1
0
Fork 0
mirror of https://github.com/puma/puma.git synced 2022-11-09 13:48:40 -05:00
puma--puma/lib/puma/reactor.rb
Evan Phoenix e83a4954e4 Switch IO reactor to nio4r
This moves away from IO.select to using nio4r to allow the reactor to
scale beyond 1024 active clients. This happens when folks are using
websockets usually.
2019-02-19 16:38:21 -08:00

376 lines
13 KiB
Ruby

# frozen_string_literal: true
require 'puma/util'
require 'puma/minissl'
require 'nio'
module Puma
# Internal Docs, Not a public interface.
#
# The Reactor object is responsible for ensuring that a request has been
# completely received before it starts to be processed. This may be known as read buffering.
# If read buffering is not done, and no other read buffering is performed (such as by an application server
# such as nginx) then the application would be subject to a slow client attack.
#
# Each Puma "worker" process has its own Reactor. For example if you start puma with `$ puma -w 5` then
# it will have 5 workers and each worker will have it's own reactor.
#
# For a graphical representation of how the reactor works see [architecture.md](https://github.com/puma/puma/blob/master/docs/architecture.md#connection-pipeline).
#
# ## Reactor Flow
#
# A request comes into a `Puma::Server` instance, it is then passed to a `Puma::Reactor` instance.
# The reactor stores the request in an array and calls `IO.select` on the array in a loop.
#
# When the request is written to by the client then the `IO.select` will "wake up" and
# return the references to any objects that caused it to "wake". The reactor
# then loops through each of these request objects, and sees if they're complete. If they
# have a full header and body then the reactor passes the request to a thread pool.
# Once in a thread pool, a "worker thread" can run the the application's Ruby code against the request.
#
# If the request is not complete, then it stays in the array, and the next time any
# data is written to that socket reference, then the loop is woken up and it is checked for completeness again.
#
# A detailed example is given in the docs for `run_internal` which is where the bulk
# of this logic lives.
class Reactor
DefaultSleepFor = 5
# Creates an instance of Puma::Reactor
#
# The `server` argument is an instance of `Puma::Server`
# this is used to write a response for "low level errors"
# when there is an exception inside of the reactor.
#
# The `app_pool` is an instance of `Puma::ThreadPool`.
# Once a request is fully formed (header and body are received)
# it will be passed to the `app_pool`.
def initialize(server, app_pool)
@server = server
@events = server.events
@app_pool = app_pool
@selector = NIO::Selector.new
@mutex = Mutex.new
# Read / Write pipes to wake up internal while loop
@ready, @trigger = Puma::Util.pipe
@input = []
@sleep_for = DefaultSleepFor
@timeouts = []
mon = @selector.register(@ready, :r)
mon.value = :wakeup
@sockets = [mon]
end
private
# Until a request is added via the `add` method this method will internally
# loop, waiting on the `sockets` array objects. The only object in this
# array at first is the `@ready` IO object, which is the read end of a pipe
# connected to `@trigger` object. When `@trigger` is written to, then the loop
# will break on `IO.select` and return an array.
#
# ## When a request is added:
#
# When the `add` method is called, an instance of `Puma::Client` is added to the `@input` array.
# Next the `@ready` pipe is "woken" by writing a string of `"*"` to `@trigger`.
#
# When that happens, the internal loop stops blocking at `IO.select` and returns a reference
# to whatever "woke" it up. On the very first loop, the only thing in `sockets` is `@ready`.
# When `@trigger` is written-to, the loop "wakes" and the `ready`
# variable returns an array of arrays that looks like `[[#<IO:fd 10>], [], []]` where the
# first IO object is the `@ready` object. This first array `[#<IO:fd 10>]`
# is saved as a `reads` variable.
#
# The `reads` variable is iterated through. In the case that the object
# is the same as the `@ready` input pipe, then we know that there was a `trigger` event.
#
# If there was a trigger event, then one byte of `@ready` is read into memory. In the case of the first request,
# the reactor sees that it's a `"*"` value and the reactor adds the contents of `@input` into the `sockets` array.
# The while then loop continues to iterate again, but now the `sockets` array contains a `Puma::Client` instance in addition
# to the `@ready` IO object. For example: `[#<IO:fd 10>, #<Puma::Client:0x3fdc1103bee8 @ready=false>]`.
#
# Since the `Puma::Client` in this example has data that has not been read yet,
# the `IO.select` is immediately able to "wake" and read from the `Puma::Client`. At this point the
# `ready` output looks like this: `[[#<Puma::Client:0x3fdc1103bee8 @ready=false>], [], []]`.
#
# Each element in the first entry is iterated over. The `Puma::Client` object is not
# the `@ready` pipe, so the reactor checks to see if it has the fully header and body with
# the `Puma::Client#try_to_finish` method. If the full request has been sent,
# then the request is passed off to the `@app_pool` thread pool so that a "worker thread"
# can pick up the request and begin to execute application logic. This is done
# via `@app_pool << c`. The `Puma::Client` is then removed from the `sockets` array.
#
# If the request body is not present then nothing will happen, and the loop will iterate
# again. When the client sends more data to the socket the `Puma::Client` object will
# wake up the `IO.select` and it can again be checked to see if it's ready to be
# passed to the thread pool.
#
# ## Time Out Case
#
# In addition to being woken via a write to one of the sockets the `IO.select` will
# periodically "time out" of the sleep. One of the functions of this is to check for
# any requests that have "timed out". At the end of the loop it's checked to see if
# the first element in the `@timeout` array has exceed it's allowed time. If so,
# the client object is removed from the timeout aray, a 408 response is written.
# Then it's connection is closed, and the object is removed from the `sockets` array
# that watches for new data.
#
# This behavior loops until all the objects that have timed out have been removed.
#
# Once all the timeouts have been processed, the next duration of the `IO.select` sleep
# will be set to be equal to the amount of time it will take for the next timeout to occur.
# This calculation happens in `calculate_sleep`.
def run_internal
sockets = @sockets
selector = @selector
while true
begin
ready = selector.select @sleep_for
rescue IOError => e
Thread.current.purge_interrupt_queue if Thread.current.respond_to? :purge_interrupt_queue
if sockets.any? { |socket| m.value.closed? }
STDERR.puts "Error in select: #{e.message} (#{e.class})"
STDERR.puts e.backtrace
sockets = sockets.reject do |socket|
if m.value.closed?
