mirror of
https://github.com/moby/moby.git
synced 2022-11-09 12:21:53 -05:00
eb13865d4e
Signed-off-by: Anusha Ragunathan <anusha.ragunathan@docker.com>
203 lines
5.2 KiB
Go
203 lines
5.2 KiB
Go
package remotes
|
||
|
||
import (
|
||
"fmt"
|
||
"math"
|
||
"math/rand"
|
||
"sort"
|
||
"sync"
|
||
|
||
"github.com/docker/swarmkit/api"
|
||
)
|
||
|
||
var errRemotesUnavailable = fmt.Errorf("no remote hosts provided")
|
||
|
||
// DefaultObservationWeight provides a weight to use for positive observations
|
||
// that will balance well under repeated observations.
|
||
const DefaultObservationWeight = 10
|
||
|
||
// Remotes keeps track of remote addresses by weight, informed by
|
||
// observations.
|
||
type Remotes interface {
|
||
// Weight returns the remotes with their current weights.
|
||
Weights() map[api.Peer]int
|
||
|
||
// Select a remote from the set of available remotes with optionally
|
||
// excluding ID or address.
|
||
Select(...string) (api.Peer, error)
|
||
|
||
// Observe records an experience with a particular remote. A positive weight
|
||
// indicates a good experience and a negative weight a bad experience.
|
||
//
|
||
// The observation will be used to calculate a moving weight, which is
|
||
// implementation dependent. This method will be called such that repeated
|
||
// observations of the same master in each session request are favored.
|
||
Observe(peer api.Peer, weight int)
|
||
|
||
// ObserveIfExists records an experience with a particular remote if when a
|
||
// remote exists.
|
||
ObserveIfExists(peer api.Peer, weight int)
|
||
|
||
// Remove the remote from the list completely.
|
||
Remove(addrs ...api.Peer)
|
||
}
|
||
|
||
// NewRemotes returns a Remotes instance with the provided set of addresses.
|
||
// Entries provided are heavily weighted initially.
|
||
func NewRemotes(peers ...api.Peer) Remotes {
|
||
mwr := &remotesWeightedRandom{
|
||
remotes: make(map[api.Peer]int),
|
||
}
|
||
|
||
for _, peer := range peers {
|
||
mwr.Observe(peer, DefaultObservationWeight)
|
||
}
|
||
|
||
return mwr
|
||
}
|
||
|
||
type remotesWeightedRandom struct {
|
||
remotes map[api.Peer]int
|
||
mu sync.Mutex
|
||
|
||
// workspace to avoid reallocation. these get lazily allocated when
|
||
// selecting values.
|
||
cdf []float64
|
||
peers []api.Peer
|
||
}
|
||
|
||
func (mwr *remotesWeightedRandom) Weights() map[api.Peer]int {
|
||
mwr.mu.Lock()
|
||
defer mwr.mu.Unlock()
|
||
|
||
ms := make(map[api.Peer]int, len(mwr.remotes))
|
||
for addr, weight := range mwr.remotes {
|
||
ms[addr] = weight
|
||
}
|
||
|
||
return ms
|
||
}
|
||
|
||
func (mwr *remotesWeightedRandom) Select(excludes ...string) (api.Peer, error) {
|
||
mwr.mu.Lock()
|
||
defer mwr.mu.Unlock()
|
||
|
||
// NOTE(stevvooe): We then use a weighted random selection algorithm
|
||
// (http://stackoverflow.com/questions/4463561/weighted-random-selection-from-array)
|
||
// to choose the master to connect to.
|
||
//
|
||
// It is possible that this is insufficient. The following may inform a
|
||
// better solution:
|
||
|
||
// https://github.com/LK4D4/sample
|
||
//
|
||
// The first link applies exponential distribution weight choice reservoir
|
||
// sampling. This may be relevant if we view the master selection as a
|
||
// distributed reservoir sampling problem.
|
||
|
||
// bias to zero-weighted remotes have same probability. otherwise, we
|
||
// always select first entry when all are zero.
