1
0
Fork 0
mirror of https://github.com/moby/moby.git synced 2022-11-09 12:21:53 -05:00
moby--moby/daemon/networkdriver/ipallocator/allocator_test.go
Hu Tao 8ec6c692db Remove the assumption that the fist IP is the bridge IP
The assumption is not true if user specifies an IP address other than
the first IP, in that case the first IP address is never allocated to
any container.

Signed-off-by: Hu Tao <hutao@cn.fujitsu.com>
2015-01-21 02:13:58 +08:00

681 lines
15 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

package ipallocator
import (
"fmt"
"math/big"
"net"
"testing"
)
func reset() {
allocatedIPs = networkSet{}
}
func TestConversion(t *testing.T) {
ip := net.ParseIP("127.0.0.1")
i := ipToBigInt(ip)
if i.Cmp(big.NewInt(0x7f000001)) != 0 {
t.Fatal("incorrect conversion")
}
conv := bigIntToIP(i)
if !ip.Equal(conv) {
t.Error(conv.String())
}
}
func TestConversionIPv6(t *testing.T) {
ip := net.ParseIP("2a00:1450::1")
ip2 := net.ParseIP("2a00:1450::2")
ip3 := net.ParseIP("2a00:1450::1:1")
i := ipToBigInt(ip)
val, success := big.NewInt(0).SetString("2a001450000000000000000000000001", 16)
if !success {
t.Fatal("Hex-String to BigInt conversion failed.")
}
if i.Cmp(val) != 0 {
t.Fatal("incorrent conversion")
}
conv := bigIntToIP(i)
conv2 := bigIntToIP(big.NewInt(0).Add(i, big.NewInt(1)))
conv3 := bigIntToIP(big.NewInt(0).Add(i, big.NewInt(0x10000)))
if !ip.Equal(conv) {
t.Error("2a00:1450::1 should be equal to " + conv.String())
}
if !ip2.Equal(conv2) {
t.Error("2a00:1450::2 should be equal to " + conv2.String())
}
if !ip3.Equal(conv3) {
t.Error("2a00:1450::1:1 should be equal to " + conv3.String())
}
}
func TestRequestNewIps(t *testing.T) {
defer reset()
network := &net.IPNet{
IP: []byte{192, 168, 0, 1},
Mask: []byte{255, 255, 255, 0},
}
var ip net.IP
var err error
for i := 1; i < 10; i++ {
ip, err = RequestIP(network, nil)
if err != nil {
t.Fatal(err)
}
if expected := fmt.Sprintf("192.168.0.%d", i); ip.String() != expected {
t.Fatalf("Expected ip %s got %s", expected, ip.String())
}
}
value := bigIntToIP(big.NewInt(0).Add(ipToBigInt(ip), big.NewInt(1))).String()
if err := ReleaseIP(network, ip); err != nil {
t.Fatal(err)
}
ip, err = RequestIP(network, nil)
if err != nil {
t.Fatal(err)
}
if ip.String() != value {
t.Fatalf("Expected to receive the next ip %s got %s", value, ip.String())
}
}
func TestRequestNewIpV6(t *testing.T) {
defer reset()
network := &net.IPNet{
IP: []byte{0x2a, 0x00, 0x14, 0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1},
Mask: []byte{255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 0, 0, 0, 0, 0, 0}, // /64 netmask
}
var ip net.IP
var err error
for i := 1; i < 10; i++ {
ip, err = RequestIP(network, nil)
if err != nil {
t.Fatal(err)
}
if expected := fmt.Sprintf("2a00:1450::%d", i); ip.String() != expected {
t.Fatalf("Expected ip %s got %s", expected, ip.String())
}
}
value := bigIntToIP(big.NewInt(0).Add(ipToBigInt(ip), big.NewInt(1))).String()
if err := ReleaseIP(network, ip); err != nil {
t.Fatal(err)
}
ip, err = RequestIP(network, nil)
if err != nil {
t.Fatal(err)
}
if ip.String() != value {
t.Fatalf("Expected to receive the next ip %s got %s", value, ip.String())
