1
0
Fork 0
mirror of https://github.com/moby/moby.git synced 2022-11-09 12:21:53 -05:00
Signed-off-by: John Howard <jhoward@microsoft.com>
This commit is contained in:
John Howard 2019-03-21 13:11:06 -07:00
parent 86ef34b521
commit 36d8e29140
19 changed files with 674 additions and 407 deletions

View file

@ -1,7 +1,7 @@
# the following lines are in sorted order, FYI
github.com/Azure/go-ansiterm d6e3b3328b783f23731bc4d058875b0371ff8109
github.com/Microsoft/hcsshim ada9cb39f715fb568e1030e7613732bb4f1e4aeb
github.com/Microsoft/go-winio 4de24ed3e8c509e6d1f609a8cb6b1c9fd9816e6d
github.com/Microsoft/go-winio c599b533b43b1363d7d7c6cfda5ede70ed73ff13
github.com/docker/libtrust 9cbd2a1374f46905c68a4eb3694a130610adc62a
github.com/go-check/check 4ed411733c5785b40214c70bce814c3a3a689609 https://github.com/cpuguy83/check.git
github.com/golang/gddo 9b12a26f3fbd7397dee4e20939ddca719d840d2a

View file

@ -1,65 +0,0 @@
package etw
import (
"bytes"
"encoding/binary"
)
// EventData maintains a buffer which builds up the data for an ETW event. It
// needs to be paired with EventMetadata which describes the event.
type EventData struct {
buffer bytes.Buffer
}
// Bytes returns the raw binary data containing the event data. The returned
// value is not copied from the internal buffer, so it can be mutated by the
// EventData object after it is returned.
func (ed *EventData) Bytes() []byte {
return ed.buffer.Bytes()
}
// WriteString appends a string, including the null terminator, to the buffer.
func (ed *EventData) WriteString(data string) {
ed.buffer.WriteString(data)
ed.buffer.WriteByte(0)
}
// WriteInt8 appends a int8 to the buffer.
func (ed *EventData) WriteInt8(value int8) {
ed.buffer.WriteByte(uint8(value))
}
// WriteInt16 appends a int16 to the buffer.
func (ed *EventData) WriteInt16(value int16) {
binary.Write(&ed.buffer, binary.LittleEndian, value)
}
// WriteInt32 appends a int32 to the buffer.
func (ed *EventData) WriteInt32(value int32) {
binary.Write(&ed.buffer, binary.LittleEndian, value)
}
// WriteInt64 appends a int64 to the buffer.
func (ed *EventData) WriteInt64(value int64) {
binary.Write(&ed.buffer, binary.LittleEndian, value)
}
// WriteUint8 appends a uint8 to the buffer.
func (ed *EventData) WriteUint8(value uint8) {
ed.buffer.WriteByte(value)
}
// WriteUint16 appends a uint16 to the buffer.
func (ed *EventData) WriteUint16(value uint16) {
binary.Write(&ed.buffer, binary.LittleEndian, value)
}
// WriteUint32 appends a uint32 to the buffer.
func (ed *EventData) WriteUint32(value uint32) {
binary.Write(&ed.buffer, binary.LittleEndian, value)
}
// WriteUint64 appends a uint64 to the buffer.
func (ed *EventData) WriteUint64(value uint64) {
binary.Write(&ed.buffer, binary.LittleEndian, value)
}

View file

@ -1,177 +0,0 @@
package etw
import (
"bytes"
"encoding/binary"
)
// InType indicates the type of data contained in the ETW event.
type InType byte
// Various InType definitions for TraceLogging. These must match the definitions
// found in TraceLoggingProvider.h in the Windows SDK.
const (
InTypeNull InType = iota
InTypeUnicodeString
InTypeANSIString
InTypeInt8
InTypeUint8
InTypeInt16
InTypeUint16
InTypeInt32
InTypeUint32
InTypeInt64
InTypeUint64
InTypeFloat
InTypeDouble
InTypeBool32
InTypeBinary
InTypeGUID
InTypePointerUnsupported
InTypeFileTime
InTypeSystemTime
InTypeSID
InTypeHexInt32
InTypeHexInt64
InTypeCountedString
InTypeCountedANSIString
InTypeStruct
InTypeCountedBinary
InTypeCountedArray InType = 32
InTypeArray InType = 64
)
// OutType specifies a hint to the event decoder for how the value should be
// formatted.
type OutType byte
// Various OutType definitions for TraceLogging. These must match the
// definitions found in TraceLoggingProvider.h in the Windows SDK.
const (
// OutTypeDefault indicates that the default formatting for the InType will
// be used by the event decoder.
OutTypeDefault OutType = iota
OutTypeNoPrint
OutTypeString
OutTypeBoolean
OutTypeHex
OutTypePID
OutTypeTID
OutTypePort
OutTypeIPv4
OutTypeIPv6
OutTypeSocketAddress
OutTypeXML
OutTypeJSON
OutTypeWin32Error
OutTypeNTStatus
OutTypeHResult
OutTypeFileTime
OutTypeSigned
OutTypeUnsigned
OutTypeUTF8 OutType = 35
OutTypePKCS7WithTypeInfo OutType = 36
OutTypeCodePointer OutType = 37
OutTypeDateTimeUTC OutType = 38
)
// EventMetadata maintains a buffer which builds up the metadata for an ETW
// event. It needs to be paired with EventData which describes the event.
type EventMetadata struct {
buffer bytes.Buffer
}
// Bytes returns the raw binary data containing the event metadata. Before being
// returned, the current size of the buffer is written to the start of the
// buffer. The returned value is not copied from the internal buffer, so it can
// be mutated by the EventMetadata object after it is returned.
func (em *EventMetadata) Bytes() []byte {
// Finalize the event metadata buffer by filling in the buffer length at the
// beginning.
binary.LittleEndian.PutUint16(em.buffer.Bytes(), uint16(em.buffer.Len()))
return em.buffer.Bytes()
}
// WriteEventHeader writes the metadata for the start of an event to the buffer.
// This specifies the event name and tags.
func (em *EventMetadata) WriteEventHeader(name string, tags uint32) {
binary.Write(&em.buffer, binary.LittleEndian, uint16(0)) // Length placeholder
em.writeTags(tags)
em.buffer.WriteString(name)
em.buffer.WriteByte(0) // Null terminator for name
}
func (em *EventMetadata) writeField(name string, inType InType, outType OutType, tags uint32, arrSize uint16) {
em.buffer.WriteString(name)
em.buffer.WriteByte(0) // Null terminator for name
if outType == OutTypeDefault && tags == 0 {
em.buffer.WriteByte(byte(inType))
} else {
em.buffer.WriteByte(byte(inType | 128))
if tags == 0 {
em.buffer.WriteByte(byte(outType))
} else {
em.buffer.WriteByte(byte(outType | 128))
em.writeTags(tags)
}
}
if arrSize != 0 {
binary.Write(&em.buffer, binary.LittleEndian, arrSize)
}
}
// writeTags writes out the tags value to the event metadata. Tags is a 28-bit
// value, interpreted as bit flags, which are only relevant to the event
// consumer. The event consumer may choose to attribute special meaning to tags
// (e.g. 0x4 could mean the field contains PII). Tags are written as a series of
// bytes, each containing 7 bits of tag value, with the high bit set if there is
// more tag data in the following byte. This allows for a more compact
// representation when not all of the tag bits are needed.
func (em *EventMetadata) writeTags(tags uint32) {
// Only use the top 28 bits of the tags value.
tags &= 0xfffffff
for {
// Tags are written with the most significant bits (e.g. 21-27) first.
val := tags >> 21
if tags&0x1fffff == 0 {
// If there is no more data to write after this, write this value
// without the high bit set, and return.
em.buffer.WriteByte(byte(val & 0x7f))
return
}
em.buffer.WriteByte(byte(val | 0x80))
tags <<= 7
}
}
// WriteField writes the metadata for a simple field to the buffer.
func (em *EventMetadata) WriteField(name string, inType InType, outType OutType, tags uint32) {
em.writeField(name, inType, outType, tags, 0)
}
// WriteArray writes the metadata for an array field to the buffer. The number
// of elements in the array must be written as a uint16 in the event data,
// immediately preceeding the event data.
func (em *EventMetadata) WriteArray(name string, inType InType, outType OutType, tags uint32) {
em.writeField(name, inType|InTypeArray, outType, tags, 0)
}
// WriteCountedArray writes the metadata for an array field to the buffer. The
// size of a counted array is fixed, and the size is written into the metadata
// directly.
func (em *EventMetadata) WriteCountedArray(name string, count uint16, inType InType, outType OutType, tags uint32) {
em.writeField(name, inType|InTypeCountedArray, outType, tags, count)
}
// WriteStruct writes the metadata for a nested struct to the buffer. The struct
// contains the next N fields in the metadata, where N is specified by the
// fieldCount argument.
func (em *EventMetadata) WriteStruct(name string, fieldCount uint8, tags uint32) {
em.writeField(name, InTypeStruct, OutType(fieldCount), tags, 0)
}

