1
0
Fork 0
mirror of https://github.com/moby/moby.git synced 2022-11-09 12:21:53 -05:00
moby--moby/vendor/github.com/cilium/ebpf/elf_reader.go
Akihiro Suda b79dec8138
vendor: github.com/opencontainers/runc v1.1.0
Signed-off-by: Akihiro Suda <akihiro.suda.cz@hco.ntt.co.jp>
2022-02-06 17:16:23 +09:00

1077 lines
32 KiB
Go

package ebpf
import (
"bufio"
"bytes"
"debug/elf"
"encoding/binary"
"errors"
"fmt"
"io"
"math"
"os"
"strings"
"github.com/cilium/ebpf/asm"
"github.com/cilium/ebpf/internal"
"github.com/cilium/ebpf/internal/btf"
"github.com/cilium/ebpf/internal/unix"
)
// elfCode is a convenience to reduce the amount of arguments that have to
// be passed around explicitly. You should treat its contents as immutable.
type elfCode struct {
*internal.SafeELFFile
sections map[elf.SectionIndex]*elfSection
license string
version uint32
btf *btf.Spec
}
// LoadCollectionSpec parses an ELF file into a CollectionSpec.
func LoadCollectionSpec(file string) (*CollectionSpec, error) {
f, err := os.Open(file)
if err != nil {
return nil, err
}
defer f.Close()
spec, err := LoadCollectionSpecFromReader(f)
if err != nil {
return nil, fmt.Errorf("file %s: %w", file, err)
}
return spec, nil
}
// LoadCollectionSpecFromReader parses an ELF file into a CollectionSpec.
func LoadCollectionSpecFromReader(rd io.ReaderAt) (*CollectionSpec, error) {
f, err := internal.NewSafeELFFile(rd)
if err != nil {
return nil, err
}
defer f.Close()
var (
licenseSection *elf.Section
versionSection *elf.Section
sections = make(map[elf.SectionIndex]*elfSection)
relSections = make(map[elf.SectionIndex]*elf.Section)
)
// This is the target of relocations generated by inline assembly.
sections[elf.SHN_UNDEF] = newElfSection(new(elf.Section), undefSection)
// Collect all the sections we're interested in. This includes relocations
// which we parse later.
for i, sec := range f.Sections {
idx := elf.SectionIndex(i)
switch {
case strings.HasPrefix(sec.Name, "license"):
licenseSection = sec
case strings.HasPrefix(sec.Name, "version"):
versionSection = sec
case strings.HasPrefix(sec.Name, "maps"):
sections[idx] = newElfSection(sec, mapSection)
case sec.Name == ".maps":
sections[idx] = newElfSection(sec, btfMapSection)
case sec.Name == ".bss" || sec.Name == ".data" || strings.HasPrefix(sec.Name, ".rodata"):
sections[idx] = newElfSection(sec, dataSection)
case sec.Type == elf.SHT_REL:
// Store relocations under the section index of the target
relSections[elf.SectionIndex(sec.Info)] = sec
case sec.Type == elf.SHT_PROGBITS && (sec.Flags&elf.SHF_EXECINSTR) != 0 && sec.Size > 0:
sections[idx] = newElfSection(sec, programSection)
}
}
license, err := loadLicense(licenseSection)
if err != nil {
return nil, fmt.Errorf("load license: %w", err)
}
version, err := loadVersion(versionSection, f.ByteOrder)
if err != nil {
return nil, fmt.Errorf("load version: %w", err)
}
btfSpec, err := btf.LoadSpecFromReader(rd)
if err != nil && !errors.Is(err, btf.ErrNotFound) {
return nil, fmt.Errorf("load BTF: %w", err)
}
// Assign symbols to all the sections we're interested in.
symbols, err := f.Symbols()
if err != nil {
return nil, fmt.Errorf("load symbols: %v", err)
}
for _, symbol := range symbols {
idx := symbol.Section
symType := elf.ST_TYPE(symbol.Info)
section := sections[idx]
if section == nil {
continue
}
// Older versions of LLVM don't tag symbols correctly, so keep
// all NOTYPE ones.
keep := symType == elf.STT_NOTYPE
switch section.kind {
case mapSection, btfMapSection, dataSection:
keep = keep || symType == elf.STT_OBJECT
case programSection:
keep = keep || symType == elf.STT_FUNC
}
if !keep || symbol.Name == "" {
continue
}
section.symbols[symbol.Value] = symbol
}
ec := &elfCode{
SafeELFFile: f,
sections: sections,
license: license,
version: version,
btf: btfSpec,
}
// Go through relocation sections, and parse the ones for sections we're
// interested in. Make sure that relocations point at valid sections.
