Add libnetwork ipam implementation

Signed-off-by: Alessandro Boch <aboch@docker.com>
This commit is contained in:
Alessandro Boch 2015-06-12 12:43:18 -07:00
parent 3287a4c830
commit 873ea8a224
2 changed files with 984 additions and 0 deletions

View File

@ -0,0 +1,441 @@
package ipam
import (
"fmt"
"net"
"github.com/docker/libnetwork/bitseq"
)
const (
// The biggest configurable host subnets
minNetSize = 8
minNetSizeV6 = 64
// The effective network size for v6
minNetSizeV6Eff = 96
// The size of the host subnet used internally, it's the most granular sequence addresses
defaultInternalHostSize = 16
)
// Allocator provides per address space ipv4/ipv6 book keeping
type Allocator struct {
// The internal subnets host size
internalHostSize int
// Static subnet information
subnetsInfo map[subnetKey]*subnetData
// Allocated addresses in each address space's internal subnet
addresses map[isKey]*bitmask
}
// NewAllocator returns an instance of libnetwork ipam
func NewAllocator() *Allocator {
a := &Allocator{}
a.subnetsInfo = make(map[subnetKey]*subnetData)
a.addresses = make(map[isKey]*bitmask)
a.internalHostSize = defaultInternalHostSize
return a
}
// Pointer to the configured subnets in each address space
type subnetKey struct {
addressSpace AddressSpace
subnet string
}
// Pointer to the internal subnets in each address space
type isKey subnetKey
// The structs contains the configured subnet information
// along with the pointers to the respective internal subnets
type subnetData struct {
info *SubnetInfo // Configured subnet
intSubKeyes []*isKey // Pointers to child internal subnets
}
// The structs containing the address allocation bitmask for the internal subnet.
// The bitmask is stored a run-length encoded seq.Sequence of 4 bytes blcoks.
type bitmask struct {
subnet *net.IPNet
addressMask *bitseq.Sequence
freeAddresses int
}
type ipVersion int
const (
v4 = 4
v6 = 6
)
/*******************
* IPAMConf Contract
********************/
// AddSubnet adds a subnet for the specified address space
func (a *Allocator) AddSubnet(addrSpace AddressSpace, subnetInfo *SubnetInfo) error {
// Sanity check
if addrSpace == "" {
return ErrInvalidAddressSpace
}
if subnetInfo == nil || subnetInfo.Subnet == nil {
return ErrInvalidSubnet
}
if a.contains(addrSpace, subnetInfo) {
return ErrOverlapSubnet
}
// Sanity check and size adjustment for v6
subnetToSplit, err := adjustAndCheckSubnetSize(subnetInfo.Subnet)
if err != nil {
return err
}
// Convert to smaller internal subnets (if needed)
subnetList, err := getInternalSubnets(subnetToSplit, a.internalHostSize)
if err != nil {
return err
}
// Store the configured subnet information
subnetKey := subnetKey{addrSpace, subnetInfo.Subnet.String()}
info := &subnetData{info: subnetInfo, intSubKeyes: make([]*isKey, len(subnetList))}
a.subnetsInfo[subnetKey] = info
// Create and insert the internal subnet(s) addresses masks into the address database
for i, sub := range subnetList {
ones, bits := sub.Mask.Size()
numAddresses := 1 << uint(bits-ones)
// Create and store internal subnet key into parent subnet handle
smallKey := &isKey{addrSpace, sub.String()}
info.intSubKeyes[i] = smallKey
// Add the new address masks
a.addresses[*smallKey] = &bitmask{
subnet: sub,
addressMask: bitseq.New(uint32(numAddresses)),
freeAddresses: numAddresses,
}
}
return nil
}
// Check subnets size. In case configured subnet is v6 and host size is
// greater than 32 bits, adjust subnet to /96.
