1
0
Fork 0
mirror of https://github.com/moby/moby.git synced 2022-11-09 12:21:53 -05:00
Moby Project - a collaborative project for the container ecosystem to assemble container-based systems
Find a file
Anusha Ragunathan 14215ed5a1 Make daemonbuilder.Docker leaner.
Currently builder.Backend is implemented by daemonbuilder.Docker{} for
the daemon. This registration happens in the API/server code. However,
this is too implementation specific. Ideally we should be able to specify
that docker daemon (or any other) is implementing the Backend and abstract
the implementation details. So we should remove package daemonbuilder
dependency in build_routes.go

With this change, daemonbuilder.Docker is nothing more than the daemon.
A follow on change will remove the daemonbuilder package and move relevant
methods under daemon, so that API only knows about the backend.

Also cleanup code in api/client/build.go. docker cli always performs build
context tar download for remoteURLs and sends an empty remoteContext. So
remove relevant dead code.

Signed-off-by: Anusha Ragunathan <anusha@docker.com>
2016-01-18 09:16:11 -08:00
api Make daemonbuilder.Docker leaner. 2016-01-18 09:16:11 -08:00
builder Make daemonbuilder.Docker leaner. 2016-01-18 09:16:11 -08:00
cli Remove usage of pkg sockets and tlsconfig. 2015-12-29 19:27:12 -05:00
cliconfig Modify import paths to point to the new engine-api package. 2016-01-06 19:48:59 -05:00
container Support --link for user-defined networks 2016-01-12 13:38:48 -08:00
contrib Bump Go to version 1.5.3 2016-01-13 17:23:46 -05:00
daemon Make daemonbuilder.Docker leaner. 2016-01-18 09:16:11 -08:00
distribution Merge pull request #18785 from aaronlehmann/new-manifest 2016-01-11 12:01:46 -08:00
docker Rename authz to authorization for greater clarity 2016-01-13 14:15:37 -05:00
dockerinit Remove LXC support. 2015-11-05 17:09:57 -05:00
dockerversion dockerversion placeholder for library import 2015-11-09 19:32:46 +01:00
docs Merge pull request #19123 from shishir-a412ed/rootfs_size_configurable 2016-01-13 13:22:08 -08:00
errors Add docker network connect/disconnect to non-running container 2016-01-11 20:13:39 -05:00
experimental Add daemon documentation on user namespaces feature 2016-01-11 20:54:57 -05:00
hack Not having a changelog is bad RPM etiquette. 2016-01-14 10:34:48 +11:00
image Update code to compile against new manifest interface 2016-01-08 17:24:20 -08:00
integration-cli Merge pull request #19279 from tiborvass/rename-authz-to-authorization 2016-01-13 14:30:18 -05:00
layer Update code to compile against new manifest interface 2016-01-08 17:24:20 -08:00
man Merge pull request #19123 from shishir-a412ed/rootfs_size_configurable 2016-01-13 13:22:08 -08:00
migrate/v1 Fixed migrate defect, allow migrate the empty directory 2016-01-08 15:44:30 -08:00
opts Move some validators from opts to runconfig/opts. 2016-01-04 14:35:36 -05:00
pkg Merge pull request #19245 from jfrazelle/seccomp-kernel-check 2016-01-12 11:33:27 -08:00
project add new impact/distribution label 2015-12-30 13:53:46 +01:00
reference Clean up reference type switches 2015-12-16 11:58:53 -08:00
registry Modify import paths to point to the new engine-api package. 2016-01-06 19:48:59 -05:00
runconfig Merge pull request #19229 from mavenugo/udlinks 2016-01-12 16:47:32 -08:00
utils update volume name regex 2016-01-04 15:00:49 -08:00
vendor/src Merge pull request #19267 from mavenugo/vin-ln 2016-01-13 07:09:58 -05:00
volume On create, copy image data for named volumes. 2016-01-07 21:57:08 -05:00
.dockerignore Add vendor/pkg to .dockerignore 2015-12-04 17:03:24 -08:00
.gitignore .gitignore: do not ignore *.rej 2015-12-18 17:12:54 +01:00
.mailmap update authors and mailmap 2015-06-06 21:42:14 -07:00
AUTHORS update authors and mailmap 2015-06-06 21:42:14 -07:00
CHANGELOG.md Fix CHANGELOG.md so that RPM changelog generation has a date value for the 1.9.1 release. 2015-11-23 15:29:07 +11:00
CONTRIBUTING.md CONTRIBUTING: add guidelines regarding email 2016-01-08 16:49:17 +02:00
Dockerfile Bump Go to version 1.5.3 2016-01-13 17:23:46 -05:00
Dockerfile.armhf Bump Go to version 1.5.3 2016-01-13 17:23:46 -05:00
Dockerfile.gccgo Update docker-py commit to the latest HEAD. 2016-01-12 13:19:17 -05:00
Dockerfile.ppc64le Update docker-py commit to the latest HEAD. 2016-01-12 13:19:17 -05:00
Dockerfile.s390x Update docker-py commit to the latest HEAD. 2016-01-12 13:19:17 -05:00
Dockerfile.simple Include xfsprogs in build environment. 2015-11-11 14:42:08 -08:00
LICENSE Update LICENSE date 2015-12-31 13:07:35 +00:00
MAINTAINERS Merge pull request #19143 from duglin/AddMorgan 2016-01-06 16:44:29 -05:00
Makefile Merge pull request #19076 from tianon/multiarch 2016-01-11 13:25:55 -05:00
NOTICE Update LICENSE date 2015-12-31 13:07:35 +00:00
README.md Update README URLs based on HTTP redirects 2016-01-05 09:13:45 -08:00
ROADMAP.md Fix typo in ROADMAP.md 2015-09-12 11:27:46 +02:00
VENDORING.md Create standard vendor policies. 2016-01-07 15:32:10 -08:00
VERSION Bump version back to 1.10.0-dev 2015-11-20 13:40:25 -05:00