for idx, relSection := range relSections {
section := sections[idx]
if section == nil {
continue
}
rels, err := ec.loadRelocations(relSection, symbols)
if err != nil {
return nil, fmt.Errorf("relocation for section %q: %w", section.Name, err)
}
for _, rel := range rels {
target := sections[rel.Section]
if target == nil {
return nil, fmt.Errorf("section %q: reference to %q in section %s: %w", section.Name, rel.Name, rel.Section, ErrNotSupported)
}
if target.Flags&elf.SHF_STRINGS > 0 {
return nil, fmt.Errorf("section %q: string is not stack allocated: %w", section.Name, ErrNotSupported)
}
target.references++
}
section.relocations = rels
}
// Collect all the various ways to define maps.
maps := make(map[string]*MapSpec)
if err := ec.loadMaps(maps); err != nil {
return nil, fmt.Errorf("load maps: %w", err)
}
if err := ec.loadBTFMaps(maps); err != nil {
return nil, fmt.Errorf("load BTF maps: %w", err)
}
if err := ec.loadDataSections(maps); err != nil {
return nil, fmt.Errorf("load data sections: %w", err)
}
// Finally, collect programs and link them.
progs, err := ec.loadPrograms()
if err != nil {
return nil, fmt.Errorf("load programs: %w", err)
}
return &CollectionSpec{maps, progs, ec.ByteOrder}, nil
}
func loadLicense(sec *elf.Section) (string, error) {
if sec == nil {
return "", nil
}
data, err := sec.Data()
if err != nil {
return "", fmt.Errorf("section %s: %v", sec.Name, err)
}
return string(bytes.TrimRight(data, "\000")), nil
}
func loadVersion(sec *elf.Section, bo binary.ByteOrder) (uint32, error) {
if sec == nil {
return 0, nil
}
var version uint32
if err := binary.Read(sec.Open(), bo, &version); err != nil {
return 0, fmt.Errorf("section %s: %v", sec.Name, err)
}
return version, nil
}
type elfSectionKind int
const (
undefSection elfSectionKind = iota
mapSection
btfMapSection
programSection
dataSection
)
type elfSection struct {
*elf.Section
kind elfSectionKind
// Offset from the start of the section to a symbol
symbols map[uint64]elf.Symbol
// Offset from the start of the section to a relocation, which points at
// a symbol in another section.
relocations map[uint64]elf.Symbol
// The number of relocations pointing at this section.
references int
}
func newElfSection(section *elf.Section, kind elfSectionKind) *elfSection {
return &elfSection{
section,
kind,
make(map[uint64]elf.Symbol),
make(map[uint64]elf.Symbol),
0,
}
}
func (ec *elfCode) loadPrograms() (map[string]*ProgramSpec, error) {
var (
progs []*ProgramSpec
libs []*ProgramSpec
)
for _, sec := range ec.sections {
if sec.kind != programSection {
continue
}
if len(sec.symbols) == 0 {
return nil, fmt.Errorf("section %v: missing symbols", sec.Name)
}
funcSym, ok := sec.symbols[0]
if !ok {
return nil, fmt.Errorf("section %v: no label at start", sec.Name)
}
insns, length, err := ec.loadInstructions(sec)
if err != nil {
return nil, fmt.Errorf("program %s: %w", funcSym.Name, err)
}
progType, attachType, progFlags, attachTo := getProgType(sec.Name)
spec := &ProgramSpec{
Name: funcSym.Name,
Type: progType,
Flags: progFlags,
AttachType: attachType,
AttachTo: attachTo,
License: ec.license,
KernelVersion: ec.version,
Instructions: insns,
ByteOrder: ec.ByteOrder,
}
if ec.btf != nil {
spec.BTF, err = ec.btf.Program(sec.Name, length)
if err != nil && !errors.Is(err, btf.ErrNoExtendedInfo) {
return nil, fmt.Errorf("program %s: %w", funcSym.Name, err)
}
}
if spec.Type == UnspecifiedProgram {
// There is no single name we can use for "library" sections,
// since they may contain multiple functions. We'll decode the
// labels they contain later on, and then link sections that way.
