Merge pull request #16190 from LK4D4/drain_refactor

Refactoring of bufReader
This commit is contained in:
Jess Frazelle 2015-09-24 01:54:40 -07:00
commit 8c33c6c737
4 changed files with 253 additions and 112 deletions

89
pkg/ioutils/bytespipe.go Normal file
View File

@ -0,0 +1,89 @@
package ioutils
const maxCap = 1e6
// BytesPipe is io.ReadWriter which works similarly to pipe(queue).
// All written data could be read only once. Also BytesPipe is allocating
// and releasing new byte slices to adjust to current needs, so there won't be
// overgrown buffer after high load peak.
// BytesPipe isn't goroutine-safe, caller must synchronize it if needed.
type BytesPipe struct {
buf [][]byte // slice of byte-slices of buffered data
lastRead int // index in the first slice to a read point
bufLen int // length of data buffered over the slices
}
// NewBytesPipe creates new BytesPipe, initialized by specified slice.
// If buf is nil, then it will be initialized with slice which cap is 64.
// buf will be adjusted in a way that len(buf) == 0, cap(buf) == cap(buf).
func NewBytesPipe(buf []byte) *BytesPipe {
if cap(buf) == 0 {
buf = make([]byte, 0, 64)
}
return &BytesPipe{
buf: [][]byte{buf[:0]},
}
}
// Write writes p to BytesPipe.
// It can allocate new []byte slices in a process of writing.
func (bp *BytesPipe) Write(p []byte) (n int, err error) {
for {
// write data to the last buffer
b := bp.buf[len(bp.buf)-1]
// copy data to the current empty allocated area
n := copy(b[len(b):cap(b)], p)
// increment buffered data length
bp.bufLen += n
// include written data in last buffer
bp.buf[len(bp.buf)-1] = b[:len(b)+n]
// if there was enough room to write all then break
if len(p) == n {
break
}
// more data: write to the next slice
p = p[n:]
// allocate slice that has twice the size of the last unless maximum reached
nextCap := 2 * cap(bp.buf[len(bp.buf)-1])
if maxCap < nextCap {
nextCap = maxCap
}
// add new byte slice to the buffers slice and continue writing
bp.buf = append(bp.buf, make([]byte, 0, nextCap))
}
return
}
func (bp *BytesPipe) len() int {
return bp.bufLen - bp.lastRead
}
// Read reads bytes from BytesPipe.
// Data could be read only once.
func (bp *BytesPipe) Read(p []byte) (n int, err error) {
for {
read := copy(p, bp.buf[0][bp.lastRead:])
n += read
bp.lastRead += read
if bp.len() == 0 {
// we have read everything. reset to the beginning.
bp.lastRead = 0
bp.bufLen -= len(bp.buf[0])
bp.buf[0] = bp.buf[0][:0]
break
}
// break if everything was read
if len(p) == read {
break
}
// more buffered data and more asked. read from next slice.
p = p[read:]
bp.lastRead = 0
bp.bufLen -= len(bp.buf[0])
bp.buf[0] = nil // throw away old slice
bp.buf = bp.buf[1:] // switch to next
}
return
}

