package docker import ( "net" "os" "testing" ) func TestIptables(t *testing.T) { if err := iptables("-L"); err != nil { t.Fatal(err) } path := os.Getenv("PATH") os.Setenv("PATH", "") defer os.Setenv("PATH", path) if err := iptables("-L"); err == nil { t.Fatal("Not finding iptables in the PATH should cause an error") } } func TestParseNat(t *testing.T) { if nat, err := parseNat("4500"); err == nil { if nat.Frontend != 0 || nat.Backend != 4500 { t.Errorf("-p 4500 should produce 0->4500, got %d->%d", nat.Frontend, nat.Backend) } } else { t.Fatal(err) } if nat, err := parseNat(":4501"); err == nil { if nat.Frontend != 4501 || nat.Backend != 4501 { t.Errorf("-p :4501 should produce 4501->4501, got %d->%d", nat.Frontend, nat.Backend) } } else { t.Fatal(err) } if nat, err := parseNat("4502:4503"); err == nil { if nat.Frontend != 4502 || nat.Backend != 4503 { t.Errorf("-p 4502:4503 should produce 4502->4503, got %d->%d", nat.Frontend, nat.Backend) } } else { t.Fatal(err) } } func TestPortAllocation(t *testing.T) { allocator, err := newPortAllocator() if err != nil { t.Fatal(err) } if port, err := allocator.Acquire(80); err != nil { t.Fatal(err) } else if port != 80 { t.Fatalf("Acquire(80) should return 80, not %d", port) } port, err := allocator.Acquire(0) if err != nil { t.Fatal(err) } if port <= 0 { t.Fatalf("Acquire(0) should return a non-zero port") } if _, err := allocator.Acquire(port); err == nil { t.Fatalf("Acquiring a port already in use should return an error") } if newPort, err := allocator.Acquire(0); err != nil { t.Fatal(err) } else if newPort == port { t.Fatalf("Acquire(0) allocated the same port twice: %d", port) } if _, err := allocator.Acquire(80); err == nil { t.Fatalf("Acquiring a port already in use should return an error") } if err := allocator.Release(80); err != nil { t.Fatal(err) } if _, err := allocator.Acquire(80); err != nil { t.Fatal(err) } } func TestNetworkRange(t *testing.T) { // Simple class C test _, network, _ := net.ParseCIDR("192.168.0.1/24") first, last := networkRange(network) if !first.Equal(net.ParseIP("192.168.0.0")) { t.Error(first.String()) } if !last.Equal(net.ParseIP("192.168.0.255")) { t.Error(last.String()) } if size := networkSize(network.Mask); size != 256 { t.Error(size) } // Class A test _, network, _ = net.ParseCIDR("10.0.0.1/8") first, last = networkRange(network) if !first.Equal(net.ParseIP("10.0.0.0")) { t.Error(first.String()) } if !last.Equal(net.ParseIP("10.255.255.255")) { t.Error(last.String()) } if size := networkSize(network.Mask); size != 16777216 { t.Error(size) } // Class A, random IP address _, network, _ = net.ParseCIDR("10.1.2.3/8") first, last = networkRange(network) if !first.Equal(net.ParseIP("10.0.0.0")) { t.Error(first.String()) } if !last.Equal(net.ParseIP("10.255.255.255")) { t.Error(last.String()) } // 32bit mask _, network, _ = net.ParseCIDR("10.1.2.3/32") first, last = networkRange(network) if !first.Equal(net.ParseIP("10.1.2.3")) { t.Error(first.String()) } if !last.Equal(net.ParseIP("10.1.2.3")) { t.Error(last.String()) } if size := networkSize(network.Mask); size != 1 { t.Error(size) } // 31bit mask _, network, _ = net.ParseCIDR("10.1.2.3/31") first, last = networkRange(network) if !first.Equal(net.ParseIP("10.1.2.2")) { t.Error(first.String()) } if !last.Equal(net.ParseIP("10.1.2.3")) { t.Error(last.String()) } if size := networkSize(network.Mask); size != 2 { t.Error(size) } // 26bit mask _, network, _ = net.ParseCIDR("10.1.2.3/26") first, last = networkRange(network) if !first.Equal(net.ParseIP("10.1.2.0")) { t.Error(first.String()) } if !last.Equal(net.ParseIP("10.1.2.63")) { t.Error(last.String()) } if