View file

@ -11,5 +11,5 @@ package etw
//sys eventRegister(providerId *windows.GUID, callback uintptr, callbackContext uintptr, providerHandle *providerHandle) (win32err error) = advapi32.EventRegister
//sys eventUnregister(providerHandle providerHandle) (win32err error) = advapi32.EventUnregister
//sys eventWriteTransfer(providerHandle providerHandle, descriptor *EventDescriptor, activityID *windows.GUID, relatedActivityID *windows.GUID, dataDescriptorCount uint32, dataDescriptors *eventDataDescriptor) (win32err error) = advapi32.EventWriteTransfer
//sys eventWriteTransfer(providerHandle providerHandle, descriptor *eventDescriptor, activityID *windows.GUID, relatedActivityID *windows.GUID, dataDescriptorCount uint32, dataDescriptors *eventDataDescriptor) (win32err error) = advapi32.EventWriteTransfer
//sys eventSetInformation(providerHandle providerHandle, class eventInfoClass, information uintptr, length uint32) (win32err error) = advapi32.EventSetInformation

View file

@ -0,0 +1,65 @@
package etw
import (
"bytes"
"encoding/binary"
)
// eventData maintains a buffer which builds up the data for an ETW event. It
// needs to be paired with EventMetadata which describes the event.
type eventData struct {
buffer bytes.Buffer
}
// bytes returns the raw binary data containing the event data. The returned
// value is not copied from the internal buffer, so it can be mutated by the
// eventData object after it is returned.
func (ed *eventData) bytes() []byte {
return ed.buffer.Bytes()
}
// writeString appends a string, including the null terminator, to the buffer.
func (ed *eventData) writeString(data string) {
ed.buffer.WriteString(data)
ed.buffer.WriteByte(0)
}
// writeInt8 appends a int8 to the buffer.
func (ed *eventData) writeInt8(value int8) {
ed.buffer.WriteByte(uint8(value))
}
// writeInt16 appends a int16 to the buffer.
func (ed *eventData) writeInt16(value int16) {
binary.Write(&ed.buffer, binary.LittleEndian, value)
}
// writeInt32 appends a int32 to the buffer.
func (ed *eventData) writeInt32(value int32) {
binary.Write(&ed.buffer, binary.LittleEndian, value)
}
// writeInt64 appends a int64 to the buffer.
func (ed *eventData) writeInt64(value int64) {
binary.Write(&ed.buffer, binary.LittleEndian, value)
}
// writeUint8 appends a uint8 to the buffer.
func (ed *eventData) writeUint8(value uint8) {
ed.buffer.WriteByte(value)
}
// writeUint16 appends a uint16 to the buffer.
func (ed *eventData) writeUint16(value uint16) {
binary.Write(&ed.buffer, binary.LittleEndian, value)
}
// writeUint32 appends a uint32 to the buffer.
func (ed *eventData) writeUint32(value uint32) {
binary.Write(&ed.buffer, binary.LittleEndian, value)
}
// writeUint64 appends a uint64 to the buffer.
func (ed *eventData) writeUint64(value uint64) {
binary.Write(&ed.buffer, binary.LittleEndian, value)
}

View file

@ -28,24 +28,24 @@ const (
)
// EventDescriptor represents various metadata for an ETW event.
type EventDescriptor struct {
type eventDescriptor struct {
id uint16
version uint8
Channel Channel
Level Level
Opcode uint8
Task uint16
Keyword uint64
channel Channel
level Level
opcode uint8
task uint16
keyword uint64
}
// NewEventDescriptor returns an EventDescriptor initialized for use with
// TraceLogging.
func NewEventDescriptor() *EventDescriptor {
func newEventDescriptor() *eventDescriptor {
// Standard TraceLogging events default to the TraceLogging channel, and
// verbose level.
return &EventDescriptor{
Channel: ChannelTraceLogging,
Level: LevelVerbose,
return &eventDescriptor{
channel: ChannelTraceLogging,
level: LevelVerbose,
}
}
@ -53,7 +53,7 @@ func NewEventDescriptor() *EventDescriptor {
// should uniquely identify the other event metadata (contained in
// EventDescriptor, and field metadata). Only the lower 24 bits of this value
// are relevant.
func (ed *EventDescriptor) Identity() uint32 {
func (ed *eventDescriptor) identity() uint32 {
return (uint32(ed.version) << 16) | uint32(ed.id)
}
@ -61,7 +61,7 @@ func (ed *EventDescriptor) Identity() uint32 {
// should uniquely identify the other event metadata (contained in
// EventDescriptor, and field metadata). Only the lower 24 bits of this value
// are relevant.
func (ed *EventDescriptor) SetIdentity(identity uint32) {
func (ed *eventDescriptor) setIdentity(identity uint32) {
ed.id = uint16(identity)
ed.version = uint8(identity >> 16)
}

