1
0
Fork 0
mirror of https://github.com/moby/moby.git synced 2022-11-09 12:21:53 -05:00
moby--moby/vendor/github.com/bits-and-blooms/bitset
2021-06-07 10:09:21 +02:00
..
bitset.go vendor: github.com/opencontainers/selinux v1.8.2 2021-06-07 10:09:21 +02:00
go.mod vendor: github.com/opencontainers/selinux v1.8.2 2021-06-07 10:09:21 +02:00
LICENSE vendor: github.com/opencontainers/selinux v1.8.2 2021-06-07 10:09:21 +02:00
popcnt.go vendor: github.com/opencontainers/selinux v1.8.2 2021-06-07 10:09:21 +02:00
popcnt_19.go vendor: github.com/opencontainers/selinux v1.8.2 2021-06-07 10:09:21 +02:00
popcnt_amd64.go vendor: github.com/opencontainers/selinux v1.8.2 2021-06-07 10:09:21 +02:00
popcnt_amd64.s vendor: github.com/opencontainers/selinux v1.8.2 2021-06-07 10:09:21 +02:00
popcnt_generic.go vendor: github.com/opencontainers/selinux v1.8.2 2021-06-07 10:09:21 +02:00
README.md vendor: github.com/opencontainers/selinux v1.8.2 2021-06-07 10:09:21 +02:00
trailing_zeros_18.go vendor: github.com/opencontainers/selinux v1.8.2 2021-06-07 10:09:21 +02:00
trailing_zeros_19.go vendor: github.com/opencontainers/selinux v1.8.2 2021-06-07 10:09:21 +02:00

bitset

Go language library to map between non-negative integers and boolean values

Test Go Report Card PkgGoDev

Description

Package bitset implements bitsets, a mapping between non-negative integers and boolean values. It should be more efficient than map[uint] bool.

It provides methods for setting, clearing, flipping, and testing individual integers.

But it also provides set intersection, union, difference, complement, and symmetric operations, as well as tests to check whether any, all, or no bits are set, and querying a bitset's current length and number of positive bits.

BitSets are expanded to the size of the largest set bit; the memory allocation is approximately Max bits, where Max is the largest set bit. BitSets are never shrunk. On creation, a hint can be given for the number of bits that will be used.

Many of the methods, including Set, Clear, and Flip, return a BitSet pointer, which allows for chaining.

Example use:

package main

import (
	"fmt"
	"math/rand"

	"github.com/bits-and-blooms/bitset"
)

func main() {
	fmt.Printf("Hello from BitSet!\n")
	var b bitset.BitSet
	// play some Go Fish
	for i := 0; i < 100; i++ {
		card1 := uint(rand.Intn(52))
		card2 := uint(rand.Intn(52))
		b.Set(card1)
		if b.Test(card2) {
			fmt.Println("Go Fish!")
		}
		b.Clear(card1)
	}

	// Chaining
	b.Set(10).Set(11)

	for i, e := b.NextSet(0); e; i, e = b.NextSet(i + 1) {
		fmt.Println("The following bit is set:", i)
	}
	if b.Intersection(bitset.New(100).Set(10)).Count() == 1 {
		fmt.Println("Intersection works.")
	} else {
		fmt.Println("Intersection doesn't work???")
	}
}

As an alternative to BitSets, one should check out the 'big' package, which provides a (less set-theoretical) view of bitsets.

Package documentation is at: https://pkg.go.dev/github.com/bits-and-blooms/bitset?tab=doc

Memory Usage

The memory usage of a bitset using N bits is at least N/8 bytes. The number of bits in a bitset is at least as large as one plus the greatest bit index you have accessed. Thus it is possible to run out of memory while using a bitset. If you have lots of bits, you might prefer compressed bitsets, like the Roaring bitmaps and its Go implementation.

Implementation Note

Go 1.9 introduced a native math/bits library. We provide backward compatibility to Go 1.7, which might be removed.

It is possible that a later version will match the math/bits return signature for counts (which is int, rather than our library's unit64). If so, the version will be bumped.

Installation

go get github.com/bits-and-blooms/bitset

Contributing

If you wish to contribute to this project, please branch and issue a pull request against master ("GitHub Flow")

Running all tests

Before committing the code, please check if it passes tests, has adequate coverage, etc.

go test
go test -cover