE nDB.reapTableEntries updates the reapTime with a readlock. This
// is safe as long as no other concurrent path touches the reapTime field.
func (nDB *NetworkDB) reapState() {
// The reapTableEntries leverage the presence of the network so garbage collect entries first
nDB.reapTableEntries()
nDB.reapNetworks()
}
func (nDB *NetworkDB) reapNetworks() {
nDB.Lock()
for _, nn := range nDB.networks {
for id, n := range nn {
if n.leaving {
if n.reapTime <= 0 {
delete(nn, id)
continue
}
n.reapTime -= reapPeriod
}
}
}
nDB.Unlock()
}
func (nDB *NetworkDB) reapTableEntries() {
var nodeNetworks []string
// This is best effort, if the list of network changes will be picked up in the next cycle
nDB.RLock()
for nid := range nDB.networks[nDB.config.NodeID] {
nodeNetworks = append(nodeNetworks, nid)
}
nDB.RUnlock()
cycleStart := time.Now()
// In order to avoid blocking the database for a long time, apply the garbage collection logic by network
// The lock is taken at the beginning of the cycle and the deletion is inline
for _, nid := range nodeNetworks {
nDB.Lock()
nDB.indexes[byNetwork].WalkPrefix("/"+nid, func(path string, v interface{}) bool {
// timeCompensation compensate in case the lock took some time to be released
timeCompensation := time.Since(cycleStart)
entry, ok := v.(*entry)
if !ok || !entry.deleting {
return false
}
// In this check we are adding an extra 1 second to guarantee that when the number is truncated to int32 to fit the packet
// for the tableEvent the number is always strictly > 1 and never 0
if entry.reapTime > reapPeriod+timeCompensation+time.Second {
entry.reapTime -= reapPeriod + timeCompensation
return false
}
params := strings.Split(path[1:], "/")
nid := params[0]
tname := params[1]
key := params[2]
okTable, okNetwork := nDB.deleteEntry(nid, tname, key)
if !okTable {
logrus.Errorf("Table tree delete failed, entry with key:%s does not exist in the table:%s network:%s", key, tname, nid)
}
if !okNetwork {
logrus.Errorf("Network tree delete failed, entry with key:%s does not exist in the network:%s table:%s", key, nid, tname)
}
return false
})
nDB.Unlock()
}
}
func (nDB *NetworkDB) gossip() {
networkNodes := make(map[string][]string)
nDB.RLock()
thisNodeNetworks := nDB.networks[nDB.config.NodeID]
for nid := range thisNodeNetworks {
networkNodes[nid] = nDB.networkNodes[nid]
}
printStats := time.Since(nDB.lastStatsTimestamp) >= nDB.config.StatsPrintPeriod
printHealth := time.Since(nDB.lastHealthTimestamp) >= nDB.config.HealthPrintPeriod
nDB.RUnlock()
if printHealth {
healthScore := nDB.memberlist.GetHealthScore()
if healthScore != 0 {
logrus.Warnf("NetworkDB stats %v(%v) - healthscore:%d (connectivity issues)", nDB.config.Hostname, nDB.config.NodeID, healthScore)
}
nDB.lastHealthTimestamp = time.Now()
}
for nid, nodes := range networkNodes {
mNodes := nDB.mRandomNodes(3, nodes)
bytesAvail := nDB.config.PacketBufferSize - compoundHeaderOverhead
nDB.RLock()
network, ok := thisNodeNetworks[nid]
nDB.RUnlock()
if !ok || network == nil {
// It is normal for the network to be removed
// between the time we collect the network
// attachments of this node and processing
// them here.
continue
}
broadcastQ := network.tableBroadcasts
if broadcastQ == nil {
logrus.Errorf("Invalid broadcastQ encountered while gossiping for network %s", nid)
continue
}
msgs := broadcastQ.GetBroadcasts(compoundOverhead, bytesAvail)
// Collect stats and print the queue info, note this code is here also to have a view of the queues empty
network.qMessagesSent += len(msgs)
if printStats {
logrus.Infof("NetworkDB stats %v(%v) - netID:%s leaving:%t netPeers:%d entries:%d Queue qLen:%d netMsg/s:%d",
nDB.config.Hostname, nDB.config.NodeID,
nid, network.leaving, broadcastQ.NumNodes(), network.entriesNumber, broadcastQ.NumQueued(),
network.qMessagesSent/int((nDB.config.StatsPrintPeriod/time.Second)))
network.qMessagesSent = 0
}
if len(msgs) == 0 {
continue
}
// Create a compound message
compound := makeCompoundMessage(msgs)
for _, node := range mNodes {
nDB.RLock()
mnode := nDB.nodes[node]
nDB.RUnlock()
if mnode == nil {
break
}
// Send the compound message
if err := nDB.memberlist.SendBestEffort(&mnode.Node, compound); err != nil {
logrus.Errorf("Failed to send gossip to %s: %s", mnode.Addr, err)
}
}
}
// Reset the stats
if printStats {
nDB.lastStatsTimestamp = time.Now()
}
}
func (nDB *NetworkDB) bulkSyncTables() {
var networks []string
nDB.RLock()
for nid, network := range nDB.networks[nDB.config.NodeID] {
if network.leaving {
continue
}
networks = append(networks, nid)
}
nDB.RUnlock()
for {
if len(networks) == 0 {
break
}
nid := networks[0]
networks = networks[1:]
nDB.RLock()
nodes := nDB.networkNodes[nid]
nDB.RUnlock()
// No peer nodes on this network. Move on.