func adjustAndCheckSubnetSize(subnet *net.IPNet) (*net.IPNet, error) {
ones, bits := subnet.Mask.Size()
if v6 == getAddressVersion(subnet.IP) {
if ones < minNetSizeV6 {
return nil, ErrInvalidSubnet
}
if ones < minNetSizeV6Eff {
newMask := net.CIDRMask(minNetSizeV6Eff, bits)
return &net.IPNet{IP: subnet.IP, Mask: newMask}, nil
}
} else {
if ones < minNetSize {
return nil, ErrInvalidSubnet
}
}
return subnet, nil
}
// Checks whether the passed subnet is a superset or subset of any of the subset in the db
func (a *Allocator) contains(space AddressSpace, subInfo *SubnetInfo) bool {
for k, v := range a.subnetsInfo {
if space == k.addressSpace {
if subInfo.Subnet.Contains(v.info.Subnet.IP) ||
v.info.Subnet.Contains(subInfo.Subnet.IP) {
return true
}
}
}
return false
}
// Splits the passed subnet into N internal subnets with host size equal to internalHostSize.
// If the subnet's host size is equal to or smaller than internalHostSize, there won't be any
// split and the return list will contain only the passed subnet.
func getInternalSubnets(subnet *net.IPNet, internalHostSize int) ([]*net.IPNet, error) {
var subnetList []*net.IPNet
// Get network/host subnet information
netBits, bits := subnet.Mask.Size()
hostBits := bits - netBits
extraBits := hostBits - internalHostSize
if extraBits <= 0 {
subnetList = make([]*net.IPNet, 1)
subnetList[0] = subnet
} else {
// Split in smaller internal subnets
numIntSubs := 1 << uint(extraBits)
subnetList = make([]*net.IPNet, numIntSubs)
// Construct one copy of the internal subnets's mask
intNetBits := bits - internalHostSize
intMask := net.CIDRMask(intNetBits, bits)
// Construct the prefix portion for each internal subnet
for i := 0; i < numIntSubs; i++ {
intIP := make([]byte, len(subnet.IP))
copy(intIP, subnet.IP) // IPv6 is too big, just work on the extra portion
addIntToIP(intIP, i<<uint(internalHostSize))
subnetList[i] = &net.IPNet{IP: intIP, Mask: intMask}
}
}
return subnetList, nil
}
// RemoveSubnet removes the subnet from the specified address space
func (a *Allocator) RemoveSubnet(addrSpace AddressSpace, subnet *net.IPNet) error {
if addrSpace == "" {
return ErrInvalidAddressSpace
}
if subnet == nil {
return ErrInvalidSubnet
}
// Look for the respective subnet configuration data
// Remove it along with the internal subnets
subKey := subnetKey{addrSpace, subnet.String()}
subData, ok := a.subnetsInfo[subKey]
if !ok {
return ErrSubnetNotFound
}
for _, key := range subData.intSubKeyes {
delete(a.addresses, *key)
}
delete(a.subnetsInfo, subKey)
return nil
}
// AddVendorInfo adds vendor specific data
func (a *Allocator) AddVendorInfo([]byte) error {
// no op for us
return nil
}
/****************
* IPAM Contract
****************/
// Request allows requesting an IPv4 address from the specified address space
func (a *Allocator) Request(addrSpace AddressSpace, req *AddressRequest) (*AddressResponse, error) {
return a.request(addrSpace, req, v4)
}
// RequestV6 requesting an IPv6 address from the specified address space
func (a *Allocator) RequestV6(addrSpace AddressSpace, req *AddressRequest) (*AddressResponse, error) {
return a.request(addrSpace, req, v6)
}
func (a *Allocator) request(addrSpace AddressSpace, req *AddressRequest, version ipVersion) (*AddressResponse, error) {
// Empty response
response := &AddressResponse{}
// Sanity check
if addrSpace == "" {