libs = append(libs, spec)
} else {
progs = append(progs, spec)
}
}
res := make(map[string]*ProgramSpec, len(progs))
for _, prog := range progs {
err := link(prog, libs)
if err != nil {
return nil, fmt.Errorf("program %s: %w", prog.Name, err)
}
res[prog.Name] = prog
}
return res, nil
}
func (ec *elfCode) loadInstructions(section *elfSection) (asm.Instructions, uint64, error) {
var (
r = bufio.NewReader(section.Open())
insns asm.Instructions
offset uint64
)
for {
var ins asm.Instruction
n, err := ins.Unmarshal(r, ec.ByteOrder)
if err == io.EOF {
return insns, offset, nil
}
if err != nil {
return nil, 0, fmt.Errorf("offset %d: %w", offset, err)
}
ins.Symbol = section.symbols[offset].Name
if rel, ok := section.relocations[offset]; ok {
if err = ec.relocateInstruction(&ins, rel); err != nil {
return nil, 0, fmt.Errorf("offset %d: relocate instruction: %w", offset, err)
}
}
insns = append(insns, ins)
offset += n
}
}
func (ec *elfCode) relocateInstruction(ins *asm.Instruction, rel elf.Symbol) error {
var (
typ = elf.ST_TYPE(rel.Info)
bind = elf.ST_BIND(rel.Info)
name = rel.Name
)
target := ec.sections[rel.Section]
switch target.kind {
case mapSection, btfMapSection:
if bind != elf.STB_GLOBAL {
return fmt.Errorf("possible erroneous static qualifier on map definition: found reference to %q", name)
}
if typ != elf.STT_OBJECT && typ != elf.STT_NOTYPE {
// STT_NOTYPE is generated on clang < 8 which doesn't tag
// relocations appropriately.
return fmt.Errorf("map load: incorrect relocation type %v", typ)
}
ins.Src = asm.PseudoMapFD
// Mark the instruction as needing an update when creating the
// collection.
if err := ins.RewriteMapPtr(-1); err != nil {
return err
}
case dataSection:
var offset uint32
switch typ {
case elf.STT_SECTION:
if bind != elf.STB_LOCAL {
return fmt.Errorf("direct load: %s: unsupported relocation %s", name, bind)
}
// This is really a reference to a static symbol, which clang doesn't
// emit a symbol table entry for. Instead it encodes the offset in
// the instruction itself.
offset = uint32(uint64(ins.Constant))
case elf.STT_OBJECT:
if bind != elf.STB_GLOBAL {
return fmt.Errorf("direct load: %s: unsupported relocation %s", name, bind)
}
offset = uint32(rel.Value)
default:
return fmt.Errorf("incorrect relocation type %v for direct map load", typ)
}
// We rely on using the name of the data section as the reference. It
// would be nicer to keep the real name in case of an STT_OBJECT, but
// it's not clear how to encode that into Instruction.
name = target.Name
// The kernel expects the offset in the second basic BPF instruction.
ins.Constant = int64(uint64(offset) << 32)
ins.Src = asm.PseudoMapValue
// Mark the instruction as needing an update when creating the
// collection.
if err := ins.RewriteMapPtr(-1); err != nil {
return err
}
case programSection:
if ins.OpCode.JumpOp() != asm.Call {
return fmt.Errorf("not a call instruction: %s", ins)
}
if ins.Src != asm.PseudoCall {
return fmt.Errorf("call: %s: incorrect source register", name)
}
switch typ {
case elf.STT_NOTYPE, elf.STT_FUNC:
if bind != elf.STB_GLOBAL {
return fmt.Errorf("call: %s: unsupported binding: %s", name, bind)
}
case elf.STT_SECTION:
if bind != elf.STB_LOCAL {
return fmt.Errorf("call: %s: unsupported binding: %s", name, bind)
}
// The function we want to call is in the indicated section,
// at the offset encoded in the instruction itself. Reverse
// the calculation to find the real function we're looking for.
// A value of -1 references the first instruction in the section.
offset := int64(int32(ins.Constant)+1) * asm.InstructionSize
if offset < 0 {
return fmt.Errorf("call: %s: invalid offset %d", name, offset)
}
sym, ok := target.symbols[uint64(offset)]
if !ok {
return fmt.Errorf("call: %s: no symbol at offset %d", name, offset)
}
ins.Constant = -1
name = sym.Name
default:
return fmt.Errorf("call: %s: invalid symbol type %s", name, typ)
}
case undefSection:
if bind != elf.STB_GLOBAL {
return fmt.Errorf("asm relocation: %s: unsupported binding: %s", name, bind)
}
if typ != elf.STT_NOTYPE {
return fmt.Errorf("asm relocation: %s: unsupported type %s", name, typ)
}
// There is nothing to do here but set ins.Reference.