View File

@ -0,0 +1,141 @@
package ioutils
import (
"crypto/sha1"
"encoding/hex"
"testing"
)
func TestBytesPipeRead(t *testing.T) {
buf := NewBytesPipe(nil)
buf.Write([]byte("12"))
buf.Write([]byte("34"))
buf.Write([]byte("56"))
buf.Write([]byte("78"))
buf.Write([]byte("90"))
rd := make([]byte, 4)
n, err := buf.Read(rd)
if err != nil {
t.Fatal(err)
}
if n != 4 {
t.Fatalf("Wrong number of bytes read: %d, should be %d", n, 4)
}
if string(rd) != "1234" {
t.Fatalf("Read %s, but must be %s", rd, "1234")
}
n, err = buf.Read(rd)
if err != nil {
t.Fatal(err)
}
if n != 4 {
t.Fatalf("Wrong number of bytes read: %d, should be %d", n, 4)
}
if string(rd) != "5678" {
t.Fatalf("Read %s, but must be %s", rd, "5679")
}
n, err = buf.Read(rd)
if err != nil {
t.Fatal(err)
}
if n != 2 {
t.Fatalf("Wrong number of bytes read: %d, should be %d", n, 2)
}
if string(rd[:n]) != "90" {
t.Fatalf("Read %s, but must be %s", rd, "90")
}
}
func TestBytesPipeWrite(t *testing.T) {
buf := NewBytesPipe(nil)
buf.Write([]byte("12"))
buf.Write([]byte("34"))
buf.Write([]byte("56"))
buf.Write([]byte("78"))
buf.Write([]byte("90"))
if string(buf.buf[0]) != "1234567890" {
t.Fatalf("Buffer %s, must be %s", buf.buf, "1234567890")
}
}
// Write and read in different speeds/chunk sizes and check valid data is read.
func TestBytesPipeWriteRandomChunks(t *testing.T) {
cases := []struct{ iterations, writesPerLoop, readsPerLoop int }{
{100, 10, 1},
{1000, 10, 5},
{1000, 100, 0},
{1000, 5, 6},
{10000, 50, 25},
}
testMessage := []byte("this is a random string for testing")
// random slice sizes to read and write
writeChunks := []int{25, 35, 15, 20}
readChunks := []int{5, 45, 20, 25}
for _, c := range cases {
// first pass: write directly to hash
hash := sha1.New()
for i := 0; i < c.iterations*c.writesPerLoop; i++ {
if _, err := hash.Write(testMessage[:writeChunks[i%len(writeChunks)]]); err != nil {
t.Fatal(err)
}
}
expected := hex.EncodeToString(hash.Sum(nil))
// write/read through buffer
buf := NewBytesPipe(nil)
hash.Reset()
for i := 0; i < c.iterations; i++ {
for w := 0; w < c.writesPerLoop; w++ {
buf.Write(testMessage[:writeChunks[(i*c.writesPerLoop+w)%len(writeChunks)]])
}
for r := 0; r < c.readsPerLoop; r++ {
p := make([]byte, readChunks[(i*c.readsPerLoop+r)%len(readChunks)])
n, _ := buf.Read(p)
hash.Write(p[:n])
}
}
// read rest of the data from buffer
for i := 0; ; i++ {
p := make([]byte, readChunks[(c.iterations*c.readsPerLoop+i)%len(readChunks)])
n, _ := buf.Read(p)
if n == 0 {
break
}
hash.Write(p[:n])
}
actual := hex.EncodeToString(hash.Sum(nil))
if expected != actual {
t.Fatalf("BytesPipe returned invalid data. Expected checksum %v, got %v", expected, actual)
}
}
}
func BenchmarkBytesPipeWrite(b *testing.B) {
for i := 0; i < b.N; i++ {
buf := NewBytesPipe(nil)
for j := 0; j < 1000; j++ {
buf.Write([]byte("pretty short line, because why not?"))
}
}
}
func BenchmarkBytesPipeRead(b *testing.B) {
rd := make([]byte, 1024)
for i := 0; i < b.N; i++ {
b.StopTimer()
buf := NewBytesPipe(nil)
for j := 0; j < 1000; j++ {
buf.Write(make([]byte, 1024))
}
b.StartTimer()
for j := 0; j < 1000; j++ {
if n, _ := buf.Read(rd); n != 1024 {
b.Fatalf("Wrong number of bytes: %d", n)
}
}
}
}