return response, ErrInvalidAddressSpace
}
// Validate request
if err := req.Validate(); err != nil {
return response, err
}
// Check ip version congruence
if &req.Subnet != nil && version != getAddressVersion(req.Subnet.IP) {
return response, ErrInvalidRequest
}
// Look for an address
ip, _, err := a.reserveAddress(addrSpace, &req.Subnet, req.Address, version)
if err == nil {
// Populate response
response.Address = ip
response.Subnet = *a.subnetsInfo[subnetKey{addrSpace, req.Subnet.String()}].info
}
return response, err
}
// Release allows releasing the address from the specified address space
func (a *Allocator) Release(addrSpace AddressSpace, address net.IP) {
if address == nil {
return
}
ver := getAddressVersion(address)
if ver == v4 {
address = address.To4()
}
for _, subKey := range a.getSubnetList(addrSpace, ver) {
sub := a.addresses[*subKey].subnet
if sub.Contains(address) {
// Retrieve correspondent ordinal in the subnet
space := a.addresses[isKey{addrSpace, sub.String()}]
ordinal := ipToInt(getHostPortionIP(address, space.subnet))
// Release it
space.addressMask = bitseq.PushReservation(ordinal/8, ordinal%8, space.addressMask, true)
space.freeAddresses++
return
}
}
}
func (a *Allocator) reserveAddress(addrSpace AddressSpace, subnet *net.IPNet, prefAddress net.IP, ver ipVersion) (net.IP, *net.IPNet, error) {
var keyList []*isKey
// Get the list of pointers to the internal subnets
if subnet != nil {
keyList = a.subnetsInfo[subnetKey{addrSpace, subnet.String()}].intSubKeyes
} else {
keyList = a.getSubnetList(addrSpace, ver)
}
if len(keyList) == 0 {
return nil, nil, ErrNoAvailableSubnet
}
for _, key := range keyList {
smallSubnet := a.addresses[*key]
address, err := a.getAddress(smallSubnet, prefAddress, ver)
if err == nil {
return address, subnet, nil
}
}
return nil, nil, ErrNoAvailableIPs
}
// Get the list of available internal subnets for the specified address space and the desired ip version
func (a *Allocator) getSubnetList(addrSpace AddressSpace, ver ipVersion) []*isKey {
var list [1024]*isKey
ind := 0
for subKey := range a.addresses {
_, s, _ := net.ParseCIDR(subKey.subnet)
subVer := getAddressVersion(s.IP)
if subKey.addressSpace == addrSpace && subVer == ver {
list[ind] = &subKey
ind++
}
}
return list[0:ind]
}
func (a *Allocator) getAddress(smallSubnet *bitmask, prefAddress net.IP, ver ipVersion) (net.IP, error) {
var (
bytePos, bitPos int
)
// Look for free IP, skip .0 and .255, they will be automatically reserved
again:
if smallSubnet.freeAddresses <= 0 {
return nil, ErrNoAvailableIPs
}
if prefAddress == nil {
bytePos, bitPos = bitseq.GetFirstAvailable(smallSubnet.addressMask)
} else {
ordinal := ipToInt(getHostPortionIP(prefAddress, smallSubnet.subnet))
bytePos, bitPos = bitseq.CheckIfAvailable(smallSubnet.addressMask, ordinal)
}
if bytePos == -1 {
return nil, ErrNoAvailableIPs
}
// Lock it
smallSubnet.addressMask = bitseq.PushReservation(bytePos, bitPos, smallSubnet.addressMask, false)
smallSubnet.freeAddresses--
// Build IP ordinal
ordinal := bitPos + bytePos*8
// For v4, let reservation of .0 and .255 happen automatically
if ver == v4 && !isValidIP(ordinal) {
goto again
}
// Convert IP ordinal for this subnet into IP address
return generateAddress(ordinal, smallSubnet.subnet), nil
}
// DumpDatabase dumps the internal info
func (a *Allocator) DumpDatabase() {
for _, config := range a.subnetsInfo {