View file

@ -0,0 +1,177 @@
package etw
import (
"bytes"
"encoding/binary"
)
// inType indicates the type of data contained in the ETW event.
type inType byte
// Various inType definitions for TraceLogging. These must match the definitions
// found in TraceLoggingProvider.h in the Windows SDK.
const (
inTypeNull inType = iota
inTypeUnicodeString
inTypeANSIString
inTypeInt8
inTypeUint8
inTypeInt16
inTypeUint16
inTypeInt32
inTypeUint32
inTypeInt64
inTypeUint64
inTypeFloat
inTypeDouble
inTypeBool32
inTypeBinary
inTypeGUID
inTypePointerUnsupported
inTypeFileTime
inTypeSystemTime
inTypeSID
inTypeHexInt32
inTypeHexInt64
inTypeCountedString
inTypeCountedANSIString
inTypeStruct
inTypeCountedBinary
inTypeCountedArray inType = 32
inTypeArray inType = 64
)
// outType specifies a hint to the event decoder for how the value should be
// formatted.
type outType byte
// Various outType definitions for TraceLogging. These must match the
// definitions found in TraceLoggingProvider.h in the Windows SDK.
const (
// outTypeDefault indicates that the default formatting for the inType will
// be used by the event decoder.
outTypeDefault outType = iota
outTypeNoPrint
outTypeString
outTypeBoolean
outTypeHex
outTypePID
outTypeTID
outTypePort
outTypeIPv4
outTypeIPv6
outTypeSocketAddress
outTypeXML
outTypeJSON
outTypeWin32Error
outTypeNTStatus
outTypeHResult
outTypeFileTime
outTypeSigned
outTypeUnsigned
outTypeUTF8 outType = 35
outTypePKCS7WithTypeInfo outType = 36
outTypeCodePointer outType = 37
outTypeDateTimeUTC outType = 38
)
// eventMetadata maintains a buffer which builds up the metadata for an ETW
// event. It needs to be paired with EventData which describes the event.
type eventMetadata struct {
buffer bytes.Buffer
}
// bytes returns the raw binary data containing the event metadata. Before being
// returned, the current size of the buffer is written to the start of the
// buffer. The returned value is not copied from the internal buffer, so it can
// be mutated by the eventMetadata object after it is returned.
func (em *eventMetadata) bytes() []byte {
// Finalize the event metadata buffer by filling in the buffer length at the
// beginning.
binary.LittleEndian.PutUint16(em.buffer.Bytes(), uint16(em.buffer.Len()))
return em.buffer.Bytes()
}
// writeEventHeader writes the metadata for the start of an event to the buffer.
// This specifies the event name and tags.
func (em *eventMetadata) writeEventHeader(name string, tags uint32) {
binary.Write(&em.buffer, binary.LittleEndian, uint16(0)) // Length placeholder
em.writeTags(tags)
em.buffer.WriteString(name)
em.buffer.WriteByte(0) // Null terminator for name
}
func (em *eventMetadata) writeFieldInner(name string, inType inType, outType outType, tags uint32, arrSize uint16) {
em.buffer.WriteString(name)
em.buffer.WriteByte(0) // Null terminator for name
if outType == outTypeDefault && tags == 0 {
em.buffer.WriteByte(byte(inType))
} else {
em.buffer.WriteByte(byte(inType | 128))
if tags == 0 {
em.buffer.WriteByte(byte(outType))
} else {
em.buffer.WriteByte(byte(outType | 128))
em.writeTags(tags)
}
}
if arrSize != 0 {
binary.Write(&em.buffer, binary.LittleEndian, arrSize)
}
}
// writeTags writes out the tags value to the event metadata. Tags is a 28-bit
// value, interpreted as bit flags, which are only relevant to the event
// consumer. The event consumer may choose to attribute special meaning to tags
// (e.g. 0x4 could mean the field contains PII). Tags are written as a series of
// bytes, each containing 7 bits of tag value, with the high bit set if there is
// more tag data in the following byte. This allows for a more compact
// representation when not all of the tag bits are needed.
func (em *eventMetadata) writeTags(tags uint32) {
// Only use the top 28 bits of the tags value.
tags &= 0xfffffff
for {
// Tags are written with the most significant bits (e.g. 21-27) first.
val := tags >> 21
if tags&0x1fffff == 0 {
// If there is no more data to write after this, write this value
// without the high bit set, and return.
em.buffer.WriteByte(byte(val & 0x7f))
return
}
em.buffer.WriteByte(byte(val | 0x80))
tags <<= 7
}
}
// writeField writes the metadata for a simple field to the buffer.
func (em *eventMetadata) writeField(name string, inType inType, outType outType, tags uint32) {
em.writeFieldInner(name, inType, outType, tags, 0)
}
// writeArray writes the metadata for an array field to the buffer. The number
// of elements in the array must be written as a uint16 in the event data,
// immediately preceeding the event data.
func (em *eventMetadata) writeArray(name string, inType inType, outType outType, tags uint32) {
em.writeFieldInner(name, inType|inTypeArray, outType, tags, 0)
}
// writeCountedArray writes the metadata for an array field to the buffer. The
// size of a counted array is fixed, and the size is written into the metadata
// directly.
func (em *eventMetadata) writeCountedArray(name string, count uint16, inType inType, outType outType, tags uint32) {
em.writeFieldInner(name, inType|inTypeCountedArray, outType, tags, count)
}
// writeStruct writes the metadata for a nested struct to the buffer. The struct
// contains the next N fields in the metadata, where N is specified by the
// fieldCount argument.
func (em *eventMetadata) writeStruct(name string, fieldCount uint8, tags uint32) {
em.writeFieldInner(name, inTypeStruct, outType(fieldCount), tags, 0)
}

View file

@ -5,7 +5,7 @@ import (
)
type eventOptions struct {
descriptor *EventDescriptor
descriptor *eventDescriptor
activityID *windows.GUID
relatedActivityID *windows.GUID
tags uint32
@ -24,7 +24,7 @@ func WithEventOpts(opts ...EventOpt) []EventOpt {
// WithLevel specifies the level of the event to be written.
func WithLevel(level Level) EventOpt {
return func(options *eventOptions) {
options.descriptor.Level = level
options.descriptor.level = level
}
}
@ -32,13 +32,13 @@ func WithLevel(level Level) EventOpt {
// of this option are OR'd together.
func WithKeyword(keyword uint64) EventOpt {
return func(options *eventOptions) {
options.descriptor.Keyword |= keyword
options.descriptor.keyword |= keyword
}
}
func WithChannel(channel Channel) EventOpt {
return func(options *eventOptions) {
options.descriptor.Channel = channel
options.descriptor.channel = channel
}
}