View File

@ -1,19 +1,12 @@
package ioutils package ioutils
import ( import (
"bytes"
"crypto/sha256" "crypto/sha256"
"encoding/hex" "encoding/hex"
"io" "io"
"math/rand"
"sync" "sync"
"time"
"github.com/docker/docker/pkg/random"
) )
var rndSrc = random.NewSource()
type readCloserWrapper struct { type readCloserWrapper struct {
io.Reader io.Reader
closer func() error closer func() error
@ -58,31 +51,19 @@ func NewReaderErrWrapper(r io.Reader, closer func()) io.Reader {
// expanding buffer. // expanding buffer.
type bufReader struct { type bufReader struct {
sync.Mutex sync.Mutex
buf *bytes.Buffer buf io.ReadWriter
reader io.Reader reader io.Reader
err error err error
wait sync.Cond wait sync.Cond
drainBuf []byte drainBuf []byte
reuseBuf []byte
maxReuse int64
resetTimeout time.Duration
bufLenResetThreshold int64
maxReadDataReset int64
} }
// NewBufReader returns a new bufReader. // NewBufReader returns a new bufReader.
func NewBufReader(r io.Reader) io.ReadCloser { func NewBufReader(r io.Reader) io.ReadCloser {
timeout := rand.New(rndSrc).Intn(90)
reader := &bufReader{ reader := &bufReader{
buf: &bytes.Buffer{}, buf: NewBytesPipe(nil),
drainBuf: make([]byte, 1024), reader: r,
reuseBuf: make([]byte, 4096), drainBuf: make([]byte, 1024),
maxReuse: 1000,
resetTimeout: time.Duration(timeout) * time.Second,
bufLenResetThreshold: 100 * 1024,
maxReadDataReset: 10 * 1024 * 1024,
reader: r,
} }
reader.wait.L = &reader.Mutex reader.wait.L = &reader.Mutex
go reader.drain() go reader.drain()
@ -90,7 +71,7 @@ func NewBufReader(r io.Reader) io.ReadCloser {
} }
// NewBufReaderWithDrainbufAndBuffer returns a BufReader with drainBuffer and buffer. // NewBufReaderWithDrainbufAndBuffer returns a BufReader with drainBuffer and buffer.
func NewBufReaderWithDrainbufAndBuffer(r io.Reader, drainBuffer []byte, buffer *bytes.Buffer) io.ReadCloser { func NewBufReaderWithDrainbufAndBuffer(r io.Reader, drainBuffer []byte, buffer io.ReadWriter) io.ReadCloser {
reader := &bufReader{ reader := &bufReader{
buf: buffer, buf: buffer,
drainBuf: drainBuffer, drainBuf: drainBuffer,
@ -102,94 +83,19 @@ func NewBufReaderWithDrainbufAndBuffer(r io.Reader, drainBuffer []byte, buffer *
} }
func (r *bufReader) drain() { func (r *bufReader) drain() {
var (
duration time.Duration
lastReset time.Time
now time.Time
reset bool
bufLen int64
dataSinceReset int64
maxBufLen int64
reuseBufLen int64
reuseCount int64
)
reuseBufLen = int64(len(r.reuseBuf))
lastReset = time.Now()
for { for {
n, err := r.reader.Read(r.drainBuf) n, err := r.reader.Read(r.drainBuf)
dataSinceReset += int64(n)
r.Lock() r.Lock()
bufLen = int64(r.buf.Len())
if bufLen > maxBufLen {
maxBufLen = bufLen
}
// Avoid unbounded growth of the buffer over time.
// This has been discovered to be the only non-intrusive
// solution to the unbounded growth of the buffer.
// Alternative solutions such as compression, multiple
// buffers, channels and other similar pieces of code
// were reducing throughput, overall Docker performance
// or simply crashed Docker.
// This solution releases the buffer when specific
// conditions are met to avoid the continuous resizing
// of the buffer for long lived containers.
//
// Move data to the front of the buffer if it's
// smaller than what reuseBuf can store
if bufLen > 0 && reuseBufLen >= bufLen {
n, _ := r.buf.Read(r.reuseBuf)
r.buf.Write(r.reuseBuf[0:n])
// Take action if the buffer has been reused too many
// times and if there's data in the buffer.
// The timeout is also used as means to avoid doing
// these operations more often or less often than
// required.
// The various conditions try to detect heavy activity
// in the buffer which might be indicators of heavy
// growth of the buffer.
} else if reuseCount >= r.maxReuse && bufLen > 0 {
now = time.Now()
duration = now.Sub(lastReset)
timeoutReached := duration >= r.resetTimeout
// The timeout has been reached and the
// buffered data couldn't be moved to the front
// of the buffer, so the buffer gets reset.
if timeoutReached && bufLen > reuseBufLen {
reset = true
}
// The amount of buffered data is too high now,
// reset the buffer.
if timeoutReached && maxBufLen >= r.bufLenResetThreshold {
reset = true
}
// Reset the buffer if a certain amount of
// data has gone through the buffer since the
// last reset.
if timeoutReached && dataSinceReset >= r.maxReadDataReset {
reset = true
}
// The buffered data is moved to a fresh buffer,
// swap the old buffer with the new one and
// reset all counters.
if reset {
newbuf := &bytes.Buffer{}
newbuf.ReadFrom(r.buf)
r.buf = newbuf
lastReset = now
reset = false
dataSinceReset = 0
maxBufLen = 0
reuseCount = 0
}
}
if err != nil { if err != nil {
r.err = err r.err = err
} else { } else {
r.buf.Write(r.drainBuf[0:n]) if n == 0 {
// nothing written, no need to signal
r.Unlock()
continue
}
r.buf.Write(r.drainBuf[:n])
} }
reuseCount++
r.wait.Signal() r.wait.Signal()
r.Unlock() r.Unlock()
callSchedulerIfNecessary() callSchedulerIfNecessary()

View File

@ -7,6 +7,7 @@ import (
"io/ioutil" "io/ioutil"
"strings" "strings"
"testing" "testing"
"time"
) )
// Implement io.Reader // Implement io.Reader
@ -61,8 +62,8 @@ func TestNewBufReaderWithDrainbufAndBuffer(t *testing.T) {
reader, writer := io.Pipe() reader, writer := io.Pipe()
drainBuffer := make([]byte, 1024) drainBuffer := make([]byte, 1024)
buffer := bytes.Buffer{} buffer := NewBytesPipe(nil)
bufreader := NewBufReaderWithDrainbufAndBuffer(reader, drainBuffer, &buffer) bufreader := NewBufReaderWithDrainbufAndBuffer(reader, drainBuffer, buffer)
// Write everything down to a Pipe // Write everything down to a Pipe
// Usually, a pipe should block but because of the buffered reader, // Usually, a pipe should block but because of the buffered reader,
@ -76,7 +77,11 @@ func TestNewBufReaderWithDrainbufAndBuffer(t *testing.T) {
// Drain the reader *after* everything has been written, just to verify // Drain the reader *after* everything has been written, just to verify
// it is indeed buffering // it is indeed buffering
<-done select {
case <-done:
case <-time.After(1 * time.Second):
t.Fatal("timeout")
}
output, err := ioutil.ReadAll(bufreader) output, err := ioutil.ReadAll(bufreader)
if err != nil { if err != nil {