fmt.Printf("\n\n%s:", config.info.Subnet.String())
for _, internKey := range config.intSubKeyes {
bm := a.addresses[*internKey]
fmt.Printf("\n\t%s: %s\n\t%d", bm.subnet, bm.addressMask, bm.freeAddresses)
}
}
}
// It generates the ip address in the passed subnet specified by
// the passed host address ordinal
func generateAddress(ordinal int, network *net.IPNet) net.IP {
var address [16]byte
// Get network portion of IP
if network.IP.To4() != nil {
copy(address[:], network.IP.To4())
} else {
copy(address[:], network.IP)
}
end := len(network.Mask)
addIntToIP(address[:end], ordinal)
return net.IP(address[:end])
}
func getAddressVersion(ip net.IP) ipVersion {
if ip.To4() == nil {
return v6
}
return v4
}
// .0 and .255 will return false
func isValidIP(i int) bool {
lastByte := i & 0xff
return lastByte != 0xff && lastByte != 0
}
// Adds the ordinal IP to the current array
// 192.168.0.0 + 53 => 192.168.53
func addIntToIP(array []byte, ordinal int) {
for i := len(array) - 1; i >= 0; i-- {
array[i] |= (byte)(ordinal & 0xff)
ordinal >>= 8
}
}
// Convert an ordinal to the respective IP address
func ipToInt(ip []byte) int {
value := 0
for i := 0; i < len(ip); i++ {
j := len(ip) - 1 - i
value += int(ip[i]) << uint(j*8)
}
return value
}
// Given an address and subnet, returns the host portion address
func getHostPortionIP(address net.IP, subnet *net.IPNet) net.IP {
hostPortion := make([]byte, len(address))
for i := 0; i < len(subnet.Mask); i++ {
hostPortion[i] = address[i] &^ subnet.Mask[i]
}
return hostPortion
}
func printLine(head *bitseq.Sequence) {
fmt.Println()
for head != nil {
fmt.Printf("-")
head = head.Next
}
}

View File

@ -0,0 +1,543 @@
package ipam
import (
"fmt"
"net"
"testing"
"time"
"github.com/docker/libnetwork/bitseq"
)
func getAllocator(subnet *net.IPNet) *Allocator {
a := NewAllocator()
a.AddSubnet("default", &SubnetInfo{Subnet: subnet})
return a
}
func TestInt2IP2IntConversion(t *testing.T) {
for i := 0; i < 256*256*256; i++ {
var array [4]byte // new array at each cycle
addIntToIP(array[:], i)
j := ipToInt(array[:])
if j != i {
t.Fatalf("Failed to convert ordinal %d to IP % x and back to ordinal. Got %d", i, array, j)
}
}
}
func TestIsValid(t *testing.T) {
list := []int{0, 255, 256, 511, 512, 767, 768}
for _, i := range list {
if isValidIP(i) {
t.Fatalf("Failed to detect invalid IPv4 ordinal: %d", i)
}
}
list = []int{1, 254, 257, 258, 510, 513, 769, 770}
for _, i := range list {
if !isValidIP(i) {
t.Fatalf("Marked valid ipv4 as invalid: %d", i)
}
}
}
func TestGetAddressVersion(t *testing.T) {
if v4 != getAddressVersion(net.ParseIP("172.28.30.112")) {
t.Fatalf("Failed to detect IPv4 version")
}
if v4 != getAddressVersion(net.ParseIP("0.0.0.1")) {
t.Fatalf("Failed to detect IPv4 version")
}
if v6 != getAddressVersion(net.ParseIP("ff01::1")) {
t.Fatalf("Failed to detect IPv6 version")
}
if v6 != getAddressVersion(net.ParseIP("2001:56::76:51")) {
t.Fatalf("Failed to detect IPv6 version")
}
}
func TestAddSubnets(t *testing.T) {
a := NewAllocator()
_, sub0, _ := net.ParseCIDR("10.0.0.0/8")
err := a.AddSubnet("default", &SubnetInfo{Subnet: sub0})
if err != nil {
t.Fatalf("Unexpected failure in adding subent")
}
err = a.AddSubnet("abc", &SubnetInfo{Subnet: sub0})
if err != nil {
t.Fatalf("Unexpected failure in adding overlapping subents to different address spaces")
}