selector.deregister(socket)
true
end
end
retry
else
raise
end
end
if ready
ready.each do |m|
if m.value == :wakeup
@mutex.synchronize do
case @ready.read(1)
when "*"
sockets += @input.map { |i|
mon = selector.register(i, :r)
mon.value = i
mon
}
@input.clear
when "c"
sockets.delete_if do |sm|
if sm.value == :wakeup
false
else
sm.value.close
selector.deregister sm
true
end
end
when "!"
return
end
end
else
c = m.value
# We have to be sure to remove it from the timeout
# list or we'll accidentally close the socket when
# it's in use!
if c.timeout_at
@mutex.synchronize do
@timeouts.delete c
end
end
begin
if c.try_to_finish
@app_pool << c
selector.deregister m
sockets.delete m
end
# Don't report these to the lowlevel_error handler, otherwise
# will be flooding them with errors when persistent connections
# are closed.
rescue ConnectionError
c.write_500
c.close
selector.deregister m
sockets.delete m
# SSL handshake failure
rescue MiniSSL::SSLError => e
@server.lowlevel_error(e, c.env)
ssl_socket = c.io
addr = ssl_socket.peeraddr.last
cert = ssl_socket.peercert
c.close
selector.deregister m
sockets.delete m
@events.ssl_error @server, addr, cert, e
# The client doesn't know HTTP well
rescue HttpParserError => e
@server.lowlevel_error(e, c.env)
c.write_400
c.close
selector.deregister m
sockets.delete m
@events.parse_error @server, c.env, e
rescue StandardError => e
@server.lowlevel_error(e, c.env)
c.write_500
c.close
selector.deregister m
sockets.delete m
end
end
end
end
unless @timeouts.empty?
@mutex.synchronize do
now = Time.now
while @timeouts.first.timeout_at < now
m = @timeouts.shift
c = m.value
c.write_408 if c.in_data_phase
c.close
selector.deregister m
sockets.delete m
break if @timeouts.empty?
end
calculate_sleep
end
end
end
end
public
def run
run_internal
ensure
@trigger.close
@ready.close
end
def run_in_thread
@thread = Thread.new do
begin
run_internal
rescue StandardError => e
STDERR.puts "Error in reactor loop escaped: #{e.message} (#{e.class})"
STDERR.puts e.backtrace
retry
ensure
@trigger.close
@ready.close
end
end
end
# The `calculate_sleep` sets the value that the `IO.select` will
# sleep for in the main reactor loop when no sockets are being written to.
#
# The values kept in `@timeouts` are sorted so that the first timeout
# comes first in the array. When there are no timeouts the default timeout is used.
#
# Otherwise a sleep value is set that is the same as the amount of time it
# would take for the first element to time out.
#
# If that value is in the past, then a sleep value of zero is used.
def calculate_sleep
if @timeouts.empty?
@sleep_for = DefaultSleepFor
else
diff = @timeouts.first.timeout_at.to_f - Time.now.to_f
if diff < 0.0
@sleep_for = 0
else
@sleep_for = diff
end
end
end
# This method adds a connection to the reactor
#
# Typically called by `Puma::Server` the value passed in
# is usually a `Puma::Client` object that responds like an IO
# object.
#
# The main body of the reactor loop is in `run_internal` and it
# will sleep on `IO.select`. When a new connection is added to the
# reactor it cannot be added directly to the `sockets` aray, because
# the `IO.select` will not be watching for it yet.
#
# Instead what needs to happen is that `IO.select` needs to be woken up,
# the contents of `@input` added to the `sockets` array, and then
# another call to `IO.select` needs to happen. Since the `Puma::Client`
# object can be read immediately, it does not block, but instead returns
# right away.
#
# This behavior is accomplished by writing to `@trigger` which wakes up
# the `IO.select` and then there is logic to detect the value of `*`,
# pull the contents from `@input` and add them to the sockets array.
#
# If the object passed in has a timeout value in `timeout_at` then
# it is added to a `@timeouts` array. This array is then re-arranged
# so that the first element to timeout will be at the front of the
# array. Then a value to sleep for is derived in the call to `calculate_sleep`
def add(c)
@mutex.synchronize do
@input << c
@trigger << "*"
if c.timeout_at
@timeouts << c
@timeouts.sort! { |a,b| a.timeout_at <=> b.timeout_at }
calculate_sleep
end
end
end
# Close all watched sockets and clear them from being watched
def clear!
begin
@trigger << "c"
rescue IOError
Thread.current.purge_interrupt_queue if Thread.current.respond_to? :purge_interrupt_queue
end
end
def shutdown
begin
@trigger << "!"
rescue IOError
Thread.current.purge_interrupt_queue if Thread.current.respond_to? :purge_interrupt_queue
end
@thread.join
end
end
end