package netutils import ( "bytes" "net" "testing" "github.com/vishvananda/netlink" ) func TestNonOverlapingNameservers(t *testing.T) { network := &net.IPNet{ IP: []byte{192, 168, 0, 1}, Mask: []byte{255, 255, 255, 0}, } nameservers := []string{ "127.0.0.1/32", } if err := CheckNameserverOverlaps(nameservers, network); err != nil { t.Fatal(err) } } func TestOverlapingNameservers(t *testing.T) { network := &net.IPNet{ IP: []byte{192, 168, 0, 1}, Mask: []byte{255, 255, 255, 0}, } nameservers := []string{ "192.168.0.1/32", } if err := CheckNameserverOverlaps(nameservers, network); err == nil { t.Fatalf("Expected error %s got %s", ErrNetworkOverlapsWithNameservers, err) } } func TestCheckRouteOverlaps(t *testing.T) { orig := networkGetRoutesFct defer func() { networkGetRoutesFct = orig }() networkGetRoutesFct = func(netlink.Link, int) ([]netlink.Route, error) { routesData := []string{"10.0.2.0/32", "10.0.3.0/24", "10.0.42.0/24", "172.16.42.0/24", "192.168.142.0/24"} routes := []netlink.Route{} for _, addr := range routesData { _, netX, _ := net.ParseCIDR(addr) routes = append(routes, netlink.Route{Dst: netX}) } return routes, nil } _, netX, _ := net.ParseCIDR("172.16.0.1/24") if err := CheckRouteOverlaps(netX); err != nil { t.Fatal(err) } _, netX, _ = net.ParseCIDR("10.0.2.0/24") if err := CheckRouteOverlaps(netX); err == nil { t.Fatalf("10.0.2.0/24 and 10.0.2.0 should overlap but it doesn't") } } func TestCheckNameserverOverlaps(t *testing.T) { nameservers := []string{"10.0.2.3/32", "192.168.102.1/32"} _, netX, _ := net.ParseCIDR("10.0.2.3/32") if err := CheckNameserverOverlaps(nameservers, netX); err == nil { t.Fatalf("%s should overlap 10.0.2.3/32 but doesn't", netX) } _, netX, _ = net.ParseCIDR("192.168.102.2/32") if err := CheckNameserverOverlaps(nameservers, netX); err != nil { t.Fatalf("%s should not overlap %v but it does", netX, nameservers) } } func AssertOverlap(CIDRx string, CIDRy string, t *testing.T) { _, netX, _ := net.ParseCIDR(CIDRx) _, netY, _ := net.ParseCIDR(CIDRy) if !NetworkOverlaps(netX, netY) { t.Errorf("%v and %v should overlap", netX, netY) } } func AssertNoOverlap(CIDRx string, CIDRy string, t *testing.T) { _, netX, _ := net.ParseCIDR(CIDRx) _, netY, _ := net.ParseCIDR(CIDRy) if NetworkOverlaps(netX, netY) { t.Errorf("%v and %v should not overlap", netX, netY) } } func TestNetworkOverlaps(t *testing.T) { //netY starts at same IP and ends within netX AssertOverlap("172.16.0.1/24", "172.16.0.1/25", t) //netY starts within netX and ends at same IP AssertOverlap("172.16.0.1/24", "172.16.0.128/25", t) //netY starts and ends within netX AssertOverlap("172.16.0.1/24", "172.16.0.64/25", t) //netY starts at same IP and ends outside of netX AssertOverlap("172.16.0.1/24", "172.16.0.1/23", t) //netY starts before and ends at same IP of netX AssertOverlap("172.16.1.1/24", "172.16.0.1/23", t) //netY starts before and ends outside of netX AssertOverlap("172.16.1.1/24", "172.16.0.1/22", t) //netY starts and ends before netX AssertNoOverlap("172.16.1.1/25", "172.16.0.1/24", t) //netX starts and ends before netY AssertNoOverlap("172.16.1.1/25", "172.16.2.1/24", t) } func TestNetworkRange(t *testing.T) { // Simple class C test _, network, _ := net.ParseCIDR("192.168.0.1/24") first, last := NetworkRange(network) if !first.Equal(net.ParseIP("192.168.0.0")) { t.Error(first.String()) } if !last.Equal(net.ParseIP("192.168.0.255")) { t.Error(last.String()) } // Class A test _, network, _ = net.ParseCIDR("10.0.0.1/8") first, last = NetworkRange(network) if !first.Equal(net.ParseIP("10.0.0.0")) { t.Error(first.String()) } if !last.Equal(net.ParseIP("10.255.255.255")) { t.Error(last.String()) } // Class A, random IP address _, network, _ = net.ParseCIDR("10.1.2.3/8") first, last = NetworkRange(network) if !first.Equal(net.ParseIP("10.0.0.0")) { t.Error(first.String()) } if !last.Equal(net.ParseIP("10.255.255.255")) { t.Error(last.String()) } // 32bit mask _, network, _ = net.ParseCIDR("10.1.2.3/32") first, last = NetworkRange(network) if !first.Equal(net.ParseIP("10.1.2.3")) { t.Error(first.String()) } if !last.Equal(net.ParseIP("10.1.2.3")) { t.Error(last.String()) } // 31bit mask _, network, _ = net.ParseCIDR("10.1.2.3/31") first, last = NetworkRange(network) if !first.Equal(net.ParseIP("10.1.2.2")) { t.Error(first.String()) } if !last.Equal(net.ParseIP("10.1.2.3")) { t.Error(last.String()) } // 26bit mask _, network, _ = net.ParseCIDR("10.1.2.3/26") first, last = NetworkRange(network) if !first.Equal(net.ParseIP("10.1.2.0")) { t.Error(first.String()) } if !last.Equal(net.ParseIP("10.1.2.63")) { t.Error(last.String()) } } // Test veth name generation "veth"+rand (e.g.veth0f60e2c) func TestGenerateRandomName(t *testing.T) { name1, err := GenerateRandomName("veth", 7) if err != nil { t.Fatal(err) } // veth plus generated append equals a len of 11 if len(name1) != 11 { t.Fatalf("Expected 11 characters, instead received %d characters", len(name1)) } name2, err := GenerateRandomName("veth", 7) if err != nil { t.Fatal(err) } // Fail if the random generated names equal one another if name1 == name2 { t.Fatalf("Expected differing values but received %s and %s", name1, name2) } } // Test mac generation. func TestUtilGenerateRandomMAC(t *testing.T) { mac1 := GenerateRandomMAC() mac2 := GenerateRandomMAC() // ensure bytes are unique if bytes.Equal(mac1, mac2) { t.Fatalf("mac1 %s should not equal mac2 %s", mac1, mac2) } // existing tests check string functionality so keeping the pattern if mac1.String() == mac2.String() { t.Fatalf("mac1 %s should not equal mac2 %s", mac1, mac2) } } func TestCompareIPNet(t *testing.T) { if CompareIPNet(nil, nil) == false { t.Fatalf("Failed to detect two nil net.IPNets are equal") } _, net1, _ := net.ParseCIDR("192.168.30.22/24") if CompareIPNet(net1, net1) == false { t.Fatalf("Failed to detect same net.IPNet pointers equality") } _, net2, _ := net.ParseCIDR("192.168.30.22/24") if CompareIPNet(net1, net2) == false { t.Fatalf("Failed to detect same net.IPNet object equality") } _, net3, _ := net.ParseCIDR("192.168.30.33/24") if CompareIPNet(net1, net3) == false { t.Fatalf("Failed to detect semantically equivalent net.IPNets") } _, net3, _ = net.ParseCIDR("192.168.31.33/24") if CompareIPNet(net2, net3) == true { t.Fatalf("Failed to detect different net.IPNets") } } func TestIPCopyFunctions(t *testing.T) { ip := net.ParseIP("172.28.30.134") cp := GetIPCopy(ip) if !ip.Equal(cp) { t.Fatalf("Failed to return a copy of net.IP") } if &ip == &cp { t.Fatalf("Failed to return a true copy of net.IP") } } func TestNetIPCopyFunctions(t *testing.T) { _, net, _ := net.ParseCIDR("192.168.30.23/24") cp := GetIPNetCopy(net) if CompareIPNet(net, cp) == false { t.Fatalf("Failed to return a copy of net.IPNet") } if net == cp { t.Fatalf("Failed to return a true copy of net.IPNet") } } func TestPortBindingEqual(t *testing.T) { pb1 := &PortBinding{ Proto: TCP, IP: net.ParseIP("172.17.0.1"), Port: 80, HostIP: net.ParseIP("192.168.100.1"), HostPort: 8080, } pb2 := &PortBinding{ Proto: UDP, IP: net.ParseIP("172.17.0.1"), Port: 22, HostIP: net.ParseIP("192.168.100.1"), HostPort: 2222, } if !pb1.Equal(pb1) { t.Fatalf("PortBinding.Equal() returned false negative") } if pb1.Equal(nil) { t.Fatalf("PortBinding.Equal() returned false negative") } if pb1.Equal(pb2) { t.Fatalf("PortBinding.Equal() returned false positive") } if pb1.Equal(pb2) != pb2.Equal(pb1) { t.Fatalf("PortBinding.Equal() failed commutative check") } } func TestPortBindingGetCopy(t *testing.T) { pb := &PortBinding{ Proto: TCP, IP: net.ParseIP("172.17.0.1"), Port: 80, HostIP: net.ParseIP("192.168.100.1"), HostPort: 8080, } cp := pb.GetCopy() if !pb.Equal(&cp) { t.Fatalf("Failed to return a copy of PortBinding") } if pb == &cp { t.Fatalf("Failed to return a true copy of PortBinding") } } func TestPortBindingContainerAddr(t *testing.T) { pb := PortBinding{ Proto: TCP, IP: net.ParseIP("172.17.0.1"), Port: 80, HostIP: net.ParseIP("192.168.100.1"), HostPort: 8080, } container, err := pb.ContainerAddr() if err != nil { t.Fatal(err) } switch netAddr := container.(type) { case *net.TCPAddr: if !pb.IP.Equal(netAddr.IP) { t.Fatalf("PortBinding.ContainerAddr() Failed to return a ContainerAddr") } if int(pb.Port) != netAddr.Port { t.Fatalf("PortBinding.ContainerAddr() Failed to return a ContainerAddr") } case *net.UDPAddr: t.Fatalf("PortBinding.ContainerAddr() Failed to check correct proto") } }