err = a.AddSubnet("abc", &SubnetInfo{Subnet: sub0})
if err == nil {
t.Fatalf("Failed to detect overlapping subnets: %s and %s", sub0, sub0)
}
_, sub1, _ := net.ParseCIDR("10.20.2.0/24")
err = a.AddSubnet("default", &SubnetInfo{Subnet: sub1})
if err == nil {
t.Fatalf("Failed to detect overlapping subnets: %s and %s", sub0, sub1)
}
_, sub2, _ := net.ParseCIDR("10.128.0.0/9")
err = a.AddSubnet("default", &SubnetInfo{Subnet: sub2})
if err == nil {
t.Fatalf("Failed to detect overlapping subnets: %s and %s", sub1, sub2)
}
_, sub6, err := net.ParseCIDR("1003:1:2:3:4:5:6::/112")
if err != nil {
t.Fatalf("Wrong input, Can't proceed: %s", err.Error())
}
err = a.AddSubnet("default", &SubnetInfo{Subnet: sub6})
if err != nil {
t.Fatalf("Failed to add v6 subnet: %s", err.Error())
}
_, sub6, err = net.ParseCIDR("1003:1:2:3::/64")
if err != nil {
t.Fatalf("Wrong input, Can't proceed: %s", err.Error())
}
err = a.AddSubnet("default", &SubnetInfo{Subnet: sub6})
if err == nil {
t.Fatalf("Failed to detect overlapping v6 subnet")
}
}
func TestAdjustAndCheckSubnet(t *testing.T) {
_, sub6, _ := net.ParseCIDR("1003:1:2:300::/63")
_, err := adjustAndCheckSubnetSize(sub6)
if err == nil {
t.Fatalf("Failed detect too big v6 subnet")
}
_, sub, _ := net.ParseCIDR("192.0.0.0/7")
_, err = adjustAndCheckSubnetSize(sub)
if err == nil {
t.Fatalf("Failed detect too big v4 subnet")
}
subnet := "1004:1:2:6::/64"
_, sub6, _ = net.ParseCIDR(subnet)
subnetToSplit, err := adjustAndCheckSubnetSize(sub6)
if err != nil {
t.Fatalf("Unexpected error returned by adjustAndCheckSubnetSize()")
}
ones, _ := subnetToSplit.Mask.Size()
if ones < minNetSizeV6Eff {
t.Fatalf("Wrong effective network size for %s. Expected: %d. Got: %d", subnet, minNetSizeV6Eff, ones)
}
}
func TestRemoveSubnet(t *testing.T) {
a := NewAllocator()
input := []struct {
addrSpace AddressSpace
subnet string
}{
{"default", "192.168.0.0/16"},
{"default", "172.17.0.0/16"},
{"default", "10.0.0.0/8"},
{"default", "2002:1:2:3:4:5:ffff::/112"},
{"splane", "172.17.0.0/16"},
{"splane", "10.0.0.0/8"},
{"splane", "2002:1:2:3:4:5:6::/112"},
{"splane", "2002:1:2:3:4:5:ffff::/112"},
}
for _, i := range input {
_, sub, err := net.ParseCIDR(i.subnet)
if err != nil {
t.Fatalf("Wrong input, Can't proceed: %s", err.Error())
}
err = a.AddSubnet(i.addrSpace, &SubnetInfo{Subnet: sub})
if err != nil {
t.Fatalf("Failed to apply input. Can't proceed: %s", err.Error())
}
}
_, sub, _ := net.ParseCIDR("172.17.0.0/16")
a.RemoveSubnet("default", sub)
if len(a.subnetsInfo) != 7 {
t.Fatalf("Failed to remove subnet info")
}
list := a.getSubnetList("default", v4)
if len(list) != 257 {
t.Fatalf("Failed to effectively remove subnet address space")
}
_, sub, _ = net.ParseCIDR("2002:1:2:3:4:5:ffff::/112")
a.RemoveSubnet("default", sub)
if len(a.subnetsInfo) != 6 {
t.Fatalf("Failed to remove subnet info")
}
list = a.getSubnetList("default", v6)
if len(list) != 0 {
t.Fatalf("Failed to effectively remove subnet address space")
}
_, sub, _ = net.ParseCIDR("2002:1:2:3:4:5:6::/112")
a.RemoveSubnet("splane", sub)
if len(a.subnetsInfo) != 5 {
t.Fatalf("Failed to remove subnet info")
}
list = a.getSubnetList("splane", v6)
if len(list) != 1 {
t.Fatalf("Failed to effectively remove subnet address space")
}
}
func TestGetInternalSubnets(t *testing.T) {
// This function tests the splitting of a parent subnet in small host subnets.
