2013-02-05 01:31:40 -05:00
require 'puma/util'
2015-07-17 16:00:55 -04:00
require 'puma/minissl'
2013-02-05 01:31:40 -05:00
2012-07-23 13:26:52 -04:00
module Puma
2018-04-30 18:00:56 -04:00
# Internal Docs, Not a public interface.
#
# The Reactor object is responsible for ensuring that a request has been
# completely received before it starts to be processed. This may be known as read buffering.
2018-05-01 12:19:50 -04:00
# If read buffering is not done, and no other read buffering is performed (such as by an application server
# such as nginx) then the application would be subject to a slow client attack.
2018-04-30 18:00:56 -04:00
#
2018-05-01 12:19:50 -04:00
# For a graphical representation of how the reactor works see [architecture.md](https://github.com/puma/puma/blob/master/docs/architecture.md#connection-pipeline).
2018-04-30 18:00:56 -04:00
#
2018-05-01 12:19:50 -04:00
# ## Reactor Flow
#
# A request comes into a `Puma::Server` instance, it is then passed to a `Puma::Reactor` instance.
2018-04-30 18:00:56 -04:00
# The reactor stores the request in an array and calls `IO.select` on the array in a loop.
2018-05-01 12:19:50 -04:00
#
2018-04-30 18:00:56 -04:00
# When the request is written to by the client then the `IO.select` will "wake up" and
# return the references to any objects that caused it to "wake". The reactor
2018-05-01 12:19:50 -04:00
# then loops through each of these request objects, and sees if they're complete. If they
# have a full header and body then the reactor passes the request to a thread pool.
# Once in a thread pool, a "worker thread" can run the the application's Ruby code against the request.
2018-04-30 18:00:56 -04:00
#
2018-05-01 12:19:50 -04:00
# If the request is not complete, then it stays in the array, and the next time any
# data is written to that socket reference, then the loop is woken up and it is checked for completeness again.
2018-04-30 18:00:56 -04:00
#
# A detailed example is given in the docs for `run_internal` which is where the bulk
# of this logic lives.
2012-07-23 13:26:52 -04:00
class Reactor
DefaultSleepFor = 5
2012-07-23 20:00:53 -04:00
def initialize ( server , app_pool )
@server = server
@events = server . events
2012-07-23 13:26:52 -04:00
@app_pool = app_pool
@mutex = Mutex . new
2018-04-30 18:00:46 -04:00
# Read / Write pipes to wake up internal while loop
2013-02-05 01:31:40 -05:00
@ready , @trigger = Puma :: Util . pipe
2012-07-23 13:26:52 -04:00
@input = [ ]
@sleep_for = DefaultSleepFor
@timeouts = [ ]
2012-08-27 13:56:43 -04:00
@sockets = [ @ready ]