default:
return fmt.Errorf("relocation to %q: %w", target.Name, ErrNotSupported)
}
ins.Reference = name
return nil
}
func (ec *elfCode) loadMaps(maps map[string]*MapSpec) error {
for _, sec := range ec.sections {
if sec.kind != mapSection {
continue
}
nSym := len(sec.symbols)
if nSym == 0 {
return fmt.Errorf("section %v: no symbols", sec.Name)
}
if sec.Size%uint64(nSym) != 0 {
return fmt.Errorf("section %v: map descriptors are not of equal size", sec.Name)
}
var (
r = bufio.NewReader(sec.Open())
size = sec.Size / uint64(nSym)
)
for i, offset := 0, uint64(0); i < nSym; i, offset = i+1, offset+size {
mapSym, ok := sec.symbols[offset]
if !ok {
return fmt.Errorf("section %s: missing symbol for map at offset %d", sec.Name, offset)
}
mapName := mapSym.Name
if maps[mapName] != nil {
return fmt.Errorf("section %v: map %v already exists", sec.Name, mapSym)
}
lr := io.LimitReader(r, int64(size))
spec := MapSpec{
Name: SanitizeName(mapName, -1),
}
switch {
case binary.Read(lr, ec.ByteOrder, &spec.Type) != nil:
return fmt.Errorf("map %s: missing type", mapName)
case binary.Read(lr, ec.ByteOrder, &spec.KeySize) != nil:
return fmt.Errorf("map %s: missing key size", mapName)
case binary.Read(lr, ec.ByteOrder, &spec.ValueSize) != nil:
return fmt.Errorf("map %s: missing value size", mapName)
case binary.Read(lr, ec.ByteOrder, &spec.MaxEntries) != nil:
return fmt.Errorf("map %s: missing max entries", mapName)
case binary.Read(lr, ec.ByteOrder, &spec.Flags) != nil:
return fmt.Errorf("map %s: missing flags", mapName)
}
extra, err := io.ReadAll(lr)
if err != nil {
return fmt.Errorf("map %s: reading map tail: %w", mapName, err)
}
if len(extra) > 0 {
spec.Extra = *bytes.NewReader(extra)
}
if err := spec.clampPerfEventArraySize(); err != nil {
return fmt.Errorf("map %s: %w", mapName, err)
}
maps[mapName] = &spec
}
}
return nil
}
// loadBTFMaps iterates over all ELF sections marked as BTF map sections
// (like .maps) and parses them into MapSpecs. Dump the .maps section and
// any relocations with `readelf -x .maps -r <elf_file>`.
func (ec *elfCode) loadBTFMaps(maps map[string]*MapSpec) error {
for _, sec := range ec.sections {
if sec.kind != btfMapSection {
continue
}
if ec.btf == nil {
return fmt.Errorf("missing BTF")
}
// Each section must appear as a DataSec in the ELF's BTF blob.
var ds *btf.Datasec
if err := ec.btf.FindType(sec.Name, &ds); err != nil {
return fmt.Errorf("cannot find section '%s' in BTF: %w", sec.Name, err)
}
// Open a Reader to the ELF's raw section bytes so we can assert that all
// of them are zero on a per-map (per-Var) basis. For now, the section's
// sole purpose is to receive relocations, so all must be zero.
rs := sec.Open()
for _, vs := range ds.Vars {
// BPF maps are declared as and assigned to global variables,
// so iterate over each Var in the DataSec and validate their types.
v, ok := vs.Type.(*btf.Var)
if !ok {
return fmt.Errorf("section %v: unexpected type %s", sec.Name, vs.Type)
}
name := string(v.Name)
// The BTF metadata for each Var contains the full length of the map
// declaration, so read the corresponding amount of bytes from the ELF.
// This way, we can pinpoint which map declaration contains unexpected
// (and therefore unsupported) data.