}
}
func TestReleaseIp(t *testing.T) {
defer reset()
network := &net.IPNet{
IP: []byte{192, 168, 0, 1},
Mask: []byte{255, 255, 255, 0},
}
ip, err := RequestIP(network, nil)
if err != nil {
t.Fatal(err)
}
if err := ReleaseIP(network, ip); err != nil {
t.Fatal(err)
}
}
func TestReleaseIpV6(t *testing.T) {
defer reset()
network := &net.IPNet{
IP: []byte{0x2a, 0x00, 0x14, 0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1},
Mask: []byte{255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 0, 0, 0, 0, 0, 0}, // /64 netmask
}
ip, err := RequestIP(network, nil)
if err != nil {
t.Fatal(err)
}
if err := ReleaseIP(network, ip); err != nil {
t.Fatal(err)
}
}
func TestGetReleasedIp(t *testing.T) {
defer reset()
network := &net.IPNet{
IP: []byte{192, 168, 0, 1},
Mask: []byte{255, 255, 255, 0},
}
ip, err := RequestIP(network, nil)
if err != nil {
t.Fatal(err)
}
value := ip.String()
if err := ReleaseIP(network, ip); err != nil {
t.Fatal(err)
}
for i := 0; i < 253; i++ {
_, err = RequestIP(network, nil)
if err != nil {
t.Fatal(err)
}
err = ReleaseIP(network, ip)
if err != nil {
t.Fatal(err)
}
}
ip, err = RequestIP(network, nil)
if err != nil {
t.Fatal(err)
}
if ip.String() != value {
t.Fatalf("Expected to receive same ip %s got %s", value, ip.String())
}
}
func TestGetReleasedIpV6(t *testing.T) {
defer reset()
network := &net.IPNet{
IP: []byte{0x2a, 0x00, 0x14, 0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1},
Mask: []byte{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0},
}
ip, err := RequestIP(network, nil)
if err != nil {
t.Fatal(err)
}
value := ip.String()
if err := ReleaseIP(network, ip); err != nil {
t.Fatal(err)
}
for i := 0; i < 253; i++ {
_, err = RequestIP(network, nil)
if err != nil {
t.Fatal(err)
}
err = ReleaseIP(network, ip)
if err != nil {
t.Fatal(err)
}
}
ip, err = RequestIP(network, nil)
if err != nil {
t.Fatal(err)
}
if ip.String() != value {
t.Fatalf("Expected to receive same ip %s got %s", value, ip.String())
}
}
func TestRequestSpecificIp(t *testing.T) {
defer reset()
network := &net.IPNet{
IP: []byte{192, 168, 0, 1},
Mask: []byte{255, 255, 255, 224},
}
ip := net.ParseIP("192.168.0.5")
// Request a "good" IP.
if _, err := RequestIP(network, ip); err != nil {
t.Fatal(err)
}
// Request the same IP again.
if _, err := RequestIP(network, ip); err != ErrIPAlreadyAllocated {
t.Fatalf("Got the same IP twice: %#v", err)
}
// Request an out of range IP.
if _, err := RequestIP(network, net.ParseIP("192.168.0.42")); err != ErrIPOutOfRange {
t.Fatalf("Got an out of range IP: %#v", err)
}
}
func TestRequestSpecificIpV6(t *testing.T) {
defer reset()
network := &net.IPNet{
IP: []byte{0x2a, 0x00, 0x14, 0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1},
Mask: []byte{255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 0, 0, 0, 0, 0, 0}, // /64 netmask
}
ip := net.ParseIP("2a00:1450::5")
// Request a "good" IP.
if _, err := RequestIP(network, ip); err != nil {
t.Fatal(err)
}
// Request the same IP again.
if _, err := RequestIP(network, ip); err != ErrIPAlreadyAllocated {
t.Fatalf("Got the same IP twice: %#v", err)
}
// Request an out of range IP.