View file

@ -7,7 +7,7 @@ import (
// FieldOpt defines the option function type that can be passed to
// Provider.WriteEvent to add fields to the event.
type FieldOpt func(em *EventMetadata, ed *EventData)
type FieldOpt func(em *eventMetadata, ed *eventData)
// WithFields returns the variadic arguments as a single slice.
func WithFields(opts ...FieldOpt) []FieldOpt {
@ -16,46 +16,46 @@ func WithFields(opts ...FieldOpt) []FieldOpt {
// BoolField adds a single bool field to the event.
func BoolField(name string, value bool) FieldOpt {
return func(em *EventMetadata, ed *EventData) {
em.WriteField(name, InTypeUint8, OutTypeBoolean, 0)
return func(em *eventMetadata, ed *eventData) {
em.writeField(name, inTypeUint8, outTypeBoolean, 0)
bool8 := uint8(0)
if value {
bool8 = uint8(1)
}
ed.WriteUint8(bool8)
ed.writeUint8(bool8)
}
}
// BoolArray adds an array of bool to the event.
func BoolArray(name string, values []bool) FieldOpt {
return func(em *EventMetadata, ed *EventData) {
em.WriteArray(name, InTypeUint8, OutTypeBoolean, 0)
ed.WriteUint16(uint16(len(values)))
return func(em *eventMetadata, ed *eventData) {
em.writeArray(name, inTypeUint8, outTypeBoolean, 0)
ed.writeUint16(uint16(len(values)))
for _, v := range values {
bool8 := uint8(0)
if v {
bool8 = uint8(1)
}
ed.WriteUint8(bool8)
ed.writeUint8(bool8)
}
}
}
// StringField adds a single string field to the event.
func StringField(name string, value string) FieldOpt {
return func(em *EventMetadata, ed *EventData) {
em.WriteField(name, InTypeANSIString, OutTypeUTF8, 0)
ed.WriteString(value)
return func(em *eventMetadata, ed *eventData) {
em.writeField(name, inTypeANSIString, outTypeUTF8, 0)
ed.writeString(value)
}
}
// StringArray adds an array of string to the event.
func StringArray(name string, values []string) FieldOpt {
return func(em *EventMetadata, ed *EventData) {
em.WriteArray(name, InTypeANSIString, OutTypeUTF8, 0)
ed.WriteUint16(uint16(len(values)))
return func(em *eventMetadata, ed *eventData) {
em.writeArray(name, inTypeANSIString, outTypeUTF8, 0)
ed.writeUint16(uint16(len(values)))
for _, v := range values {
ed.WriteString(v)
ed.writeString(v)
}
}
}
@ -74,22 +74,22 @@ func IntField(name string, value int) FieldOpt {
// IntArray adds an array of int to the event.
func IntArray(name string, values []int) FieldOpt {
inType := InTypeNull
var writeItem func(*EventData, int)
inType := inTypeNull
var writeItem func(*eventData, int)
switch unsafe.Sizeof(values[0]) {
case 4:
inType = InTypeInt32
writeItem = func(ed *EventData, item int) { ed.WriteInt32(int32(item)) }
inType = inTypeInt32
writeItem = func(ed *eventData, item int) { ed.writeInt32(int32(item)) }
case 8:
inType = InTypeInt64
writeItem = func(ed *EventData, item int) { ed.WriteInt64(int64(item)) }
inType = inTypeInt64
writeItem = func(ed *eventData, item int) { ed.writeInt64(int64(item)) }
default:
panic("Unsupported int size")
}
return func(em *EventMetadata, ed *EventData) {
em.WriteArray(name, inType, OutTypeDefault, 0)
ed.WriteUint16(uint16(len(values)))
return func(em *eventMetadata, ed *eventData) {
em.writeArray(name, inType, outTypeDefault, 0)
ed.writeUint16(uint16(len(values)))
for _, v := range values {
writeItem(ed, v)
}
@ -98,76 +98,76 @@ func IntArray(name string, values []int) FieldOpt {
// Int8Field adds a single int8 field to the event.
func Int8Field(name string, value int8) FieldOpt {
return func(em *EventMetadata, ed *EventData) {
em.WriteField(name, InTypeInt8, OutTypeDefault, 0)
ed.WriteInt8(value)
return func(em *eventMetadata, ed *eventData) {
em.writeField(name, inTypeInt8, outTypeDefault, 0)
ed.writeInt8(value)
}
}
// Int8Array adds an array of int8 to the event.
func Int8Array(name string, values []int8) FieldOpt {
return func(em *EventMetadata, ed *EventData) {
em.WriteArray(name, InTypeInt8, OutTypeDefault, 0)
ed.WriteUint16(uint16(len(values)))
return func(em *eventMetadata, ed *eventData) {
em.writeArray(name, inTypeInt8, outTypeDefault, 0)
ed.writeUint16(uint16(len(values)))
for _, v := range values {
ed.WriteInt8(v)
ed.writeInt8(v)
}
}
}
// Int16Field adds a single int16 field to the event.
func Int16Field(name string, value int16) FieldOpt {
return func(em *EventMetadata, ed *EventData) {
em.WriteField(name, InTypeInt16, OutTypeDefault, 0)
ed.WriteInt16(value)
return func(em *eventMetadata, ed *eventData) {
em.writeField(name, inTypeInt16, outTypeDefault, 0)
ed.writeInt16(value)
}
}
// Int16Array adds an array of int16 to the event.
func Int16Array(name string, values []int16) FieldOpt {
return func(em *EventMetadata, ed *EventData) {
em.WriteArray(name, InTypeInt16, OutTypeDefault, 0)
ed.WriteUint16(uint16(len(values)))
return func(em *eventMetadata, ed *eventData) {
em.writeArray(name, inTypeInt16, outTypeDefault, 0)
ed.writeUint16(uint16(len(values)))
for _, v := range values {
ed.WriteInt16(v)
ed.writeInt16(v)
}
}
}
// Int32Field adds a single int32 field to the event.
func Int32Field(name string, value int32) FieldOpt {
return func(em *EventMetadata, ed *EventData) {
em.WriteField(name, InTypeInt32, OutTypeDefault, 0)
ed.WriteInt32(value)
return func(em *eventMetadata, ed *eventData) {
em.writeField(name, inTypeInt32, outTypeDefault, 0)
ed.writeInt32(value)
}
}
// Int32Array adds an array of int32 to the event.
func Int32Array(name string, values []int32) FieldOpt {
return func(em *EventMetadata, ed *EventData) {
em.WriteArray(name, InTypeInt32, OutTypeDefault, 0)
ed.WriteUint16(uint16(len(values)))
return func(em *eventMetadata, ed *eventData) {
em.writeArray(name, inTypeInt32, outTypeDefault, 0)
ed.writeUint16(uint16(len(values)))
for _, v := range values {
ed.WriteInt32(v)
ed.writeInt32(v)
}
}
}
// Int64Field adds a single int64 field to the event.
func Int64Field(name string, value int64) FieldOpt {
return func(em *EventMetadata, ed *EventData) {
em.WriteField(name, InTypeInt64, OutTypeDefault, 0)
ed.WriteInt64(value)
return func(em *eventMetadata, ed *eventData) {
em.writeField(name, inTypeInt64, outTypeDefault, 0)
ed.writeInt64(value)
}
}
// Int64Array adds an array of int64 to the event.
func Int64Array(name string, values []int64) FieldOpt {
return func(em *EventMetadata, ed *EventData) {
em.WriteArray(name, InTypeInt64, OutTypeDefault, 0)
ed.WriteUint16(uint16(len(values)))
return func(em *eventMetadata, ed *eventData) {
em.writeArray(name, inTypeInt64, outTypeDefault, 0)
ed.writeUint16(uint16(len(values)))
for _, v := range values {
ed.WriteInt64(v)
ed.writeInt64(v)
}
}
}
@ -186,22 +186,22 @@ func UintField(name string, value uint) FieldOpt {
// UintArray adds an array of uint to the event.
func UintArray(name string, values []uint) FieldOpt {
inType := InTypeNull
var writeItem func(*EventData, uint)
inType := inTypeNull
var writeItem func(*eventData, uint)
switch unsafe.Sizeof(values[0]) {
case 4:
inType = InTypeUint32
writeItem = func(ed *EventData, item uint) { ed.WriteUint32(uint32(item)) }
inType = inTypeUint32
writeItem = func(ed *eventData, item uint) { ed.writeUint32(uint32(item)) }
case 8:
inType = InTypeUint64
writeItem = func(ed *EventData, item uint) { ed.WriteUint64(uint64(item)) }
inType = inTypeUint64
writeItem = func(ed *eventData, item uint) { ed.writeUint64(uint64(item)) }
default:
panic("Unsupported uint size")
}
return func(em *EventMetadata, ed *EventData) {
em.WriteArray(name, inType, OutTypeDefault, 0)
ed.WriteUint16(uint16(len(values)))
return func(em *eventMetadata, ed *eventData) {
em.writeArray(name, inType, outTypeDefault, 0)
ed.writeUint16(uint16(len(values)))
for _, v := range values {
writeItem(ed, v)
}
@ -210,119 +210,119 @@ func UintArray(name string, values []uint) FieldOpt {