// The splitting is controlled by the max host size, which is the first parameter
// passed to the function. It basically says if the parent subnet host size is
// greater than the max host size, split the parent subnet into N internal small
// subnets with host size = max host size to cover the same address space.
input := []struct {
internalHostSize int
parentSubnet string
firstIntSubnet string
lastIntSubnet string
}{
// Test 8 bits prefix network
{24, "10.0.0.0/8", "10.0.0.0/8", "10.0.0.0/8"},
{16, "10.0.0.0/8", "10.0.0.0/16", "10.255.0.0/16"},
{8, "10.0.0.0/8", "10.0.0.0/24", "10.255.255.0/24"},
// Test 16 bits prefix network
{16, "192.168.0.0/16", "192.168.0.0/16", "192.168.0.0/16"},
{8, "192.168.0.0/16", "192.168.0.0/24", "192.168.255.0/24"},
// Test 24 bits prefix network
{16, "192.168.57.0/24", "192.168.57.0/24", "192.168.57.0/24"},
{8, "192.168.57.0/24", "192.168.57.0/24", "192.168.57.0/24"},
// Test non byte multiple host size
{24, "10.0.0.0/8", "10.0.0.0/8", "10.0.0.0/8"},
{20, "10.0.0.0/12", "10.0.0.0/12", "10.0.0.0/12"},
{20, "10.128.0.0/12", "10.128.0.0/12", "10.128.0.0/12"},
{12, "10.16.0.0/16", "10.16.0.0/20", "10.16.240.0/20"},
{13, "10.0.0.0/8", "10.0.0.0/19", "10.255.224.0/19"},
{15, "10.0.0.0/8", "10.0.0.0/17", "10.255.128.0/17"},
// Test v6 network
{16, "2002:1:2:3:4:5:6000::/110", "2002:1:2:3:4:5:6000:0/112", "2002:1:2:3:4:5:6003:0/112"},
{16, "2002:1:2:3:4:5:ff00::/104", "2002:1:2:3:4:5:ff00:0/112", "2002:1:2:3:4:5:ffff:0/112"},
{12, "2002:1:2:3:4:5:ffff::/112", "2002:1:2:3:4:5:ffff:0/116", "2002:1:2:3:4:5:ffff:f000/116"},
{11, "2002:1:2:3:4:5:ffff::/112", "2002:1:2:3:4:5:ffff:0/117", "2002:1:2:3:4:5:ffff:f800/117"},
}
for _, d := range input {
assertInternalSubnet(t, d.internalHostSize, d.parentSubnet, d.firstIntSubnet, d.lastIntSubnet)
}
}
func TestGetAddress(t *testing.T) {
input := []string{
/*"10.0.0.0/8", "10.0.0.0/9", */ "10.0.0.0/10", "10.0.0.0/11", "10.0.0.0/12", "10.0.0.0/13", "10.0.0.0/14",
"10.0.0.0/15", "10.0.0.0/16", "10.0.0.0/17", "10.0.0.0/18", "10.0.0.0/19", "10.0.0.0/20", "10.0.0.0/21",
"10.0.0.0/22", "10.0.0.0/23", "10.0.0.0/24", "10.0.0.0/25", "10.0.0.0/26", "10.0.0.0/27", "10.0.0.0/28",
"10.0.0.0/29", "10.0.0.0/30", "10.0.0.0/31"}
for _, subnet := range input {
assertGetAddress(t, subnet)
}
}
func TestGetSubnetList(t *testing.T) {
a := NewAllocator()
input := []struct {
addrSpace AddressSpace
subnet string
}{
{"default", "192.168.0.0/16"},
{"default", "172.17.0.0/16"},
{"default", "10.0.0.0/8"},
{"default", "2002:1:2:3:4:5:6::/112"},
{"default", "2002:1:2:3:4:5:ffff::/112"},
{"splane", "172.17.0.0/16"},
{"splane", "10.0.0.0/8"},
{"splane", "2002:1:2:3:4:5:ff00::/104"},
}
for _, i := range input {
_, sub, err := net.ParseCIDR(i.subnet)
if err != nil {
t.Fatalf("Wrong input, Can't proceed: %s", err.Error())
}
err = a.AddSubnet(i.addrSpace, &SubnetInfo{Subnet: sub})
if err != nil {
t.Fatalf("Failed to apply input. Can't proceed: %s", err.Error())
}
}
list := a.getSubnetList("default", v4)
if len(list) != 258 {
t.Fatalf("Incorrect number of internal subnets for ipv4 version. Expected 258. Got %d.", len(list))
}
list = a.getSubnetList("splane", v4)
if len(list) != 257 {
t.Fatalf("Incorrect number of internal subnets for ipv4 version. Expected 257. Got %d.", len(list))
}
