1
0
Fork 0
mirror of https://github.com/pry/pry.git synced 2022-11-09 12:35:05 -05:00
pry--pry/lib/pry/input_lock.rb
Kyrylo Silin e85a16e2e6 input_lock: ignore Lint/InheritException
I'm not sure if we should ignore it but this code is not tested and it's been in
Pry for years, so it's better not to amend this behaviour.
2019-02-27 00:20:42 +02:00

127 lines
4.9 KiB
Ruby

class Pry
# There is one InputLock per input (such as STDIN) as two REPLs on the same
# input makes things delirious. InputLock serializes accesses to the input so
# that threads to not conflict with each other. The latest thread to request
# ownership of the input wins.
class InputLock
class Interrupt < Exception; end # rubocop:disable Lint/InheritException
class << self
attr_accessor :input_locks
attr_accessor :global_lock
end
self.input_locks = {}
self.global_lock = Mutex.new
def self.for(input)
# XXX This method leaks memory, as we never unregister an input once we
# are done with it. Fortunately, the leak is tiny (or so we hope). In
# usual scenarios, we would leak the StringIO that is passed to be
# evaluated from the command line.
global_lock.synchronize do
input_locks[input] ||= Pry::InputLock.new
end
end
def initialize
@mutex = Mutex.new
@cond = ConditionVariable.new
@owners = []
@interruptible = false
end
# Adds ourselves to the ownership list. The last one in the list may access
# the input through interruptible_region().
def __with_ownership(&block)
@mutex.synchronize do
# Three cases:
# 1) There are no owners, in this case we are good to go.
# 2) The current owner of the input is not reading the input (it might
# just be evaluating some ruby that the user typed).
# The current owner will figure out that it cannot go back to reading
# the input since we are adding ourselves to the @owners list, which
# in turns makes us the current owner.
# 3) The owner of the input is in the interruptible region, reading from
# the input. It's safe to send an Interrupt exception to interrupt
# the owner. It will then proceed like in case 2).
# We wait until the owner sets the interruptible flag back
# to false, meaning that he's out of the interruptible region.
# Note that the owner may receive multiple interrupts since, but that
# should be okay (and trying to avoid it is futile anyway).
while @interruptible
@owners.last.raise Interrupt
@cond.wait(@mutex)
end
@owners << Thread.current
end
block.call
ensure
@mutex.synchronize do
# We are releasing any desire to have the input ownership by removing
# ourselves from the list.
@owners.delete(Thread.current)
# We need to wake up the thread at the end of the @owners list, but
# sadly Ruby doesn't allow us to choose which one we wake up, so we wake
# them all up.
@cond.broadcast
end
end
def with_ownership(&block)
# If we are in a nested with_ownership() call (nested pry context), we do nothing.
nested = @mutex.synchronize { @owners.include?(Thread.current) }
nested ? block.call : __with_ownership(&block)
end
def enter_interruptible_region
@mutex.synchronize do
# We patiently wait until we are the owner. This may happen as another
# thread calls with_ownership() because of a binding.pry happening in
# another thread.
@cond.wait(@mutex) until @owners.last == Thread.current
# We are the legitimate owner of the input. We mark ourselves as
# interruptible, so other threads can send us an Interrupt exception
# while we are blocking from reading the input.
@interruptible = true
end
end
def leave_interruptible_region
@mutex.synchronize do
# We check if we are still the owner, because we could have received an
# Interrupt right after the following @cond.broadcast, making us retry.
@interruptible = false if @owners.last == Thread.current
@cond.broadcast
end
rescue Interrupt
# We need to guard against a spurious interrupt delivered while we are
# trying to acquire the lock (the rescue block is no longer in our scope).
retry
end
def interruptible_region(&block)
enter_interruptible_region
# XXX Note that there is a chance that we get the interrupt right after
# the readline call succeeded, but we'll never know, and we will retry the
# call, discarding that piece of input.
block.call
rescue Interrupt
# We were asked to back off. The one requesting the interrupt will be
# waiting on the conditional for the interruptible flag to change to false.
# Note that there can be some inefficiency, as we could immediately
# succeed in enter_interruptible_region(), even before the one requesting
# the ownership has the chance to register itself as an owner.
# To mitigate the issue, we sleep a little bit.
leave_interruptible_region
sleep 0.01
retry
ensure
leave_interruptible_region
end
end
end