// Uint8Field adds a single uint8 field to the event.
func Uint8Field(name string, value uint8) FieldOpt {
return func(em *EventMetadata, ed *EventData) {
em.WriteField(name, InTypeUint8, OutTypeDefault, 0)
ed.WriteUint8(value)
return func(em *eventMetadata, ed *eventData) {
em.writeField(name, inTypeUint8, outTypeDefault, 0)
ed.writeUint8(value)
}
}
// Uint8Array adds an array of uint8 to the event.
func Uint8Array(name string, values []uint8) FieldOpt {
return func(em *EventMetadata, ed *EventData) {
em.WriteArray(name, InTypeUint8, OutTypeDefault, 0)
ed.WriteUint16(uint16(len(values)))
return func(em *eventMetadata, ed *eventData) {
em.writeArray(name, inTypeUint8, outTypeDefault, 0)
ed.writeUint16(uint16(len(values)))
for _, v := range values {
ed.WriteUint8(v)
ed.writeUint8(v)
}
}
}
// Uint16Field adds a single uint16 field to the event.
func Uint16Field(name string, value uint16) FieldOpt {
return func(em *EventMetadata, ed *EventData) {
em.WriteField(name, InTypeUint16, OutTypeDefault, 0)
ed.WriteUint16(value)
return func(em *eventMetadata, ed *eventData) {
em.writeField(name, inTypeUint16, outTypeDefault, 0)
ed.writeUint16(value)
}
}
// Uint16Array adds an array of uint16 to the event.
func Uint16Array(name string, values []uint16) FieldOpt {
return func(em *EventMetadata, ed *EventData) {
em.WriteArray(name, InTypeUint16, OutTypeDefault, 0)
ed.WriteUint16(uint16(len(values)))
return func(em *eventMetadata, ed *eventData) {
em.writeArray(name, inTypeUint16, outTypeDefault, 0)
ed.writeUint16(uint16(len(values)))
for _, v := range values {
ed.WriteUint16(v)
ed.writeUint16(v)
}
}
}
// Uint32Field adds a single uint32 field to the event.
func Uint32Field(name string, value uint32) FieldOpt {
return func(em *EventMetadata, ed *EventData) {
em.WriteField(name, InTypeUint32, OutTypeDefault, 0)
ed.WriteUint32(value)
return func(em *eventMetadata, ed *eventData) {
em.writeField(name, inTypeUint32, outTypeDefault, 0)
ed.writeUint32(value)
}
}
// Uint32Array adds an array of uint32 to the event.
func Uint32Array(name string, values []uint32) FieldOpt {
return func(em *EventMetadata, ed *EventData) {
em.WriteArray(name, InTypeUint32, OutTypeDefault, 0)
ed.WriteUint16(uint16(len(values)))
return func(em *eventMetadata, ed *eventData) {
em.writeArray(name, inTypeUint32, outTypeDefault, 0)
ed.writeUint16(uint16(len(values)))
for _, v := range values {
ed.WriteUint32(v)
ed.writeUint32(v)
}
}
}
// Uint64Field adds a single uint64 field to the event.
func Uint64Field(name string, value uint64) FieldOpt {
return func(em *EventMetadata, ed *EventData) {
em.WriteField(name, InTypeUint64, OutTypeDefault, 0)
ed.WriteUint64(value)
return func(em *eventMetadata, ed *eventData) {
em.writeField(name, inTypeUint64, outTypeDefault, 0)
ed.writeUint64(value)
}
}
// Uint64Array adds an array of uint64 to the event.
func Uint64Array(name string, values []uint64) FieldOpt {
return func(em *EventMetadata, ed *EventData) {
em.WriteArray(name, InTypeUint64, OutTypeDefault, 0)
ed.WriteUint16(uint16(len(values)))
return func(em *eventMetadata, ed *eventData) {
em.writeArray(name, inTypeUint64, outTypeDefault, 0)
ed.writeUint16(uint16(len(values)))
for _, v := range values {
ed.WriteUint64(v)
ed.writeUint64(v)
}
}
}
// UintptrField adds a single uintptr field to the event.
func UintptrField(name string, value uintptr) FieldOpt {
inType := InTypeNull
var writeItem func(*EventData, uintptr)
inType := inTypeNull
var writeItem func(*eventData, uintptr)
switch unsafe.Sizeof(value) {
case 4:
inType = InTypeHexInt32
writeItem = func(ed *EventData, item uintptr) { ed.WriteUint32(uint32(item)) }
inType = inTypeHexInt32
writeItem = func(ed *eventData, item uintptr) { ed.writeUint32(uint32(item)) }
case 8:
inType = InTypeHexInt64
writeItem = func(ed *EventData, item uintptr) { ed.WriteUint64(uint64(item)) }
inType = inTypeHexInt64
writeItem = func(ed *eventData, item uintptr) { ed.writeUint64(uint64(item)) }
default:
panic("Unsupported uintptr size")
}
return func(em *EventMetadata, ed *EventData) {
em.WriteField(name, inType, OutTypeDefault, 0)
return func(em *eventMetadata, ed *eventData) {
em.writeField(name, inType, outTypeDefault, 0)
writeItem(ed, value)
}
}
// UintptrArray adds an array of uintptr to the event.
func UintptrArray(name string, values []uintptr) FieldOpt {
inType := InTypeNull
var writeItem func(*EventData, uintptr)
inType := inTypeNull
var writeItem func(*eventData, uintptr)
switch unsafe.Sizeof(values[0]) {
case 4:
inType = InTypeHexInt32
writeItem = func(ed *EventData, item uintptr) { ed.WriteUint32(uint32(item)) }
inType = inTypeHexInt32
writeItem = func(ed *eventData, item uintptr) { ed.writeUint32(uint32(item)) }
case 8:
inType = InTypeHexInt64
writeItem = func(ed *EventData, item uintptr) { ed.WriteUint64(uint64(item)) }
inType = inTypeHexInt64
writeItem = func(ed *eventData, item uintptr) { ed.writeUint64(uint64(item)) }
default:
panic("Unsupported uintptr size")
}
return func(em *EventMetadata, ed *EventData) {
em.WriteArray(name, inType, OutTypeDefault, 0)
ed.WriteUint16(uint16(len(values)))
return func(em *eventMetadata, ed *eventData) {
em.writeArray(name, inType, outTypeDefault, 0)
ed.writeUint16(uint16(len(values)))
for _, v := range values {
writeItem(ed, v)
}
@ -331,38 +331,38 @@ func UintptrArray(name string, values []uintptr) FieldOpt {
// Float32Field adds a single float32 field to the event.
func Float32Field(name string, value float32) FieldOpt {
return func(em *EventMetadata, ed *EventData) {
em.WriteField(name, InTypeFloat, OutTypeDefault, 0)
ed.WriteUint32(math.Float32bits(value))
return func(em *eventMetadata, ed *eventData) {
em.writeField(name, inTypeFloat, outTypeDefault, 0)
ed.writeUint32(math.Float32bits(value))
}
}
// Float32Array adds an array of float32 to the event.
func Float32Array(name string, values []float32) FieldOpt {
return func(em *EventMetadata, ed *EventData) {
em.WriteArray(name, InTypeFloat, OutTypeDefault, 0)
ed.WriteUint16(uint16(len(values)))
return func(em *eventMetadata, ed *eventData) {
em.writeArray(name, inTypeFloat, outTypeDefault, 0)
ed.writeUint16(uint16(len(values)))
for _, v := range values {
ed.WriteUint32(math.Float32bits(v))
ed.writeUint32(math.Float32bits(v))
}
}
}
// Float64Field adds a single float64 field to the event.
func Float64Field(name string, value float64) FieldOpt {
return func(em *EventMetadata, ed *EventData) {
em.WriteField(name, InTypeDouble, OutTypeDefault, 0)
ed.WriteUint64(math.Float64bits(value))
return func(em *eventMetadata, ed *eventData) {
em.writeField(name, inTypeDouble, outTypeDefault, 0)
ed.writeUint64(math.Float64bits(value))
}
}
// Float64Array adds an array of float64 to the event.
func Float64Array(name string, values []float64) FieldOpt {
return func(em *EventMetadata, ed *EventData) {
em.WriteArray(name, InTypeDouble, OutTypeDefault, 0)
ed.WriteUint16(uint16(len(values)))
return func(em *eventMetadata, ed *eventData) {
em.writeArray(name, inTypeDouble, outTypeDefault, 0)
ed.writeUint16(uint16(len(values)))
for _, v := range values {
ed.WriteUint64(math.Float64bits(v))
ed.writeUint64(math.Float64bits(v))
}
}
}
@ -370,8 +370,8 @@ func Float64Array(name string, values []float64) FieldOpt {
// Struct adds a nested struct to the event, the FieldOpts in the opts argument
// are used to specify the fields of the struct.
func Struct(name string, opts ...FieldOpt) FieldOpt {
return func(em *EventMetadata, ed *EventData) {
em.WriteStruct(name, uint8(len(opts)), 0)
return func(em *eventMetadata, ed *eventData) {
em.writeStruct(name, uint8(len(opts)), 0)
for _, opt := range opts {
opt(em, ed)
}