list = a.getSubnetList("default", v6)
if len(list) != 2 {
t.Fatalf("Incorrect number of internal subnets for ipv6 version. Expected 2. Got %d.", len(list))
}
list = a.getSubnetList("splane", v6)
if len(list) != 256 {
t.Fatalf("Incorrect number of internal subnets for ipv6 version. Expected 256. Got %d.", len(list))
}
}
func TestRequestSyntaxCheck(t *testing.T) {
var (
a = NewAllocator()
subnet = "192.168.0.0/16"
addSpace = AddressSpace("green")
)
// Add subnet and create base request
_, sub, _ := net.ParseCIDR(subnet)
a.AddSubnet(addSpace, &SubnetInfo{Subnet: sub})
req := &AddressRequest{Subnet: *sub}
// Empty address space request
_, err := a.Request("", req)
if err == nil {
t.Fatalf("Failed to detect wrong request: empty address space")
}
// Preferred address from different subnet in request
req.Address = net.ParseIP("172.17.0.23")
_, err = a.Request(addSpace, req)
if err == nil {
t.Fatalf("Failed to detect wrong request: preferred IP from different subnet")
}
// Preferred address specified and nil subnet
req = &AddressRequest{Address: net.ParseIP("172.17.0.23")}
_, err = a.Request(addSpace, req)
if err == nil {
t.Fatalf("Failed to detect wrong request: subnet not specified but preferred address specified")
}
}
func TestRequest(t *testing.T) {
// Request N addresses from different size subnets, verifying last request
// returns expected address. Internal subnet host size is Allocator's default, 16
input := []struct {
subnet string
numReq int
lastIP string
}{
{"192.168.59.0/24", 254, "192.168.59.254"},
{"192.168.240.0/20", 254, "192.168.240.254"},
{"192.168.0.0/16", 254, "192.168.0.254"},
{"10.16.0.0/16", 254, "10.16.0.254"},
{"10.128.0.0/12", 254, "10.128.0.254"},
{"10.0.0.0/8", 254, "10.0.0.254"},
{"192.168.0.0/16", 256, "192.168.1.2"},
{"10.0.0.0/8", 256, "10.0.1.2"},
{"192.168.128.0/18", 4 * 254, "192.168.131.254"},
{"192.168.240.0/20", 16 * 254, "192.168.255.254"},
{"192.168.0.0/16", 256 * 254, "192.168.255.254"},
{"10.0.0.0/8", 256 * 254, "10.0.255.254"},
{"10.0.0.0/8", 257 * 254, "10.1.0.254"},
//{"10.0.0.0/8", 100 * 256 * 254, "10.99.255.254"},
}
for _, d := range input {
assertNRequests(t, d.subnet, d.numReq, d.lastIP)
}
}
func TestRelease(t *testing.T) {
var (
err error
req *AddressRequest
subnet = "192.168.0.0/16"
)
_, sub, _ := net.ParseCIDR(subnet)
a := getAllocator(sub)
req = &AddressRequest{Subnet: *sub}
bm := a.addresses[isKey{"default", subnet}]
// Allocate all addresses
for err != ErrNoAvailableIPs {
_, err = a.Request("default", req)
}
toRelease := []struct {
address string
}{
{"192.168.0.1"},
{"192.168.0.2"},
{"192.168.0.3"},
{"192.168.0.4"},
{"192.168.0.5"},
{"192.168.0.6"},
{"192.168.0.7"},
{"192.168.0.8"},
{"192.168.0.9"},
{"192.168.0.10"},
{"192.168.0.30"},
{"192.168.0.31"},
{"192.168.1.32"},
{"192.168.0.254"},
{"192.168.1.1"},
{"192.168.1.2"},
{"192.168.1.3"},
{"192.168.255.253"},
{"192.168.255.254"},
}
// One by one, relase the address and request again. We should get the same IP
req = &AddressRequest{Subnet: *sub}
for i, inp := range toRelease {
address := net.ParseIP(inp.address)
a.Release("default", address)
if bm.freeAddresses != 1 {
t.Fatalf("Failed to update free address count after release. Expected %d, Found: %d", i+1, bm.freeAddresses)
}
rsp, err := a.Request("default", req)
if err != nil {