_, err := io.Copy(internal.DiscardZeroes{}, io.LimitReader(rs, int64(vs.Size)))
if err != nil {
return fmt.Errorf("section %v: map %s: initializing BTF map definitions: %w", sec.Name, name, internal.ErrNotSupported)
}
if maps[name] != nil {
return fmt.Errorf("section %v: map %s already exists", sec.Name, name)
}
// Each Var representing a BTF map definition contains a Struct.
mapStruct, ok := v.Type.(*btf.Struct)
if !ok {
return fmt.Errorf("expected struct, got %s", v.Type)
}
mapSpec, err := mapSpecFromBTF(sec, &vs, mapStruct, ec.btf, name, false)
if err != nil {
return fmt.Errorf("map %v: %w", name, err)
}
if err := mapSpec.clampPerfEventArraySize(); err != nil {
return fmt.Errorf("map %v: %w", name, err)
}
maps[name] = mapSpec
}
// Drain the ELF section reader to make sure all bytes are accounted for
// with BTF metadata.
i, err := io.Copy(io.Discard, rs)
if err != nil {
return fmt.Errorf("section %v: unexpected error reading remainder of ELF section: %w", sec.Name, err)
}
if i > 0 {
return fmt.Errorf("section %v: %d unexpected remaining bytes in ELF section, invalid BTF?", sec.Name, i)
}
}
return nil
}
// A programStub is a placeholder for a Program to be inserted at a certain map key.
// It needs to be resolved into a Program later on in the loader process.
type programStub string
// A mapStub is a placeholder for a Map to be inserted at a certain map key.
// It needs to be resolved into a Map later on in the loader process.
type mapStub string
// mapSpecFromBTF produces a MapSpec based on a btf.Struct def representing
// a BTF map definition. The name and spec arguments will be copied to the
// resulting MapSpec, and inner must be true on any resursive invocations.
func mapSpecFromBTF(es *elfSection, vs *btf.VarSecinfo, def *btf.Struct, spec *btf.Spec, name string, inner bool) (*MapSpec, error) {
var (
key, value btf.Type
keySize, valueSize uint32
mapType MapType
flags, maxEntries uint32
pinType PinType
innerMapSpec *MapSpec
contents []MapKV
err error
)
for i, member := range def.Members {
switch member.Name {
case "type":
mt, err := uintFromBTF(member.Type)
if err != nil {
return nil, fmt.Errorf("can't get type: %w", err)
}
mapType = MapType(mt)
case "map_flags":
flags, err = uintFromBTF(member.Type)
if err != nil {
return nil, fmt.Errorf("can't get BTF map flags: %w", err)
}
case "max_entries":
maxEntries, err = uintFromBTF(member.Type)
if err != nil {
return nil, fmt.Errorf("can't get BTF map max entries: %w", err)
}
case "key":
if keySize != 0 {
return nil, errors.New("both key and key_size given")
}
pk, ok := member.Type.(*btf.Pointer)
if !ok {
return nil, fmt.Errorf("key type is not a pointer: %T", member.Type)
}
key = pk.Target
size, err := btf.Sizeof(pk.Target)
if err != nil {
return nil, fmt.Errorf("can't get size of BTF key: %w", err)
}
keySize = uint32(size)
case "value":
if valueSize != 0 {
return nil, errors.New("both value and value_size given")
}
vk, ok := member.Type.(*btf.Pointer)
if !ok {
return nil, fmt.Errorf("value type is not a pointer: %T", member.Type)
}
value = vk.Target
size, err := btf.Sizeof(vk.Target)
if err != nil {
return nil, fmt.Errorf("can't get size of BTF value: %w", err)
}
valueSize = uint32(size)
case "key_size":
// Key needs to be nil and keySize needs to be 0 for key_size to be
// considered a valid member.
if key != nil || keySize != 0 {
return nil, errors.New("both key and key_size given")
}
keySize, err = uintFromBTF(member.Type)
if err != nil {
return nil, fmt.Errorf("can't get BTF key size: %w", err)
}
case "value_size":
// Value needs to be nil and valueSize needs to be 0 for value_size to be
// considered a valid member.
if value != nil || valueSize != 0 {
return nil, errors.New("both value and value_size given")
}
valueSize, err = uintFromBTF(member.Type)
if err != nil {
return nil, fmt.Errorf("can't get BTF value size: %w", err)
}
case "pinning":
if inner {
return nil, errors.New("inner maps can't be pinned")
}
pinning, err := uintFromBTF(member.Type)
if err != nil {
return nil, fmt.Errorf("can't get pinning: %w", err)
}
pinType = PinType(pinning)
case "values":
// The 'values' field in BTF map definitions is used for declaring map
// value types that are references to other BPF objects, like other maps
// or programs. It is always expected to be an array of pointers.