View file

@ -219,9 +219,9 @@ func (provider *Provider) IsEnabledForLevelAndKeywords(level Level, keywords uin
// constructed based on the EventOpt and FieldOpt values that are passed as
// opts.
func (provider *Provider) WriteEvent(name string, eventOpts []EventOpt, fieldOpts []FieldOpt) error {
options := eventOptions{descriptor: NewEventDescriptor()}
em := &EventMetadata{}
ed := &EventData{}
options := eventOptions{descriptor: newEventDescriptor()}
em := &eventMetadata{}
ed := &eventData{}
// We need to evaluate the EventOpts first since they might change tags, and
// we write out the tags before evaluating FieldOpts.
@ -229,11 +229,11 @@ func (provider *Provider) WriteEvent(name string, eventOpts []EventOpt, fieldOpt
opt(&options)
}
if !provider.IsEnabledForLevelAndKeywords(options.descriptor.Level, options.descriptor.Keyword) {
if !provider.IsEnabledForLevelAndKeywords(options.descriptor.level, options.descriptor.keyword) {
return nil
}
em.WriteEventHeader(name, options.tags)
em.writeEventHeader(name, options.tags)
for _, opt := range fieldOpts {
opt(em, ed)
@ -243,22 +243,22 @@ func (provider *Provider) WriteEvent(name string, eventOpts []EventOpt, fieldOpt
// event metadata (e.g. for the name) so we don't need to do this check for
// the metadata.
dataBlobs := [][]byte{}
if len(ed.Bytes()) > 0 {
dataBlobs = [][]byte{ed.Bytes()}
if len(ed.bytes()) > 0 {
dataBlobs = [][]byte{ed.bytes()}
}
return provider.WriteEventRaw(options.descriptor, nil, nil, [][]byte{em.Bytes()}, dataBlobs)
return provider.writeEventRaw(options.descriptor, nil, nil, [][]byte{em.bytes()}, dataBlobs)
}
// WriteEventRaw writes a single ETW event from the provider. This function is
// writeEventRaw writes a single ETW event from the provider. This function is
// less abstracted than WriteEvent, and presents a fairly direct interface to
// the event writing functionality. It expects a series of event metadata and
// event data blobs to be passed in, which must conform to the TraceLogging
// schema. The functions on EventMetadata and EventData can help with creating
// these blobs. The blobs of each type are effectively concatenated together by
// the ETW infrastructure.
func (provider *Provider) WriteEventRaw(
descriptor *EventDescriptor,
func (provider *Provider) writeEventRaw(
descriptor *eventDescriptor,
activityID *windows.GUID,
relatedActivityID *windows.GUID,
metadataBlobs [][]byte,

