# Hello world in a container *So what's this Docker thing all about?* Docker allows you to run applications, worlds you create, inside containers. Running an application inside a container takes a single command: `docker run`. >**Note**: Depending on your Docker system configuration, you may be required to >preface each `docker` command on this page with `sudo`. To avoid this behavior, >your system administrator can create a Unix group called `docker` and add users >to it. ## Run a Hello world Let's run a hello world container. $ docker run ubuntu /bin/echo 'Hello world' Hello world You just launched your first container! In this example: * `docker run` runs a container. * `ubuntu` is the image you run, for example the Ubuntu operating system image. When you specify an image, Docker looks first for the image on your Docker host. If the image does not exist locally, then the image is pulled from the public image registry [Docker Hub](https://hub.docker.com). * `/bin/echo` is the command to run inside the new container. The container launches. Docker creates a new Ubuntu environment and executes the `/bin/echo` command inside it and then prints out: Hello world So what happened to the container after that? Well, Docker containers only run as long as the command you specify is active. Therefore, in the above example, the container stops once the command is executed. ## Run an interactive container Let's specify a new command to run in the container. $ docker run -t -i ubuntu /bin/bash root@af8bae53bdd3:/# In this example: * `docker run` runs a container. * `ubuntu` is the image you would like to run. * `-t` flag assigns a pseudo-tty or terminal inside the new container. * `-i` flag allows you to make an interactive connection by grabbing the standard in (`STDIN`) of the container. * `/bin/bash` launches a Bash shell inside our container. The container launches. We can see there is a command prompt inside it: root@af8bae53bdd3:/# Let's try running some commands inside the container: root@af8bae53bdd3:/# pwd / root@af8bae53bdd3:/# ls bin boot dev etc home lib lib64 media mnt opt proc root run sbin srv sys tmp usr var In this example: * `pwd` displays the current directory, the `/` root directory. * `ls` displays the directory listing of the root directory of a typical Linux file system. Now, you can play around inside this container. When completed, run the `exit` command or enter Ctrl-D to exit the interactive shell. root@af8bae53bdd3:/# exit >**Note:** As with our previous container, once the Bash shell process has finished, the container stops. ## Start a daemonized Hello world Let's create a container that runs as a daemon. $ docker run -d ubuntu /bin/sh -c "while true; do echo hello world; sleep 1; done" 1e5535038e285177d5214659a068137486f96ee5c2e85a4ac52dc83f2ebe4147 In this example: * `docker run` runs the container. * `-d` flag runs the container in the background (to daemonize it). * `ubuntu` is the image you would like to run. Finally, we specify a command to run: /bin/sh -c "while true; do echo hello world; sleep 1; done" In the output, we do not see `hello world` but a long string: 1e5535038e285177d5214659a068137486f96ee5c2e85a4ac52dc83f2ebe4147 This long string is called a *container ID*. It uniquely identifies a container so we can work with it. > **Note:** > The container ID is a bit long and unwieldy. Later, we will cover the short > ID and ways to name our containers to make > working with them easier. We can use this container ID to see what's happening with our `hello world` daemon. First, let's make sure our container is running. Run the `docker ps` command. The `docker ps` command queries the Docker daemon for information about all the containers it knows about. $ docker ps CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES 1e5535038e28 ubuntu /bin/sh -c 'while tr 2 minutes ago Up 1 minute insane_babbage In this example, we can see our daemonized container. The `docker ps` returns some useful information: * `1e5535038e28` is the shorter variant of the container ID. * `ubuntu` is the used image. * the command, status, and assigned name `insane_babbage`. > **Note:** > Docker automatically generates names for any containers started. > We'll see how to specify your own names a bit later. Now, we know the container is running. But is it doing what we asked it to do? To see this we're going to look inside the container using the `docker logs` command. Let's use the container name `insane_babbage`. $ docker logs insane_babbage hello world hello world hello world . . . In this example: * `docker logs` looks inside the container and returns `hello world`. Awesome! The daemon is working and you have just created your first Dockerized application! Next, run the `docker stop` command to stop our detached container. $ docker stop insane_babbage insane_babbage The `docker stop` command tells Docker to politely stop the running container and returns the name of the container it stopped. Let's check it worked with the `docker ps` command. $ docker ps CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES Excellent. Our container is stopped. # Next steps So far, you launched your first containers using the `docker run` command. You ran an *interactive container* that ran in the foreground. You also ran a *detached container* that ran in the background. In the process you learned about several Docker commands: * `docker ps` - Lists containers. * `docker logs` - Shows us the standard output of a container. * `docker stop` - Stops running containers. Now, you have the basis learn more about Docker and how to do some more advanced tasks. Go to ["*Run a simple application*"](usingdocker.md) to actually build a web application with the Docker client.