size := networkSize(network.Mask); size != 64 { t.Error(size) } } func TestConversion(t *testing.T) { ip := net.ParseIP("127.0.0.1") i := ipToInt(ip) if i == 0 { t.Fatal("converted to zero") } conv := intToIP(i) if !ip.Equal(conv) { t.Error(conv.String()) } } func TestIPAllocator(t *testing.T) { expectedIPs := []net.IP{ 0: net.IPv4(127, 0, 0, 2), 1: net.IPv4(127, 0, 0, 3), 2: net.IPv4(127, 0, 0, 4), 3: net.IPv4(127, 0, 0, 5), 4: net.IPv4(127, 0, 0, 6), } gwIP, n, _ := net.ParseCIDR("127.0.0.1/29") alloc := newIPAllocator(&net.IPNet{IP: gwIP, Mask: n.Mask}) // Pool after initialisation (f = free, u = used) // 2(f) - 3(f) - 4(f) - 5(f) - 6(f) // ↑ // Check that we get 5 IPs, from 127.0.0.2–127.0.0.6, in that // order. for i := 0; i < 5; i++ { ip, err := alloc.Acquire() if err != nil { t.Fatal(err) } assertIPEquals(t, expectedIPs[i], ip) } // Before loop begin // 2(f) - 3(f) - 4(f) - 5(f) - 6(f) // ↑ // After i = 0 // 2(u) - 3(f) - 4(f) - 5(f) - 6(f) // ↑ // After i = 1 // 2(u) - 3(u) - 4(f) - 5(f) - 6(f) // ↑ // After i = 2 // 2(u) - 3(u) - 4(u) - 5(f) - 6(f) // ↑ // After i = 3 // 2(u) - 3(u) - 4(u) - 5(u) - 6(f) // ↑ // After i = 4 // 2(u) - 3(u) - 4(u) - 5(u) - 6(u) // ↑ // Check that there are no more IPs _, err := alloc.Acquire() if err == nil { t.Fatal("There shouldn't be any IP addresses at this point") } // Release some IPs in non-sequential order alloc.Release(expectedIPs[3]) // 2(u) - 3(u) - 4(u) - 5(f) - 6(u) // ↑ alloc.Release(expectedIPs[2]) // 2(u) - 3(u) - 4(f) - 5(f) - 6(u) // ↑ alloc.Release(expectedIPs[4]) // 2(u) - 3(u) - 4(f) - 5(f) - 6(f) // ↑ // Make sure that IPs are reused in sequential order, starting // with the first released IP newIPs := make([]net.IP, 3) for i := 0; i < 3; i++ { ip, err := alloc.Acquire() if err != nil { t.Fatal(err) } newIPs[i] = ip } // Before loop begin // 2(u) - 3(u) - 4(f) - 5(f) - 6(f) // ↑ // After i = 0 // 2(u) - 3(u) - 4(f) - 5(u) - 6(f) // ↑ // After i = 1 // 2(u) - 3(u) - 4(f) - 5(u) - 6(u) // ↑ // After i = 2 // 2(u) - 3(u) - 4(u) - 5(u) - 6(u) // ↑ assertIPEquals(t, expectedIPs[3], newIPs[0]) assertIPEquals(t, expectedIPs[4], newIPs[1]) assertIPEquals(t, expectedIPs[2], newIPs[2]) _, err = alloc.Acquire() if err == nil { t.Fatal("There shouldn't be any IP addresses at this point") } } func assertIPEquals(t *testing.T, ip1, ip2 net.IP) { if !ip1.Equal(ip2) { t.Fatalf("Expected IP %s, got %s", ip1, ip2) } } func AssertOverlap(CIDRx string, CIDRy string, t *testing.T) { _, netX, _ := net.ParseCIDR(CIDRx) _, netY, _ := net.ParseCIDR(CIDRy) if !networkOverlaps(netX, netY) { t.Errorf("%v and %v should overlap", netX, netY) } } func AssertNoOverlap(CIDRx string, CIDRy string, t *testing.T) { _, netX, _ := net.ParseCIDR(CIDRx) _, netY, _ := net.ParseCIDR(CIDRy) if networkOverlaps(netX, netY) { t.Errorf("%v and %v should not overlap", netX, netY) } } func TestNetworkOverlaps(t *testing.T) { //netY starts at same IP and ends within netX AssertOverlap("172.16.0.1/24", "172.16.0.1/25", t) //netY starts within netX and ends at same IP AssertOverlap("172.16.0.1/24", "172.16.0.128/25", t) //netY starts and ends within netX AssertOverlap("172.16.0.1/24", "172.16.0.64/25", t) //netY starts at same IP and ends outside of netX AssertOverlap("172.16.0.1/24", "172.16.0.1/23", t) //netY starts before and ends at same IP of netX AssertOverlap("172.16.1.1/24", "172.16.0.1/23", t) //netY starts before and ends outside of netX AssertOverlap("172.16.1.1/24", "172.16.0.1/23", t) //netY starts and ends before netX AssertNoOverlap("172.16.1.1/25", "172.16.0.1/24", t) //netX starts and ends before netY AssertNoOverlap("172.16.1.1/25", "172.16.2.1/24", t) }