t.Fatalf("Failed to obtain the address: %s", err.Error())
}
if !address.Equal(rsp.Address) {
t.Fatalf("Failed to obtain the same address. Expected: %s, Got: %s", address, rsp.Address)
}
}
}
func assertInternalSubnet(t *testing.T, hostSize int, bigSubnet, firstSmall, lastSmall string) {
_, subnet, _ := net.ParseCIDR(bigSubnet)
list, _ := getInternalSubnets(subnet, hostSize)
count := 1
ones, bits := subnet.Mask.Size()
diff := bits - ones - hostSize
if diff > 0 {
count <<= uint(diff)
}
if len(list) != count {
t.Fatalf("Wrong small subnets number. Expected: %d, Got: %d", count, len(list))
}
if firstSmall != list[0].String() {
t.Fatalf("Wrong first small subent. Expected: %v, Got: %v", firstSmall, list[0])
}
if lastSmall != list[count-1].String() {
t.Fatalf("Wrong last small subent. Expected: %v, Got: %v", lastSmall, list[count-1])
}
}
func assertGetAddress(t *testing.T, subnet string) {
var (
err error
printTime = false
a = &Allocator{}
)
_, sub, _ := net.ParseCIDR(subnet)
ones, bits := sub.Mask.Size()
zeroes := bits - ones
numAddresses := 1 << uint(zeroes)
var expectedMax uint32
if numAddresses >= 32 {
expectedMax = uint32(1<<32 - 1)
} else {
expectedMax = (1<<uint(numAddresses) - 1) << uint(32-numAddresses)
}
bm := &bitmask{
subnet: sub,
addressMask: bitseq.New(uint32(numAddresses)),
freeAddresses: numAddresses,
}
numBlocks := bm.addressMask.Count
start := time.Now()
run := 0
for err != ErrNoAvailableIPs {
_, err = a.getAddress(bm, nil, v4)
run++
}
if printTime {
fmt.Printf("\nTaken %v, to allocate all addresses on %s. (nemAddresses: %d. Runs: %d)", time.Since(start), subnet, numAddresses, run)
}
if bm.addressMask.Block != expectedMax || bm.addressMask.Count != numBlocks {
t.Fatalf("Failed to effectively reserve all addresses on %s. Expected (0x%x, %d) as first sequence. Found (0x%x,%d)",
subnet, expectedMax, numBlocks, bm.addressMask.Block, bm.addressMask.Count)
}
}
func assertNRequests(t *testing.T, subnet string, numReq int, lastExpectedIP string) {
var (
err error
req *AddressRequest
rsp *AddressResponse
printTime = false
)
_, sub, _ := net.ParseCIDR(subnet)
lastIP := net.ParseIP(lastExpectedIP)
a := getAllocator(sub)
req = &AddressRequest{Subnet: *sub}
i := 0
start := time.Now()
for ; i < numReq; i++ {
rsp, err = a.Request("default", req)
}
if printTime {
fmt.Printf("\nTaken %v, to allocate %d addresses on %s\n", time.Since(start), numReq, subnet)
}
if !lastIP.Equal(rsp.Address) {
t.Fatalf("Wrong last IP. Expected %s. Got: %s (err: %v, ind: %d)", lastExpectedIP, rsp.Address.String(), err, i)
}
}
func benchmarkRequest(subnet *net.IPNet) {
var err error
a := NewAllocator()
a.internalHostSize = 20
a.AddSubnet("default", &SubnetInfo{Subnet: subnet})
req := &AddressRequest{Subnet: *subnet}
for err != ErrNoAvailableIPs {
_, err = a.Request("default", req)
}
}
func benchMarkRequest(subnet *net.IPNet, b *testing.B) {
for n := 0; n < b.N; n++ {
benchmarkRequest(subnet)
}
}
func BenchmarkRequest_24(b *testing.B) {
benchmarkRequest(&net.IPNet{IP: []byte{10, 0, 0, 0}, Mask: []byte{255, 255, 255, 0}})
}
func BenchmarkRequest_16(b *testing.B) {
benchmarkRequest(&net.IPNet{IP: []byte{10, 0, 0, 0}, Mask: []byte{255, 255, 0, 0}})
}
func BenchmarkRequest_8(b *testing.B) {
benchmarkRequest(&net.IPNet{IP: []byte{10, 0, 0, 0}, Mask: []byte{255, 0xfc, 0, 0}})
}