if _, err := RequestIP(network, net.ParseIP("2a00:1500::1")); err != ErrIPOutOfRange {
t.Fatalf("Got an out of range IP: %#v", err)
}
}
func TestIPAllocator(t *testing.T) {
expectedIPs := []net.IP{
0: net.IPv4(127, 0, 0, 1),
1: net.IPv4(127, 0, 0, 2),
2: net.IPv4(127, 0, 0, 3),
3: net.IPv4(127, 0, 0, 4),
4: net.IPv4(127, 0, 0, 5),
5: net.IPv4(127, 0, 0, 6),
}
gwIP, n, _ := net.ParseCIDR("127.0.0.1/29")
network := &net.IPNet{IP: gwIP, Mask: n.Mask}
// Pool after initialisation (f = free, u = used)
// 1(f) - 2(f) - 3(f) - 4(f) - 5(f) - 6(f)
// ↑
// Check that we get 6 IPs, from 127.0.0.1127.0.0.6, in that
// order.
for i := 0; i < 6; i++ {
ip, err := RequestIP(network, nil)
if err != nil {
t.Fatal(err)
}
assertIPEquals(t, expectedIPs[i], ip)
}
// Before loop begin
// 1(f) - 2(f) - 3(f) - 4(f) - 5(f) - 6(f)
// ↑
// After i = 0
// 1(u) - 2(f) - 3(f) - 4(f) - 5(f) - 6(f)
// ↑
// After i = 1
// 1(u) - 2(u) - 3(f) - 4(f) - 5(f) - 6(f)
// ↑
// After i = 2
// 1(u) - 2(u) - 3(u) - 4(f) - 5(f) - 6(f)
// ↑
// After i = 3
// 1(u) - 2(u) - 3(u) - 4(u) - 5(f) - 6(f)
// ↑
// After i = 4
// 1(u) - 2(u) - 3(u) - 4(u) - 5(u) - 6(f)
// ↑
// After i = 5
// 1(u) - 2(u) - 3(u) - 4(u) - 5(u) - 6(u)
// ↑
// Check that there are no more IPs
ip, err := RequestIP(network, nil)
if err == nil {
t.Fatalf("There shouldn't be any IP addresses at this point, got %s\n", ip)
}
// Release some IPs in non-sequential order
if err := ReleaseIP(network, expectedIPs[3]); err != nil {
t.Fatal(err)
}
// 1(u) - 2(u) - 3(u) - 4(f) - 5(u) - 6(u)
// ↑
if err := ReleaseIP(network, expectedIPs[2]); err != nil {
t.Fatal(err)
}
// 1(u) - 2(u) - 3(f) - 4(f) - 5(u) - 6(u)
// ↑
if err := ReleaseIP(network, expectedIPs[4]); err != nil {
t.Fatal(err)
}
// 1(u) - 2(u) - 3(f) - 4(f) - 5(f) - 6(u)
// ↑
// Make sure that IPs are reused in sequential order, starting
// with the first released IP
newIPs := make([]net.IP, 3)
for i := 0; i < 3; i++ {
ip, err := RequestIP(network, nil)
if err != nil {
t.Fatal(err)
}
newIPs[i] = ip
}
assertIPEquals(t, expectedIPs[2], newIPs[0])
assertIPEquals(t, expectedIPs[3], newIPs[1])
assertIPEquals(t, expectedIPs[4], newIPs[2])
_, err = RequestIP(network, nil)
if err == nil {
t.Fatal("There shouldn't be any IP addresses at this point")
}
}
func TestAllocateFirstIP(t *testing.T) {
defer reset()
network := &net.IPNet{
IP: []byte{192, 168, 0, 0},
Mask: []byte{255, 255, 255, 0},
}
firstIP := network.IP.To4().Mask(network.Mask)
first := big.NewInt(0).Add(ipToBigInt(firstIP), big.NewInt(1))
ip, err := RequestIP(network, nil)
if err != nil {
t.Fatal(err)
}
allocated := ipToBigInt(ip)
if allocated == first {
t.Fatalf("allocated ip should not equal first ip: %d == %d", first, allocated)
}
}
func TestAllocateAllIps(t *testing.T) {
defer reset()
network := &net.IPNet{
IP: []byte{192, 168, 0, 1},
Mask: []byte{255, 255, 255, 0},
}
var (
current, first net.IP
err error
isFirst = true