Docker: the container engine Release

Docker is an open source project to pack, ship and run any application as a lightweight container.

Docker containers are both hardware-agnostic and platform-agnostic. This means they can run anywhere, from your laptop to the largest cloud compute instance and everything in between - and they don't require you to use a particular language, framework or packaging system. That makes them great building blocks for deploying and scaling web apps, databases, and backend services without depending on a particular stack or provider.

Docker began as an open-source implementation of the deployment engine which powers dotCloud, a popular Platform-as-a-Service. It benefits directly from the experience accumulated over several years of large-scale operation and support of hundreds of thousands of applications and databases.

Security Disclosure

Security is very important to us. If you have any issue regarding security, please disclose the information responsibly by sending an email to security@docker.com and not by creating a github issue.

Better than VMs

A common method for distributing applications and sandboxing their execution is to use virtual machines, or VMs. Typical VM formats are VMware's vmdk, Oracle VirtualBox's vdi, and Amazon EC2's ami. In theory these formats should allow every developer to automatically package their application into a "machine" for easy distribution and deployment. In practice, that almost never happens, for a few reasons:

  • Size: VMs are very large which makes them impractical to store and transfer.
  • Performance: running VMs consumes significant CPU and memory, which makes them impractical in many scenarios, for example local development of multi-tier applications, and large-scale deployment of cpu and memory-intensive applications on large numbers of machines.
  • Portability: competing VM environments don't play well with each other. Although conversion tools do exist, they are limited and add even more overhead.
  • Hardware-centric: VMs were designed with machine operators in mind, not software developers. As a result, they offer very limited tooling for what developers need most: building, testing and running their software. For example, VMs offer no facilities for application versioning, monitoring, configuration, logging or service discovery.

By contrast, Docker relies on a different sandboxing method known as containerization. Unlike traditional virtualization, containerization takes place at the kernel level. Most modern operating system kernels now support the primitives necessary for containerization, including Linux with openvz, vserver and more recently lxc, Solaris with zones, and FreeBSD with Jails.

Docker builds on top of these low-level primitives to offer developers a portable format and runtime environment that solves all four problems. Docker containers are small (and their transfer can be optimized with layers), they have basically zero memory and cpu overhead, they are completely portable, and are designed from the ground up with an application-centric design.

Perhaps best of all, because Docker operates at the OS level, it can still be run inside a VM!

Plays well with others

Docker does not require you to buy into a particular programming language, framework, packaging system, or configuration language.

Is your application a Unix process? Does it use files, tcp connections, environment variables, standard Unix streams and command-line arguments as inputs and outputs? Then Docker can run it.

Can your application's build be expressed as a sequence of such commands? Then Docker can build it.

Escape dependency hell

A common problem for developers is the difficulty of managing all their application's dependencies in a simple and automated way.

This is usually difficult for several reasons:

  • Cross-platform dependencies. Modern applications often depend on a combination of system libraries and binaries, language-specific packages, framework-specific modules, internal components developed for another project, etc. These dependencies live in different "worlds" and require different tools - these tools typically don't work well with each other, requiring awkward custom integrations.