View file

@ -61,7 +61,7 @@ func eventUnregister(providerHandle providerHandle) (win32err error) {
return
}
func eventWriteTransfer(providerHandle providerHandle, descriptor *EventDescriptor, activityID *windows.GUID, relatedActivityID *windows.GUID, dataDescriptorCount uint32, dataDescriptors *eventDataDescriptor) (win32err error) {
func eventWriteTransfer(providerHandle providerHandle, descriptor *eventDescriptor, activityID *windows.GUID, relatedActivityID *windows.GUID, dataDescriptorCount uint32, dataDescriptors *eventDataDescriptor) (win32err error) {
r0, _, _ := syscall.Syscall6(procEventWriteTransfer.Addr(), 6, uintptr(providerHandle), uintptr(unsafe.Pointer(descriptor)), uintptr(unsafe.Pointer(activityID)), uintptr(unsafe.Pointer(relatedActivityID)), uintptr(dataDescriptorCount), uintptr(unsafe.Pointer(dataDescriptors)))
if r0 != 0 {
win32err = syscall.Errno(r0)

View file

@ -4,26 +4,31 @@ import (
"fmt"
"reflect"
"github.com/Microsoft/go-winio/internal/etw"
"github.com/Microsoft/go-winio/pkg/etw"
"github.com/sirupsen/logrus"
)
// Hook is a Logrus hook which logs received events to ETW.
type Hook struct {
provider *etw.Provider
provider *etw.Provider
closeProvider bool
}
// NewHook registers a new ETW provider and returns a hook to log from it.
// NewHook registers a new ETW provider and returns a hook to log from it. The
// provider will be closed when the hook is closed.
func NewHook(providerName string) (*Hook, error) {
hook := Hook{}
provider, err := etw.NewProvider(providerName, nil)
if err != nil {
return nil, err
}
hook.provider = provider
return &hook, nil
return &Hook{provider, true}, nil
}
// NewHookFromProvider creates a new hook based on an existing ETW provider. The
// provider will not be closed when the hook is closed.
func NewHookFromProvider(provider *etw.Provider) (*Hook, error) {
return &Hook{provider, false}, nil
}
// Levels returns the set of levels that this hook wants to receive log entries
@ -40,9 +45,22 @@ func (h *Hook) Levels() []logrus.Level {
}
}
var logrusToETWLevelMap = map[logrus.Level]etw.Level{
logrus.PanicLevel: etw.LevelAlways,
logrus.FatalLevel: etw.LevelCritical,
logrus.ErrorLevel: etw.LevelError,
logrus.WarnLevel: etw.LevelWarning,
logrus.InfoLevel: etw.LevelInfo,
logrus.DebugLevel: etw.LevelVerbose,
logrus.TraceLevel: etw.LevelVerbose,
}
// Fire receives each Logrus entry as it is logged, and logs it to ETW.
func (h *Hook) Fire(e *logrus.Entry) error {
level := etw.Level(e.Level)
// Logrus defines more levels than ETW typically uses, but analysis is
// easiest when using a consistent set of levels across ETW providers, so we
// map the Logrus levels to ETW levels.
level := logrusToETWLevelMap[e.Level]
if !h.provider.IsEnabledForLevel(level) {
return nil
}
@ -56,9 +74,6 @@ func (h *Hook) Fire(e *logrus.Entry) error {
fields = append(fields, getFieldOpt(k, v))
}
// We could try to map Logrus levels to ETW levels, but we would lose some
// fidelity as there are fewer ETW levels. So instead we use the level
// directly.
return h.provider.WriteEvent(
"LogrusEntry",
etw.WithEventOpts(etw.WithLevel(level)),
@ -186,7 +201,12 @@ func getFieldOpt(k string, v interface{}) etw.FieldOpt {
return etw.StringField(k, fmt.Sprintf("(Unsupported: %T) %v", v, v))
}
// Close cleans up the hook and closes the ETW provider.
// Close cleans up the hook and closes the ETW provider. If the provder was
// registered by etwlogrus, it will be closed as part of `Close`. If the
// provider was passed in, it will not be closed.
func (h *Hook) Close() error {
return h.provider.Close()
if h.closeProvider {
return h.provider.Close()
}
return nil
}