if i != len(def.Members)-1 {
return nil, errors.New("'values' must be the last member in a BTF map definition")
}
if valueSize != 0 && valueSize != 4 {
return nil, errors.New("value_size must be 0 or 4")
}
valueSize = 4
valueType, err := resolveBTFArrayMacro(member.Type)
if err != nil {
return nil, fmt.Errorf("can't resolve type of member 'values': %w", err)
}
switch t := valueType.(type) {
case *btf.Struct:
// The values member pointing to an array of structs means we're expecting
// a map-in-map declaration.
if mapType != ArrayOfMaps && mapType != HashOfMaps {
return nil, errors.New("outer map needs to be an array or a hash of maps")
}
if inner {
return nil, fmt.Errorf("nested inner maps are not supported")
}
// This inner map spec is used as a map template, but it needs to be
// created as a traditional map before it can be used to do so.
// libbpf names the inner map template '<outer_name>.inner', but we
// opted for _inner to simplify validation logic. (dots only supported
// on kernels 5.2 and up)
// Pass the BTF spec from the parent object, since both parent and
// child must be created from the same BTF blob (on kernels that support BTF).
innerMapSpec, err = mapSpecFromBTF(es, vs, t, spec, name+"_inner", true)
if err != nil {
return nil, fmt.Errorf("can't parse BTF map definition of inner map: %w", err)
}
case *btf.FuncProto:
// The values member contains an array of function pointers, meaning an
// autopopulated PROG_ARRAY.
if mapType != ProgramArray {
return nil, errors.New("map needs to be a program array")
}
default:
return nil, fmt.Errorf("unsupported value type %q in 'values' field", t)
}
contents, err = resolveBTFValuesContents(es, vs, member)
if err != nil {
return nil, fmt.Errorf("resolving values contents: %w", err)
}
default:
return nil, fmt.Errorf("unrecognized field %s in BTF map definition", member.Name)
}
}
if key == nil {
key = &btf.Void{}
}
if value == nil {
value = &btf.Void{}
}
return &MapSpec{
Name: SanitizeName(name, -1),
Type: MapType(mapType),
KeySize: keySize,
ValueSize: valueSize,
MaxEntries: maxEntries,
Flags: flags,
BTF: &btf.Map{Spec: spec, Key: key, Value: value},
Pinning: pinType,
InnerMap: innerMapSpec,
Contents: contents,
}, nil
}
// uintFromBTF resolves the __uint macro, which is a pointer to a sized
// array, e.g. for int (*foo)[10], this function will return 10.
func uintFromBTF(typ btf.Type) (uint32, error) {
ptr, ok := typ.(*btf.Pointer)
if !ok {
return 0, fmt.Errorf("not a pointer: %v", typ)
}
arr, ok := ptr.Target.(*btf.Array)
if !ok {
return 0, fmt.Errorf("not a pointer to array: %v", typ)
}
return arr.Nelems, nil
}
// resolveBTFArrayMacro resolves the __array macro, which declares an array
// of pointers to a given type. This function returns the target Type of
// the pointers in the array.
func resolveBTFArrayMacro(typ btf.Type) (btf.Type, error) {
arr, ok := typ.(*btf.Array)
if !ok {
return nil, fmt.Errorf("not an array: %v", typ)
}
ptr, ok := arr.Type.(*btf.Pointer)
if !ok {
return nil, fmt.Errorf("not an array of pointers: %v", typ)
}
return ptr.Target, nil
}
// resolveBTFValuesContents resolves relocations into ELF sections belonging
// to btf.VarSecinfo's. This can be used on the 'values' member in BTF map
// definitions to extract static declarations of map contents.
func resolveBTFValuesContents(es *elfSection, vs *btf.VarSecinfo, member btf.Member) ([]MapKV, error) {
// The elements of a .values pointer array are not encoded in BTF.
// Instead, relocations are generated into each array index.
// However, it's possible to leave certain array indices empty, so all
// indices' offsets need to be checked for emitted relocations.
// The offset of the 'values' member within the _struct_ (in bits)
// is the starting point of the array. Convert to bytes. Add VarSecinfo
// offset to get the absolute position in the ELF blob.
start := (member.OffsetBits / 8) + vs.Offset
// 'values' is encoded in BTF as a zero (variable) length struct
// member, and its contents run until the end of the VarSecinfo.