  • Conflicting dependencies. Different applications may depend on different versions of the same dependency. Packaging tools handle these situations with various degrees of ease - but they all handle them in different and incompatible ways, which again forces the developer to do extra work.

  • Custom dependencies. A developer may need to prepare a custom version of their application's dependency. Some packaging systems can handle custom versions of a dependency, others can't - and all of them handle it differently.

Docker solves the problem of dependency hell by giving the developer a simple way to express all their application's dependencies in one place, while streamlining the process of assembling them. If this makes you think of XKCD 927, don't worry. Docker doesn't replace your favorite packaging systems. It simply orchestrates their use in a simple and repeatable way. How does it do that? With layers.

Docker defines a build as running a sequence of Unix commands, one after the other, in the same container. Build commands modify the contents of the container (usually by installing new files on the filesystem), the next command modifies it some more, etc. Since each build command inherits the result of the previous commands, the order in which the commands are executed expresses dependencies.

Here's a typical Docker build process:

FROM ubuntu:12.04
RUN apt-get update && apt-get install -y python python-pip curl
RUN curl -sSL https://github.com/shykes/helloflask/archive/master.tar.gz | tar -xzv
RUN cd helloflask-master && pip install -r requirements.txt

Note that Docker doesn't care how dependencies are built - as long as they can be built by running a Unix command in a container.

Getting started

Docker can be installed either on your computer for building applications or on servers for running them. To get started, check out the installation instructions in the documentation.

We also offer an interactive tutorial for quickly learning the basics of using Docker.

Usage examples

Docker can be used to run short-lived commands, long-running daemons (app servers, databases, etc.), interactive shell sessions, etc.

You can find a list of real-world examples in the documentation.

Under the hood

Under the hood, Docker is built on the following components:

Contributing to Docker GoDoc

Master (Linux) Experimental (linux) Windows FreeBSD
Jenkins Build Status Jenkins Build Status Build Status Build Status

Want to hack on Docker? Awesome! We have instructions to help you get started contributing code or documentation.

These instructions are probably not perfect, please let us know if anything feels wrong or incomplete. Better yet, submit a PR and improve them yourself.

Getting the development builds

Want to run Docker from a master build? You can download master builds at master.dockerproject.org. They are updated with each commit merged into the master branch.

Don't know how to use that super cool new feature in the master build? Check out the master docs at docs.master.dockerproject.org.

How the project is run

Docker is a very, very active project. If you want to learn more about how it is run, or want to get more involved, the best place to start is the project directory.

We are always open to suggestions on process improvements, and are always looking for more maintainers.

Talking to other Docker users and contributors

Internet Relay Chat (IRC)

IRC a direct line to our most knowledgeable Docker users; we have both the #docker and #docker-dev group on irc.freenode.net. IRC is a rich chat protocol but it can overwhelm new users. You can search our chat archives.

Read our IRC quickstart guide for an easy way to get started.
Google Groups There are two groups. Docker-user is for people using Docker containers. The docker-dev group is for contributors and other people contributing to the Docker project.
Twitter You can follow Docker's Twitter feed to get updates on our products. You can also tweet us questions or just share blogs or stories.
Stack Overflow Stack Overflow has over 7000 Docker questions listed. We regularly monitor Docker questions and so do many other knowledgeable Docker users.

Brought to you courtesy of our legal counsel. For more context, please see the NOTICE document in this repo.

Use and transfer of Docker may be subject to certain restrictions by the United States and other governments.

It is your responsibility to ensure that your use and/or transfer does not violate applicable laws.

For more information, please see https://www.bis.doc.gov

Licensing

Docker is licensed under the Apache License, Version 2.0. See LICENSE for the full license text.

Other Docker Related Projects

There are a number of projects under development that are based on Docker's core technology. These projects expand the tooling built around the Docker platform to broaden its application and utility.

  • Docker Registry: Registry server for Docker (hosting/delivery of repositories and images)
  • Docker Machine: Machine management for a container-centric world
  • Docker Swarm: A Docker-native clustering system
  • Docker Compose (formerly Fig): Define and run multi-container apps
  • Kitematic: The easiest way to use Docker on Mac and Windows

If you know of another project underway that should be listed here, please help us keep this list up-to-date by submitting a PR.

Awesome-Docker

You can find more projects, tools and articles related to Docker on the awesome-docker list. Add your project there.