if len(nodes) == 0 {
continue
}
completed, err := nDB.bulkSync(nodes, false)
if err != nil {
logrus.Errorf("periodic bulk sync failure for network %s: %v", nid, err)
continue
}
// Remove all the networks for which we have
// successfully completed bulk sync in this iteration.
updatedNetworks := make([]string, 0, len(networks))
for _, nid := range networks {
var found bool
for _, completedNid := range completed {
if nid == completedNid {
found = true
break
}
}
if !found {
updatedNetworks = append(updatedNetworks, nid)
}
}
networks = updatedNetworks
}
}
func (nDB *NetworkDB) bulkSync(nodes []string, all bool) ([]string, error) {
if !all {
// Get 2 random nodes. 2nd node will be tried if the bulk sync to
// 1st node fails.
nodes = nDB.mRandomNodes(2, nodes)
}
if len(nodes) == 0 {
return nil, nil
}
var err error
var networks []string
var success bool
for _, node := range nodes {
if node == nDB.config.NodeID {
continue
}
logrus.Debugf("%v(%v): Initiating bulk sync with node %v", nDB.config.Hostname, nDB.config.NodeID, node)
networks = nDB.findCommonNetworks(node)
err = nDB.bulkSyncNode(networks, node, true)
if err != nil {
err = fmt.Errorf("bulk sync to node %s failed: %v", node, err)
logrus.Warn(err.Error())
} else {
// bulk sync succeeded
success = true
// if its periodic bulksync stop after the first successful sync
if !all {
break
}
}
}
if success {
// if at least one node sync succeeded
return networks, nil
}
return nil, err
}
// Bulk sync all the table entries belonging to a set of networks to a
// single peer node. It can be unsolicited or can be in response to an
// unsolicited bulk sync
func (nDB *NetworkDB) bulkSyncNode(networks []string, node string, unsolicited bool) error {
var msgs [][]byte
var unsolMsg string
if unsolicited {
unsolMsg = "unsolicited"
}
logrus.Debugf("%v(%v): Initiating %s bulk sync for networks %v with node %s",
nDB.config.Hostname, nDB.config.NodeID, unsolMsg, networks, node)
nDB.RLock()
mnode := nDB.nodes[node]
if mnode == nil {
nDB.RUnlock()
return nil
}
for _, nid := range networks {
nDB.indexes[byNetwork].WalkPrefix("/"+nid, func(path string, v interface{}) bool {
entry, ok := v.(*entry)
if !ok {
return false
}
eType := TableEventTypeCreate
if entry.deleting {
eType = TableEventTypeDelete
}
params := strings.Split(path[1:], "/")
tEvent := TableEvent{
Type: eType,
LTime: entry.ltime,
NodeName: entry.node,
NetworkID: nid,
TableName: params[1],
Key: params[2],
Value: entry.value,
// The duration in second is a float that below would be truncated
ResidualReapTime: int32(entry.reapTime.Seconds()),
}
msg, err := encodeMessage(MessageTypeTableEvent, &tEvent)
if err != nil {
logrus.Errorf("Encode failure during bulk sync: %#v", tEvent)
return false
}
msgs = append(msgs, msg)
return false
})
}
nDB.RUnlock()
// Create a compound message
compound := makeCompoundMessage(msgs)
bsm := BulkSyncMessage{
LTime: nDB.tableClock.Time(),
Unsolicited: unsolicited,
NodeName: nDB.config.NodeID,
Networks: networks,
Payload: compound,
}
buf, err := encodeMessage(MessageTypeBulkSync, &bsm)
if err != nil {
return fmt.Errorf("failed to encode bulk sync message: %v", err)
}
nDB.Lock()
ch := make(chan struct{})
nDB.bulkSyncAckTbl[node] = ch
nDB.Unlock()
err = nDB.memberlist.SendReliable(&mnode.Node, buf)
if err != nil {
nDB.Lock()
delete(nDB.bulkSyncAckTbl, node)
nDB.Unlock()
return fmt.Errorf("failed to send a TCP message during bulk sync: %v", err)
}
// Wait on a response only if it is unsolicited.
if unsolicited {
startTime := time.Now()
t := time.NewTimer(30 * time.Second)
select {
case <-t.C:
logrus.Errorf("Bulk sync to node %s timed out", node)
case <-ch:
logrus.Debugf("%v(%v): Bulk sync to node %s took %s", nDB.config.Hostname, nDB.config.NodeID, node, time.Since(startTime))
}
t.Stop()
}
return nil
}
// Returns a random offset between 0 and n
func randomOffset(n int) int {
if n == 0 {
return 0
}
val, err := rand.Int(rand.Reader, big.NewInt(int64(n))) // #nosec G404 -- False positive; see https://github.com/securego/gosec/issues/862
if err != nil {
logrus.Errorf("Failed to get a random offset: %v", err)
return 0
}
return int(val.Int64())
}
// mRandomNodes is used to select up to m random nodes. It is possible
// that less than m nodes are returned.
func (nDB *NetworkDB) mRandomNodes(m int, nodes []string) []string {
n := len(nodes)
mNodes := make([]string, 0, m)
OUTER:
// Probe up to 3*n times, with large n this is not necessary
// since k << n, but with small n we want search to be
// exhaustive
for i := 0; i < 3*n && len(mNodes) < m; i++ {
// Get random node
idx := randomOffset(n)
node := nodes[idx]
if node == nDB.config.NodeID {
continue
}
// Check if we have this node already
for j := 0; j < len(mNodes); j++ {
if node == mNodes[j] {
continue OUTER
}
}
// Append the node
mNodes = append(mNodes, node)
}
return mNodes
}