// Add VarSecinfo offset to get the absolute position in the ELF blob.
end := vs.Size + vs.Offset
// The size of an address in this section. This determines the width of
// an index in the array.
align := uint32(es.SectionHeader.Addralign)
// Check if variable-length section is aligned.
if (end-start)%align != 0 {
return nil, errors.New("unaligned static values section")
}
elems := (end - start) / align
if elems == 0 {
return nil, nil
}
contents := make([]MapKV, 0, elems)
// k is the array index, off is its corresponding ELF section offset.
for k, off := uint32(0), start; k < elems; k, off = k+1, off+align {
r, ok := es.relocations[uint64(off)]
if !ok {
continue
}
// Relocation exists for the current offset in the ELF section.
// Emit a value stub based on the type of relocation to be replaced by
// a real fd later in the pipeline before populating the map.
// Map keys are encoded in MapKV entries, so empty array indices are
// skipped here.
switch t := elf.ST_TYPE(r.Info); t {
case elf.STT_FUNC:
contents = append(contents, MapKV{uint32(k), programStub(r.Name)})
case elf.STT_OBJECT:
contents = append(contents, MapKV{uint32(k), mapStub(r.Name)})
default:
return nil, fmt.Errorf("unknown relocation type %v", t)
}
}
return contents, nil
}
func (ec *elfCode) loadDataSections(maps map[string]*MapSpec) error {
for _, sec := range ec.sections {
if sec.kind != dataSection {
continue
}
if sec.references == 0 {
// Prune data sections which are not referenced by any
// instructions.
continue
}
if ec.btf == nil {
return errors.New("data sections require BTF, make sure all consts are marked as static")
}
var datasec *btf.Datasec
if err := ec.btf.FindType(sec.Name, &datasec); err != nil {
return fmt.Errorf("data section %s: can't get BTF: %w", sec.Name, err)
}
data, err := sec.Data()
if err != nil {
return fmt.Errorf("data section %s: can't get contents: %w", sec.Name, err)
}
if uint64(len(data)) > math.MaxUint32 {
return fmt.Errorf("data section %s: contents exceed maximum size", sec.Name)
}
mapSpec := &MapSpec{
Name: SanitizeName(sec.Name, -1),
Type: Array,
KeySize: 4,
ValueSize: uint32(len(data)),
MaxEntries: 1,
Contents: []MapKV{{uint32(0), data}},
BTF: &btf.Map{Spec: ec.btf, Key: &btf.Void{}, Value: datasec},
}
switch sec.Name {
case ".rodata":
mapSpec.Flags = unix.BPF_F_RDONLY_PROG
mapSpec.Freeze = true
case ".bss":
// The kernel already zero-initializes the map
mapSpec.Contents = nil
}
maps[sec.Name] = mapSpec
}
return nil
}
func getProgType(sectionName string) (ProgramType, AttachType, uint32, string) {
types := map[string]struct {
progType ProgramType
attachType AttachType
progFlags uint32
}{
// From https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/lib/bpf/libbpf.c
"socket": {SocketFilter, AttachNone, 0},
"sk_reuseport/migrate": {SkReuseport, AttachSkReuseportSelectOrMigrate, 0},
"sk_reuseport": {SkReuseport, AttachSkReuseportSelect, 0},
"seccomp": {SocketFilter, AttachNone, 0},
"kprobe/": {Kprobe, AttachNone, 0},
"uprobe/": {Kprobe, AttachNone, 0},
"kretprobe/": {Kprobe, AttachNone, 0},
"uretprobe/": {Kprobe, AttachNone, 0},
"tracepoint/": {TracePoint, AttachNone, 0},
"raw_tracepoint/": {RawTracepoint, AttachNone, 0},
"raw_tp/": {RawTracepoint, AttachNone, 0},
"tp_btf/": {Tracing, AttachTraceRawTp, 0},
"xdp": {XDP, AttachNone, 0},
"perf_event": {PerfEvent, AttachNone, 0},
"lwt_in": {LWTIn, AttachNone, 0},
"lwt_out": {LWTOut, AttachNone, 0},
"lwt_xmit": {LWTXmit, AttachNone, 0},