View file

@ -0,0 +1,159 @@
package security
import (
"os"
"syscall"
"unsafe"
"github.com/pkg/errors"
)
type (
accessMask uint32
accessMode uint32
desiredAccess uint32
inheritMode uint32
objectType uint32
shareMode uint32
securityInformation uint32
trusteeForm uint32
trusteeType uint32
explicitAccess struct {
accessPermissions accessMask
accessMode accessMode
inheritance inheritMode
trustee trustee
}
trustee struct {
multipleTrustee *trustee
multipleTrusteeOperation int32
trusteeForm trusteeForm
trusteeType trusteeType
name uintptr
}
)
const (
accessMaskDesiredPermission accessMask = 1 << 31 // GENERIC_READ
accessModeGrant accessMode = 1
desiredAccessReadControl desiredAccess = 0x20000
desiredAccessWriteDac desiredAccess = 0x40000
gvmga = "GrantVmGroupAccess:"
inheritModeNoInheritance inheritMode = 0x0
inheritModeSubContainersAndObjectsInherit inheritMode = 0x3
objectTypeFileObject objectType = 0x1
securityInformationDACL securityInformation = 0x4
shareModeRead shareMode = 0x1
shareModeWrite shareMode = 0x2
sidVmGroup = "S-1-5-83-0"
trusteeFormIsSid trusteeForm = 0
trusteeTypeWellKnownGroup trusteeType = 5
)
// GrantVMGroupAccess sets the DACL for a specified file or directory to
// include Grant ACE entries for the VM Group SID. This is a golang re-
// implementation of the same function in vmcompute, just not exported in
// RS5. Which kind of sucks. Sucks a lot :/
func GrantVmGroupAccess(name string) error {
// Stat (to determine if `name` is a directory).
s, err := os.Stat(name)
if err != nil {
return errors.Wrapf(err, "%s os.Stat %s", gvmga, name)
}
// Get a handle to the file/directory. Must defer Close on success.
fd, err := createFile(name, s.IsDir())
if err != nil {
return err // Already wrapped
}
defer syscall.CloseHandle(fd)
// Get the current DACL and Security Descriptor. Must defer LocalFree on success.
ot := objectTypeFileObject
si := securityInformationDACL
sd := uintptr(0)
origDACL := uintptr(0)
if err := getSecurityInfo(fd, uint32(ot), uint32(si), nil, nil, &origDACL, nil, &sd); err != nil {
return errors.Wrapf(err, "%s GetSecurityInfo %s", gvmga, name)
}
defer syscall.LocalFree((syscall.Handle)(unsafe.Pointer(sd)))
// Generate a new DACL which is the current DACL with the required ACEs added.
// Must defer LocalFree on success.
newDACL, err := generateDACLWithAcesAdded(name, s.IsDir(), origDACL)
if err != nil {
return err // Already wrapped
}
defer syscall.LocalFree((syscall.Handle)(unsafe.Pointer(newDACL)))
// And finally use SetSecurityInfo to apply the updated DACL.
if err := setSecurityInfo(fd, uint32(ot), uint32(si), uintptr(0), uintptr(0), newDACL, uintptr(0)); err != nil {
return errors.Wrapf(err, "%s SetSecurityInfo %s", gvmga, name)
}
return nil
}
// createFile is a helper function to call [Nt]CreateFile to get a handle to
// the file or directory.
func createFile(name string, isDir bool) (syscall.Handle, error) {
namep := syscall.StringToUTF16(name)
da := uint32(desiredAccessReadControl | desiredAccessWriteDac)
sm := uint32(shareModeRead | shareModeWrite)
fa := uint32(syscall.FILE_ATTRIBUTE_NORMAL)
if isDir {
fa = uint32(fa | syscall.FILE_FLAG_BACKUP_SEMANTICS)
}
fd, err := syscall.CreateFile(&namep[0], da, sm, nil, syscall.OPEN_EXISTING, fa, 0)
if err != nil {
return 0, errors.Wrapf(err, "%s syscall.CreateFile %s", gvmga, name)
}
return fd, nil
}
// generateDACLWithAcesAdded generates a new DACL with the two needed ACEs added.
// The caller is responsible for LocalFree of the returned DACL on success.
func generateDACLWithAcesAdded(name string, isDir bool, origDACL uintptr) (uintptr, error) {
// Generate pointers to the SIDs based on the string SIDs
sid, err := syscall.StringToSid(sidVmGroup)
if err != nil {
return 0, errors.Wrapf(err, "%s syscall.StringToSid %s %s", gvmga, name, sidVmGroup)
}
inheritance := inheritModeNoInheritance
if isDir {
inheritance = inheritModeSubContainersAndObjectsInherit
}
eaArray := []explicitAccess{
explicitAccess{
accessPermissions: accessMaskDesiredPermission,
accessMode: accessModeGrant,
inheritance: inheritance,
trustee: trustee{
trusteeForm: trusteeFormIsSid,
trusteeType: trusteeTypeWellKnownGroup,
name: uintptr(unsafe.Pointer(sid)),
},
},
}
modifiedDACL := uintptr(0)
if err := setEntriesInAcl(uintptr(uint32(1)), uintptr(unsafe.Pointer(&eaArray[0])), origDACL, &modifiedDACL); err != nil {
return 0, errors.Wrapf(err, "%s SetEntriesInAcl %s", gvmga, name)
}
return modifiedDACL, nil
}

View file

@ -0,0 +1,7 @@
package security
//go:generate go run mksyscall_windows.go -output zsyscall_windows.go syscall_windows.go
//sys getSecurityInfo(handle syscall.Handle, objectType uint32, si uint32, ppsidOwner **uintptr, ppsidGroup **uintptr, ppDacl *uintptr, ppSacl *uintptr, ppSecurityDescriptor *uintptr) (err error) [failretval!=0] = advapi32.GetSecurityInfo
//sys setSecurityInfo(handle syscall.Handle, objectType uint32, si uint32, psidOwner uintptr, psidGroup uintptr, pDacl uintptr, pSacl uintptr) (err error) [failretval!=0] = advapi32.SetSecurityInfo
//sys setEntriesInAcl(count uintptr, pListOfEEs uintptr, oldAcl uintptr, newAcl *uintptr) (err error) [failretval!=0] = advapi32.SetEntriesInAclW

View file

@ -0,0 +1,81 @@
// Code generated mksyscall_windows.exe DO NOT EDIT
package security
import (
"syscall"
"unsafe"
"golang.org/x/sys/windows"
)
var _ unsafe.Pointer
// Do the interface allocations only once for common
// Errno values.
const (
errnoERROR_IO_PENDING = 997
)
var (
errERROR_IO_PENDING error = syscall.Errno(errnoERROR_IO_PENDING)
)
// errnoErr returns common boxed Errno values, to prevent
// allocations at runtime.
func errnoErr(e syscall.Errno) error {
switch e {
case 0:
return nil
case errnoERROR_IO_PENDING:
return errERROR_IO_PENDING
}
// TODO: add more here, after collecting data on the common
// error values see on Windows. (perhaps when running
// all.bat?)
return e
}
var (
modadvapi32 = windows.NewLazySystemDLL("advapi32.dll")
procGetSecurityInfo = modadvapi32.NewProc("GetSecurityInfo")
procSetSecurityInfo = modadvapi32.NewProc("SetSecurityInfo")
procSetEntriesInAclW = modadvapi32.NewProc("SetEntriesInAclW")
)
func getSecurityInfo(handle syscall.Handle, objectType uint32, si uint32, ppsidOwner **uintptr, ppsidGroup **uintptr, ppDacl *uintptr, ppSacl *uintptr, ppSecurityDescriptor *uintptr) (err error) {
r1, _, e1 := syscall.Syscall9(procGetSecurityInfo.Addr(), 8, uintptr(handle), uintptr(objectType), uintptr(si), uintptr(unsafe.Pointer(ppsidOwner)), uintptr(unsafe.Pointer(ppsidGroup)), uintptr(unsafe.Pointer(ppDacl)), uintptr(unsafe.Pointer(ppSacl)), uintptr(unsafe.Pointer(ppSecurityDescriptor)), 0)
if r1 != 0 {
if e1 != 0 {
err = errnoErr(e1)
} else {
err = syscall.EINVAL
}
}
return
}
func setSecurityInfo(handle syscall.Handle, objectType uint32, si uint32, psidOwner uintptr, psidGroup uintptr, pDacl uintptr, pSacl uintptr) (err error) {
r1, _, e1 := syscall.Syscall9(procSetSecurityInfo.Addr(), 7, uintptr(handle), uintptr(objectType), uintptr(si), uintptr(psidOwner), uintptr(psidGroup), uintptr(pDacl), uintptr(pSacl), 0, 0)
if r1 != 0 {
if e1 != 0 {
err = errnoErr(e1)
} else {
err = syscall.EINVAL
}
}
return
}
func setEntriesInAcl(count uintptr, pListOfEEs uintptr, oldAcl uintptr, newAcl *uintptr) (err error) {
r1, _, e1 := syscall.Syscall6(procSetEntriesInAclW.Addr(), 4, uintptr(count), uintptr(pListOfEEs), uintptr(oldAcl), uintptr(unsafe.Pointer(newAcl)), 0, 0)
if r1 != 0 {
if e1 != 0 {
err = errnoErr(e1)
} else {
err = syscall.EINVAL
}
}
return
}