)
for err == nil {
current, err = RequestIP(network, nil)
if isFirst {
first = current
isFirst = false
}
}
if err != ErrNoAvailableIPs {
t.Fatal(err)
}
if _, err := RequestIP(network, nil); err != ErrNoAvailableIPs {
t.Fatal(err)
}
if err := ReleaseIP(network, first); err != nil {
t.Fatal(err)
}
again, err := RequestIP(network, nil)
if err != nil {
t.Fatal(err)
}
assertIPEquals(t, first, again)
// ensure that alloc.last == alloc.begin won't result in dead loop
if _, err := RequestIP(network, nil); err != ErrNoAvailableIPs {
t.Fatal(err)
}
// Test by making alloc.last the only free ip and ensure we get it back
// #1. first of the range, (alloc.last == ipToInt(first) already)
if err := ReleaseIP(network, first); err != nil {
t.Fatal(err)
}
ret, err := RequestIP(network, nil)
if err != nil {
t.Fatal(err)
}
assertIPEquals(t, first, ret)
// #2. last of the range, note that current is the last one
last := net.IPv4(192, 168, 0, 254)
setLastTo(t, network, last)
ret, err = RequestIP(network, nil)
if err != nil {
t.Fatal(err)
}
assertIPEquals(t, last, ret)
// #3. middle of the range
mid := net.IPv4(192, 168, 0, 7)
setLastTo(t, network, mid)
ret, err = RequestIP(network, nil)
if err != nil {
t.Fatal(err)
}
assertIPEquals(t, mid, ret)
}
// make sure the pool is full when calling setLastTo.
// we don't cheat here
func setLastTo(t *testing.T, network *net.IPNet, ip net.IP) {
if err := ReleaseIP(network, ip); err != nil {
t.Fatal(err)
}
ret, err := RequestIP(network, nil)
if err != nil {
t.Fatal(err)
}
assertIPEquals(t, ip, ret)
if err := ReleaseIP(network, ip); err != nil {
t.Fatal(err)
}
}
func TestAllocateDifferentSubnets(t *testing.T) {
defer reset()
network1 := &net.IPNet{
IP: []byte{192, 168, 0, 1},
Mask: []byte{255, 255, 255, 0},
}
network2 := &net.IPNet{
IP: []byte{127, 0, 0, 1},
Mask: []byte{255, 255, 255, 0},
}
network3 := &net.IPNet{
IP: []byte{0x2a, 0x00, 0x14, 0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1},
Mask: []byte{255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 0, 0, 0, 0, 0, 0}, // /64 netmask
}
network4 := &net.IPNet{
IP: []byte{0x2a, 0x00, 0x16, 0x32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1},
Mask: []byte{255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 0, 0, 0, 0, 0, 0}, // /64 netmask
}
expectedIPs := []net.IP{
0: net.IPv4(192, 168, 0, 1),
1: net.IPv4(192, 168, 0, 2),
2: net.IPv4(127, 0, 0, 1),
3: net.IPv4(127, 0, 0, 2),
4: net.ParseIP("2a00:1450::1"),
5: net.ParseIP("2a00:1450::2"),
6: net.ParseIP("2a00:1450::3"),
7: net.ParseIP("2a00:1632::1"),
8: net.ParseIP("2a00:1632::2"),
}
ip11, err := RequestIP(network1, nil)
if err != nil {
t.Fatal(err)
}
ip12, err := RequestIP(network1, nil)
if err != nil {
t.Fatal(err)
}
ip21, err := RequestIP(network2, nil)
if err != nil {
t.Fatal(err)
}
ip22, err := RequestIP(network2, nil)
if err != nil {
t.Fatal(err)
}
ip31, err := RequestIP(network3, nil)