"lwt_seg6local": {LWTSeg6Local, AttachNone, 0},
"sockops": {SockOps, AttachCGroupSockOps, 0},
"sk_skb/stream_parser": {SkSKB, AttachSkSKBStreamParser, 0},
"sk_skb/stream_verdict": {SkSKB, AttachSkSKBStreamParser, 0},
"sk_msg": {SkMsg, AttachSkSKBStreamVerdict, 0},
"lirc_mode2": {LircMode2, AttachLircMode2, 0},
"flow_dissector": {FlowDissector, AttachFlowDissector, 0},
"iter/": {Tracing, AttachTraceIter, 0},
"fentry/": {Tracing, AttachTraceFEntry, 0},
"fmod_ret/": {Tracing, AttachModifyReturn, 0},
"fexit/": {Tracing, AttachTraceFExit, 0},
"fentry.s/": {Tracing, AttachTraceFEntry, unix.BPF_F_SLEEPABLE},
"fmod_ret.s/": {Tracing, AttachModifyReturn, unix.BPF_F_SLEEPABLE},
"fexit.s/": {Tracing, AttachTraceFExit, unix.BPF_F_SLEEPABLE},
"sk_lookup/": {SkLookup, AttachSkLookup, 0},
"freplace/": {Extension, AttachNone, 0},
"lsm/": {LSM, AttachLSMMac, 0},
"lsm.s/": {LSM, AttachLSMMac, unix.BPF_F_SLEEPABLE},
"cgroup_skb/ingress": {CGroupSKB, AttachCGroupInetIngress, 0},
"cgroup_skb/egress": {CGroupSKB, AttachCGroupInetEgress, 0},
"cgroup/dev": {CGroupDevice, AttachCGroupDevice, 0},
"cgroup/skb": {CGroupSKB, AttachNone, 0},
"cgroup/sock": {CGroupSock, AttachCGroupInetSockCreate, 0},
"cgroup/post_bind4": {CGroupSock, AttachCGroupInet4PostBind, 0},
"cgroup/post_bind6": {CGroupSock, AttachCGroupInet6PostBind, 0},
"cgroup/bind4": {CGroupSockAddr, AttachCGroupInet4Bind, 0},
"cgroup/bind6": {CGroupSockAddr, AttachCGroupInet6Bind, 0},
"cgroup/connect4": {CGroupSockAddr, AttachCGroupInet4Connect, 0},
"cgroup/connect6": {CGroupSockAddr, AttachCGroupInet6Connect, 0},
"cgroup/sendmsg4": {CGroupSockAddr, AttachCGroupUDP4Sendmsg, 0},
"cgroup/sendmsg6": {CGroupSockAddr, AttachCGroupUDP6Sendmsg, 0},
"cgroup/recvmsg4": {CGroupSockAddr, AttachCGroupUDP4Recvmsg, 0},
"cgroup/recvmsg6": {CGroupSockAddr, AttachCGroupUDP6Recvmsg, 0},
"cgroup/sysctl": {CGroupSysctl, AttachCGroupSysctl, 0},
"cgroup/getsockopt": {CGroupSockopt, AttachCGroupGetsockopt, 0},
"cgroup/setsockopt": {CGroupSockopt, AttachCGroupSetsockopt, 0},
"classifier": {SchedCLS, AttachNone, 0},
"action": {SchedACT, AttachNone, 0},
"cgroup/getsockname4": {CGroupSockAddr, AttachCgroupInet4GetSockname, 0},
"cgroup/getsockname6": {CGroupSockAddr, AttachCgroupInet6GetSockname, 0},
"cgroup/getpeername4": {CGroupSockAddr, AttachCgroupInet4GetPeername, 0},
"cgroup/getpeername6": {CGroupSockAddr, AttachCgroupInet6GetPeername, 0},
}
for prefix, t := range types {
if !strings.HasPrefix(sectionName, prefix) {
continue
}
if !strings.HasSuffix(prefix, "/") {
return t.progType, t.attachType, t.progFlags, ""
}
return t.progType, t.attachType, t.progFlags, sectionName[len(prefix):]
}
return UnspecifiedProgram, AttachNone, 0, ""
}
func (ec *elfCode) loadRelocations(sec *elf.Section, symbols []elf.Symbol) (map[uint64]elf.Symbol, error) {
rels := make(map[uint64]elf.Symbol)
if sec.Entsize < 16 {
return nil, fmt.Errorf("section %s: relocations are less than 16 bytes", sec.Name)
}
r := bufio.NewReader(sec.Open())
for off := uint64(0); off < sec.Size; off += sec.Entsize {
ent := io.LimitReader(r, int64(sec.Entsize))
var rel elf.Rel64
if binary.Read(ent, ec.ByteOrder, &rel) != nil {
return nil, fmt.Errorf("can't parse relocation at offset %v", off)
}
symNo := int(elf.R_SYM64(rel.Info) - 1)
if symNo >= len(symbols) {
return nil, fmt.Errorf("offset %d: symbol %d doesn't exist", off, symNo)
}
symbol := symbols[symNo]
rels[rel.Off] = symbol
}
return rels, nil
}