// Network utility functions. package netutils import ( "crypto/rand" "encoding/hex" "errors" "fmt" "io" "net" "strings" "github.com/docker/libnetwork/types" "github.com/vishvananda/netlink" ) var ( // ErrNetworkOverlapsWithNameservers preformatted error ErrNetworkOverlapsWithNameservers = errors.New("requested network overlaps with nameserver") // ErrNetworkOverlaps preformatted error ErrNetworkOverlaps = errors.New("requested network overlaps with existing network") // ErrNoDefaultRoute preformatted error ErrNoDefaultRoute = errors.New("no default route") networkGetRoutesFct = netlink.RouteList ) // CheckNameserverOverlaps checks whether the passed network overlaps with any of the nameservers func CheckNameserverOverlaps(nameservers []string, toCheck *net.IPNet) error { if len(nameservers) > 0 { for _, ns := range nameservers { _, nsNetwork, err := net.ParseCIDR(ns) if err != nil { return err } if NetworkOverlaps(toCheck, nsNetwork) { return ErrNetworkOverlapsWithNameservers } } } return nil } // CheckRouteOverlaps checks whether the passed network overlaps with any existing routes func CheckRouteOverlaps(toCheck *net.IPNet) error { networks, err := networkGetRoutesFct(nil, netlink.FAMILY_V4) if err != nil { return err } for _, network := range networks { if network.Dst != nil && NetworkOverlaps(toCheck, network.Dst) { return ErrNetworkOverlaps } } return nil } // NetworkOverlaps detects overlap between one IPNet and another func NetworkOverlaps(netX *net.IPNet, netY *net.IPNet) bool { // Check if both netX and netY are ipv4 or ipv6 if (netX.IP.To4() != nil && netY.IP.To4() != nil) || (netX.IP.To4() == nil && netY.IP.To4() == nil) { if firstIP, _ := NetworkRange(netX); netY.Contains(firstIP) { return true } if firstIP, _ := NetworkRange(netY); netX.Contains(firstIP) { return true } } return false } // NetworkRange calculates the first and last IP addresses in an IPNet func NetworkRange(network *net.IPNet) (net.IP, net.IP) { var netIP net.IP if network.IP.To4() != nil { netIP = network.IP.To4() } else if network.IP.To16() != nil { netIP = network.IP.To16() } else { return nil, nil } lastIP := make([]byte, len(netIP), len(netIP)) for i := 0; i < len(netIP); i++ { lastIP[i] = netIP[i] | ^network.Mask[i] } return netIP.Mask(network.Mask), net.IP(lastIP) } // GetIfaceAddr returns the first IPv4 address and slice of IPv6 addresses for the specified network interface func GetIfaceAddr(name string) (net.Addr, []net.Addr, error) { iface, err := net.InterfaceByName(name) if err != nil { return nil, nil, err } addrs, err := iface.Addrs() if err != nil { return nil, nil, err } var addrs4 []net.Addr var addrs6 []net.Addr for _, addr := range addrs { ip := (addr.(*net.IPNet)).IP if ip4 := ip.To4(); ip4 != nil { addrs4 = append(addrs4, addr) } else if ip6 := ip.To16(); len(ip6) == net.IPv6len { addrs6 = append(addrs6, addr) } } switch { case len(addrs4) == 0: return nil, nil, fmt.Errorf("Interface %v has no IPv4 addresses", name) case len(addrs4) > 1: fmt.Printf("Interface %v has more than 1 IPv4 address. Defaulting to using %v\n", name, (addrs4[0].(*net.IPNet)).IP) } return addrs4[0], addrs6, nil } // GenerateRandomMAC returns a new 6-byte(48-bit) hardware address (MAC) func GenerateRandomMAC() net.HardwareAddr { hw := make(net.HardwareAddr, 6) // The first byte of the MAC address has to comply with these rules: // 1. Unicast: Set the least-significant bit to 0. // 2. Address is locally administered: Set the second-least-significant bit (U/L) to 1. // 3. As "small" as possible: The veth address has to be "smaller" than the bridge address. hw[0] = 0x02 // The first 24 bits of the MAC represent the Organizationally Unique Identifier (OUI). // Since this address is locally administered, we can do whatever we want as long as // it doesn't conflict with other addresses. hw[1] = 0x42 // Randomly generate the remaining 4 bytes (2^32) _, err := rand.Read(hw[2:]) if err != nil { return nil } return hw } // GenerateRandomName returns a new name joined with a prefix. This size // specified is used to truncate the randomly generated value func GenerateRandomName(prefix string, size int) (string, error) { id := make([]byte, 32) if _, err := io.ReadFull(rand.Reader, id); err != nil { return "", err } return prefix + hex.EncodeToString(id)[:size], nil } // GenerateIfaceName returns an interface name using the passed in // prefix and the length of random bytes. The api ensures that the // there are is no interface which exists with that name. func GenerateIfaceName(prefix string, len int) (string, error) { for i := 0; i < 3; i++ { name, err := GenerateRandomName(prefix, len) if err != nil { continue } if _, err := net.InterfaceByName(name); err != nil { if strings.Contains(err.Error(), "no such") { return name, nil } return "", err } } return "", types.InternalErrorf("could not generate interface name") } func byteArrayToInt(array []byte, numBytes int) uint64 { if numBytes <= 0 || numBytes > 8 { panic("Invalid argument") } num := 0 for i := 0; i <= len(array)-1; i++ { num += int(array[len(array)-1-i]) << uint(i*8) } return uint64(num) } // ATo64 converts a byte array into a uint32 func ATo64(array []byte) uint64 { return byteArrayToInt(array, 8) } // ATo32 converts a byte array into a uint32 func ATo32(array []byte) uint32 { return uint32(byteArrayToInt(array, 4)) } // ATo16 converts a byte array into a uint16 func ATo16(array []byte) uint16 { return uint16(byteArrayToInt(array, 2)) } func intToByteArray(val uint64, numBytes int) []byte { array := make([]byte, numBytes) for i := numBytes - 1; i >= 0; i-- { array[i] = byte(val & 0xff) val = val >> 8 } return array } // U64ToA converts a uint64 to a byte array func U64ToA(val uint64) []byte { return intToByteArray(uint64(val), 8) } // U32ToA converts a uint64 to a byte array func U32ToA(val uint32) []byte { return intToByteArray(uint64(val), 4) } // U16ToA converts a uint64 to a byte array func U16ToA(val uint16) []byte { return intToByteArray(uint64(val), 2) }