if err != nil {
t.Fatal(err)
}
ip32, err := RequestIP(network3, nil)
if err != nil {
t.Fatal(err)
}
ip33, err := RequestIP(network3, nil)
if err != nil {
t.Fatal(err)
}
ip41, err := RequestIP(network4, nil)
if err != nil {
t.Fatal(err)
}
ip42, err := RequestIP(network4, nil)
if err != nil {
t.Fatal(err)
}
assertIPEquals(t, expectedIPs[0], ip11)
assertIPEquals(t, expectedIPs[1], ip12)
assertIPEquals(t, expectedIPs[2], ip21)
assertIPEquals(t, expectedIPs[3], ip22)
assertIPEquals(t, expectedIPs[4], ip31)
assertIPEquals(t, expectedIPs[5], ip32)
assertIPEquals(t, expectedIPs[6], ip33)
assertIPEquals(t, expectedIPs[7], ip41)
assertIPEquals(t, expectedIPs[8], ip42)
}
func TestRegisterBadTwice(t *testing.T) {
defer reset()
network := &net.IPNet{
IP: []byte{192, 168, 1, 1},
Mask: []byte{255, 255, 255, 0},
}
subnet := &net.IPNet{
IP: []byte{192, 168, 1, 8},
Mask: []byte{255, 255, 255, 248},
}
if err := RegisterSubnet(network, subnet); err != nil {
t.Fatal(err)
}
subnet = &net.IPNet{
IP: []byte{192, 168, 1, 16},
Mask: []byte{255, 255, 255, 248},
}
if err := RegisterSubnet(network, subnet); err != ErrNetworkAlreadyRegistered {
t.Fatalf("Expecteded ErrNetworkAlreadyRegistered error, got %v", err)
}
}
func TestRegisterBadRange(t *testing.T) {
defer reset()
network := &net.IPNet{
IP: []byte{192, 168, 1, 1},
Mask: []byte{255, 255, 255, 0},
}
subnet := &net.IPNet{
IP: []byte{192, 168, 1, 1},
Mask: []byte{255, 255, 0, 0},
}
if err := RegisterSubnet(network, subnet); err != ErrBadSubnet {
t.Fatalf("Expected ErrBadSubnet error, got %v", err)
}
}
func TestAllocateFromRange(t *testing.T) {
defer reset()
network := &net.IPNet{
IP: []byte{192, 168, 0, 1},
Mask: []byte{255, 255, 255, 0},
}
// 192.168.1.9 - 192.168.1.14
subnet := &net.IPNet{
IP: []byte{192, 168, 0, 8},
Mask: []byte{255, 255, 255, 248},
}
if err := RegisterSubnet(network, subnet); err != nil {
t.Fatal(err)
}
expectedIPs := []net.IP{
0: net.IPv4(192, 168, 0, 9),
1: net.IPv4(192, 168, 0, 10),
2: net.IPv4(192, 168, 0, 11),
3: net.IPv4(192, 168, 0, 12),
4: net.IPv4(192, 168, 0, 13),
5: net.IPv4(192, 168, 0, 14),
}
for _, ip := range expectedIPs {
rip, err := RequestIP(network, nil)
if err != nil {
t.Fatal(err)
}
assertIPEquals(t, ip, rip)
}
if _, err := RequestIP(network, nil); err != ErrNoAvailableIPs {
t.Fatalf("Expected ErrNoAvailableIPs error, got %v", err)
}
for _, ip := range expectedIPs {
ReleaseIP(network, ip)
rip, err := RequestIP(network, nil)
if err != nil {
t.Fatal(err)
}
assertIPEquals(t, ip, rip)
}
}
func assertIPEquals(t *testing.T, ip1, ip2 net.IP) {
if !ip1.Equal(ip2) {
t.Fatalf("Expected IP %s, got %s", ip1, ip2)
}
}
func BenchmarkRequestIP(b *testing.B) {
network := &net.IPNet{
IP: []byte{192, 168, 0, 1},
Mask: []byte{255, 255, 255, 0},
}
b.ResetTimer()
for i := 0; i < b.N; i++ {
for j := 0; j < 253; j++ {
_, err := RequestIP(network, nil)
if err != nil {
b.Fatal(err)
}
}
reset()
}
}