2012-07-23 13:26:52 -04:00
end
2013-10-28 08:56:45 -04:00
private
2018-04-30 18:00:46 -04:00
# Until a request is added via the `add` method this method will internally
# loop, waiting on the `sockets` array objects. The only object in this
# array at first is the `@ready` IO object, which is the read end of a pipe
2018-05-01 12:20:28 -04:00
# connected to `@trigger` object. When `@trigger` is written to, then the loop
# will break on `IO.select` and return an array.
2018-04-30 18:00:46 -04:00
#
# ## When a request is added:
#
# When the `add` method is called, an instance of `Puma::Client` is added to the `@input` array.
# Next the `@ready` pipe is "woken" by writing a string of `"*"` to `@trigger`.
#
2018-05-01 12:20:28 -04:00
# When that happens, the internal loop stops blocking at `IO.select` and returns a reference
# to whatever "woke" it up. On the very first loop, the only thing in `sockets` is `@ready`.
# When `@trigger` is written-to, the loop "wakes" and the `ready`
# variable returns an array of arrays that looks like `[[#<IO:fd 10>], [], []]` where the
2018-04-30 18:00:46 -04:00
# first IO object is the `@ready` object. This first array `[#<IO:fd 10>]`
2018-05-01 12:20:28 -04:00
# is saved as a `reads` variable.
2018-04-30 18:00:46 -04:00
#
2018-05-01 12:20:28 -04:00
# The `reads` variable is iterated through. In the case that the object
2018-04-30 18:00:46 -04:00
# is the same as the `@ready` input pipe, then we know that there was a `trigger` event.
#
2018-05-01 12:20:28 -04:00
# If there was a trigger event, then one byte of `@ready` is read into memory. In the case of the first request,
# the reactor sees that it's a `"*"` value and the reactor adds the contents of `@input` into the `sockets` array.
# The while then loop continues to iterate again, but now the `sockets` array contains a `Puma::Client` instance in addition
2018-04-30 18:00:46 -04:00
# to the `@ready` IO object. For example: `[#<IO:fd 10>, #<Puma::Client:0x3fdc1103bee8 @ready=false>]`.
#
# Since the `Puma::Client` in this example has data that has not been read yet,
2018-05-01 12:20:28 -04:00
# the `IO.select` is immediately able to "wake" and read from the `Puma::Client`. At this point the
2018-04-30 18:00:46 -04:00
# `ready` output looks like this: `[[#<Puma::Client:0x3fdc1103bee8 @ready=false>], [], []]`.
#
# Each element in the first entry is iterated over. The `Puma::Client` object is not
2018-05-01 12:20:28 -04:00
# the `@ready` pipe, so the reactor checks to see if it has the fully header and body with
2018-04-30 18:00:46 -04:00
# the `Puma::Client#try_to_finish` method. If the full request has been sent,
2018-05-01 12:20:28 -04:00
# then the request is passed off to the `@app_pool` thread pool so that a "worker thread"
# can pick up the request and begin to execute application logic. This is done
2018-04-30 18:00:46 -04:00
# via `@app_pool << c`. The `Puma::Client` is then removed from the `sockets` array.
#
# If the request body is not present then nothing will happen, and the loop will iterate
# again. When the client sends more data to the socket the `Puma::Client` object will
# wake up the `IO.select` and it can again be checked to see if it's ready to be
# passed to the thread pool.
#
2018-05-01 12:20:28 -04:00
# ## Time Out Case
#
# In addition to being woken via a write to one of the sockets the `IO.select` will
# periodically "time out" of the sleep. One of the functions of this is to check for
# any requests that have "timed out". At the end of the loop it's checked to see if
# the first element in the `@timeout` array has exceed it's allowed time. If so,
# the client object is removed from the timeout aray, a 408 response is written.
# Then it's connection is closed, and the object is removed from the `sockets` array
# that watches for new data.
#
# This behavior loops until all the objects that have timed out have been removed.
#
# Once all the timeouts have been processed, the next duration of the `IO.select` sleep
# will be set to be equal to the amount of time it will take for the next timeout to occur.
# This calculation happens in `calculate_sleep`.
2013-10-28 08:56:45 -04:00
def run_internal
2012-08-27 13:56:43 -04:00
sockets = @sockets
2012-07-23 13:26:52 -04:00
while true
2013-10-28 09:36:54 -04:00
begin
ready = IO . select sockets , nil , nil , @sleep_for
rescue IOError = > e
2017-07-19 14:22:36 -04:00
Thread . current . purge_interrupt_queue if Thread . current . respond_to? :purge_interrupt_queue
2013-10-31 12:33:44 -04:00
if sockets . any? { | socket | socket . closed? }
2013-10-28 09:36:54 -04:00
STDERR . puts " Error in select: #{ e . message } ( #{ e . class } ) "
STDERR . puts e . backtrace
2013-10-31 12:33:44 -04:00
sockets = sockets . reject { | socket | socket . closed? }
2013-10-28 09:36:54 -04:00
retry
else
raise
end
end
2012-07-23 13:26:52 -04:00
if ready and reads = ready [ 0 ]
reads . each do | c |
if c == @ready
@mutex . synchronize do
2012-08-10 13:10:30 -04:00
case @ready . read ( 1 )
when " * "
sockets += @input
@input . clear
2012-09-02 23:33:09 -04:00
when " c "
sockets . delete_if do | s |
if s == @ready
false
else
s . close
true
end
end
2012-08-10 13:10:30 -04:00
when " ! "