|
||
const bias = 0.001
|
||
|
||
// clear out workspace
|
||
mwr.cdf = mwr.cdf[:0]
|
||
mwr.peers = mwr.peers[:0]
|
||
|
||
cum := 0.0
|
||
// calculate CDF over weights
|
||
Loop:
|
||
for peer, weight := range mwr.remotes {
|
||
for _, exclude := range excludes {
|
||
if peer.NodeID == exclude || peer.Addr == exclude {
|
||
// if this peer is excluded, ignore it by continuing the loop to label Loop
|
||
continue Loop
|
||
}
|
||
}
|
||
if weight < 0 {
|
||
// treat these as zero, to keep there selection unlikely.
|
||
weight = 0
|
||
}
|
||
|
||
cum += float64(weight) + bias
|
||
mwr.cdf = append(mwr.cdf, cum)
|
||
mwr.peers = append(mwr.peers, peer)
|
||
}
|
||
|
||
if len(mwr.peers) == 0 {
|
||
return api.Peer{}, errRemotesUnavailable
|
||
}
|
||
|
||
r := mwr.cdf[len(mwr.cdf)-1] * rand.Float64()
|
||
i := sort.SearchFloat64s(mwr.cdf, r)
|
||
|
||
return mwr.peers[i], nil
|
||
}
|
||
|
||
func (mwr *remotesWeightedRandom) Observe(peer api.Peer, weight int) {
|
||
mwr.mu.Lock()
|
||
defer mwr.mu.Unlock()
|
||
|
||
mwr.observe(peer, float64(weight))
|
||
}
|
||
|
||
func (mwr *remotesWeightedRandom) ObserveIfExists(peer api.Peer, weight int) {
|
||
mwr.mu.Lock()
|
||
defer mwr.mu.Unlock()
|
||
|
||
if _, ok := mwr.remotes[peer]; !ok {
|
||
return
|
||
}
|
||
|
||
mwr.observe(peer, float64(weight))
|
||
}
|
||
|
||
func (mwr *remotesWeightedRandom) Remove(addrs ...api.Peer) {
|
||
mwr.mu.Lock()
|
||
defer mwr.mu.Unlock()
|
||
|
||
for _, addr := range addrs {
|
||
delete(mwr.remotes, addr)
|
||
}
|
||
}
|
||
|
||
const (
|
||
// remoteWeightSmoothingFactor for exponential smoothing. This adjusts how
|
||
// much of the // observation and old value we are using to calculate the new value.
|
||
// See
|
||
// https://en.wikipedia.org/wiki/Exponential_smoothing#Basic_exponential_smoothing
|
||
// for details.
|
||
remoteWeightSmoothingFactor = 0.5
|
||
remoteWeightMax = 1 << 8
|
||
)
|
||
|
||
func clip(x float64) float64 {
|
||
if math.IsNaN(x) {
|
||
// treat garbage as such
|
||
// acts like a no-op for us.
|
||
return 0
|
||
}
|
||
return math.Max(math.Min(remoteWeightMax, x), -remoteWeightMax)
|
||
}
|
||
|
||
func (mwr *remotesWeightedRandom) observe(peer api.Peer, weight float64) {
|
||
|
||
// While we have a decent, ad-hoc approach here to weight subsequent
|
||
// observations, we may want to look into applying forward decay:
|
||
//
|
||
// http://dimacs.rutgers.edu/~graham/pubs/papers/fwddecay.pdf
|
||
//
|
||
// We need to get better data from behavior in a cluster.
|
||
|
||
// makes the math easier to read below
|
||
var (
|
||
w0 = float64(mwr.remotes[peer])
|
||
w1 = clip(weight)
|
||
)
|
||
const α = remoteWeightSmoothingFactor
|
||
|
||
// Multiply the new value to current value, and appy smoothing against the old
|
||
// value.
|
||
wn := clip(α*w1 + (1-α)*w0)
|
||
|
||
mwr.remotes[peer] = int(math.Ceil(wn))
|
||
}
|