return
end
2012-07-23 13:26:52 -04:00
end
else
2012-07-30 19:12:23 -04:00
# We have to be sure to remove it from the timeout
# list or we'll accidentally close the socket when
# it's in use!
if c . timeout_at
2013-03-18 19:41:59 -04:00
@mutex . synchronize do
@timeouts . delete c
end
2012-07-30 19:12:23 -04:00
end
2012-07-23 13:26:52 -04:00
begin
if c . try_to_finish
@app_pool << c
sockets . delete c
end
2012-08-11 01:41:35 -04:00
2016-04-22 19:55:06 -04:00
# Don't report these to the lowlevel_error handler, otherwise
# will be flooding them with errors when persistent connections
# are closed.
rescue ConnectionError
c . write_500
c . close
sockets . delete c
2015-01-13 23:11:26 -05:00
# SSL handshake failure
rescue MiniSSL :: SSLError = > e
2016-04-07 14:07:26 -04:00
@server . lowlevel_error ( e , c . env )
2015-01-13 23:11:26 -05:00
ssl_socket = c . io
addr = ssl_socket . peeraddr . last
cert = ssl_socket . peercert
c . close
sockets . delete c
@events . ssl_error @server , addr , cert , e
2012-07-23 13:26:52 -04:00
# The client doesn't know HTTP well
rescue HttpParserError = > e
2016-04-07 14:07:26 -04:00
@server . lowlevel_error ( e , c . env )
2012-09-06 01:09:42 -04:00
c . write_400
2012-07-23 20:08:11 -04:00
c . close
2012-09-06 01:09:42 -04:00
2012-07-23 20:08:11 -04:00
sockets . delete c
2012-07-23 20:00:53 -04:00
@events . parse_error @server , c . env , e
2012-08-27 13:56:43 -04:00
rescue StandardError = > e
2016-04-07 14:07:26 -04:00
@server . lowlevel_error ( e , c . env )
2012-09-06 01:09:42 -04:00
c . write_500
2012-07-23 13:26:52 -04:00
c . close
2012-09-06 01:09:42 -04:00
2012-07-23 13:26:52 -04:00
sockets . delete c
end
end
end
end
unless @timeouts . empty?
2013-03-18 19:41:59 -04:00
@mutex . synchronize do
now = Time . now
2012-07-23 13:26:52 -04:00
2013-03-18 19:41:59 -04:00
while @timeouts . first . timeout_at < now
c = @timeouts . shift
2014-01-30 17:37:38 -05:00
c . write_408 if c . in_data_phase
2013-03-18 19:41:59 -04:00
c . close
2014-01-30 13:23:01 -05:00
sockets . delete c
2012-07-23 13:26:52 -04:00
2013-03-18 19:41:59 -04:00
break if @timeouts . empty?
end
2012-07-30 19:12:23 -04:00
2013-03-18 19:41:59 -04:00
calculate_sleep
end
2012-07-23 13:26:52 -04:00
end
end
2013-10-28 08:56:45 -04:00
end
public
def run
run_internal
2013-02-05 01:31:40 -05:00
ensure
@trigger . close
@ready . close
2012-07-23 13:26:52 -04:00
end
def run_in_thread
2013-10-28 09:27:30 -04:00
@thread = Thread . new do
begin
run_internal
rescue StandardError = > e
STDERR . puts " Error in reactor loop escaped: #{ e . message } ( #{ e . class } ) "
STDERR . puts e . backtrace
retry
ensure
@trigger . close
@ready . close
2012-08-09 19:54:55 -04:00
end
2013-10-28 09:27:30 -04:00
end
2012-07-23 13:26:52 -04:00
end
2012-07-30 19:12:23 -04:00
def calculate_sleep
if @timeouts . empty?
@sleep_for = DefaultSleepFor
else
diff = @timeouts . first . timeout_at . to_f - Time . now . to_f
if diff < 0 . 0
@sleep_for = 0
else
@sleep_for = diff
end
end
end
2012-07-23 13:26:52 -04:00
def add ( c )
@mutex . synchronize do
@input << c
2012-08-10 13:10:30 -04:00
@trigger << " * "
2012-07-23 13:26:52 -04:00
if c . timeout_at
@timeouts << c
@timeouts . sort! { | a , b | a . timeout_at < = > b . timeout_at }
2012-07-24 20:25:03 -04:00
2012-07-30 19:12:23 -04:00
calculate_sleep
2012-07-23 13:26:52 -04:00
end
end
end
2012-08-10 13:10:30 -04:00
2012-09-02 23:33:09 -04:00
# Close all watched sockets and clear them from being watched
def clear!
2013-02-05 01:31:40 -05:00
begin
@trigger << " c "
rescue IOError
2017-07-19 14:22:36 -04:00
Thread . current . purge_interrupt_queue if Thread . current . respond_to? :purge_interrupt_queue
2013-02-05 01:31:40 -05:00
end
2012-09-02 23:33:09 -04:00
end
2012-08-10 13:10:30 -04:00
def shutdown
2013-02-05 01:31:40 -05:00
begin
@trigger << " ! "
rescue IOError
2017-07-19 14:22:36 -04:00
Thread . current . purge_interrupt_queue if Thread . current . respond_to? :purge_interrupt_queue
2013-02-05 01:31:40 -05:00
end
2012-09-02 23:33:09 -04:00
@thread . join
2012-08-10 13:10:30 -04:00
end
2012-07-23 13:26:52 -04:00
end
end