Testing support was woven into the Rails fabric from the beginning. It wasn't an "oh! let's bolt on support for running tests because they're new and cool" epiphany.
Rails creates a `test` directory for you as soon as you create a Rails project using `rails new` _application_name_. If you list the contents of this directory then you shall see:
The `helpers`, `mailers`, and `models` directories are meant to hold tests for view helpers, mailers, and models, respectively. The `controllers` directory is meant to hold tests for controllers, routes, and views. The `integration` directory is meant to hold tests for interactions between controllers.
Each environment's configuration can be modified similarly. In this case, we can modify our test environment by changing the options found in `config/environments/test.rb`.
By requiring this file, `test_helper.rb` the default configuration to run our tests is loaded. We will include this with all the tests we write, so any methods added to this file are available to all our tests.
The `ArticleTest` class defines a _test case_ because it inherits from `ActiveSupport::TestCase`. `ArticleTest` thus has all the methods available from `ActiveSupport::TestCase`. Later in this guide, we'll see some of the methods it gives us.
(which is the superclass of `ActiveSupport::TestCase`) that begins with `test_` (case sensitive) is simply called a test. So, methods defined as `test_password` and `test_valid_password` are legal test names and are run automatically when the test case is run.
Rails also adds a `test` method that takes a test name and a block. It generates a normal `Minitest::Unit` test with method names prefixed with `test_`. So you don't have to worry about naming the methods, and you can write something like:
NOTE: The method name is generated by replacing spaces with underscores. The result does not need to be a valid Ruby identifier though, the name may contain punctuation characters etc. That's because in Ruby technically any string may be a method name. This may require use of `define_method` and `send` calls to function properly, but formally there's little restriction on the name.
Every test may contain one or more assertions, with no restriction as to how many assertions are allowed. Only when all the assertions are successful will the test pass.
In the output, `F` denotes a failure. You can see the corresponding trace shown under `Failure` along with the name of the failing test. The next few lines contain the stack trace followed by a message that mentions the actual value and the expected value by the assertion. The default assertion messages provide just enough information to help pinpoint the error. To make the assertion failure message more readable, every assertion provides an optional message parameter, as shown here:
When a test fails you are presented with the corresponding backtrace. By default
Rails filters that backtrace and will only print lines relevant to your
application. This eliminates the framework noise and helps to focus on your
code. However there are situations when you want to see the full
backtrace. Simply set the `-b` (or `--backtrace`) argument to enable this behavior:
```bash
$ bin/rails test -b test/models/article_test.rb
```
If we want this test to pass we can modify it to use `assert_raises` like so:
```ruby
test "should report error" do
# some_undefined_variable is not defined elsewhere in the test case
assert_raises(NameError) do
some_undefined_variable
end
end
```
This test should now pass.
### Available Assertions
By now you've caught a glimpse of some of the assertions that are available. Assertions are the worker bees of testing. They are the ones that actually perform the checks to ensure that things are going as planned.
Here's an extract of the assertions you can use with
[`Minitest`](https://github.com/seattlerb/minitest), the default testing library
used by Rails. The `[msg]` parameter is an optional string message you can
Because of the modular nature of the testing framework, it is possible to create your own assertions. In fact, that's exactly what Rails does. It includes some specialized assertions to make your life easier.
NOTE: Creating your own assertions is an advanced topic that we won't cover in this tutorial.
### Rails Specific Assertions
Rails adds some custom assertions of its own to the `minitest` framework:
| [`assert_difference(expressions, difference = 1, message = nil) {...}`](http://api.rubyonrails.org/classes/ActiveSupport/Testing/Assertions.html#method-i-assert_difference) | Test numeric difference between the return value of an expression as a result of what is evaluated in the yielded block.|
| [`assert_no_difference(expressions, message = nil, &block)`](http://api.rubyonrails.org/classes/ActiveSupport/Testing/Assertions.html#method-i-assert_no_difference) | Asserts that the numeric result of evaluating an expression is not changed before and after invoking the passed in block.|
| [`assert_nothing_raised { block }`](http://api.rubyonrails.org/classes/ActiveSupport/TestCase.html#method-i-assert_nothing_raised) | Ensures that the given block doesn't raise any exceptions.|
| [`assert_recognizes(expected_options, path, extras={}, message=nil)`](http://api.rubyonrails.org/classes/ActionDispatch/Assertions/RoutingAssertions.html#method-i-assert_recognizes) | Asserts that the routing of the given path was handled correctly and that the parsed options (given in the expected_options hash) match path. Basically, it asserts that Rails recognizes the route given by expected_options.|
| [`assert_generates(expected_path, options, defaults={}, extras = {}, message=nil)`](http://api.rubyonrails.org/classes/ActionDispatch/Assertions/RoutingAssertions.html#method-i-assert_generates) | Asserts that the provided options can be used to generate the provided path. This is the inverse of assert_recognizes. The extras parameter is used to tell the request the names and values of additional request parameters that would be in a query string. The message parameter allows you to specify a custom error message for assertion failures.|
| [`assert_response(type, message = nil)`](http://api.rubyonrails.org/classes/ActionDispatch/Assertions/ResponseAssertions.html#method-i-assert_response) | Asserts that the response comes with a specific status code. You can specify `:success` to indicate 200-299, `:redirect` to indicate 300-399, `:missing` to indicate 404, or `:error` to match the 500-599 range. You can also pass an explicit status number or its symbolic equivalent. For more information, see [full list of status codes](http://rubydoc.info/github/rack/rack/master/Rack/Utils#HTTP_STATUS_CODES-constant) and how their [mapping](http://rubydoc.info/github/rack/rack/master/Rack/Utils#SYMBOL_TO_STATUS_CODE-constant) works.|
| [`assert_redirected_to(options = {}, message=nil)`](http://api.rubyonrails.org/classes/ActionDispatch/Assertions/ResponseAssertions.html#method-i-assert_redirected_to) | Asserts that the redirection options passed in match those of the redirect called in the latest action. This match can be partial, such that `assert_redirected_to(controller: "weblog")` will also match the redirection of `redirect_to(controller: "weblog", action: "show")` and so on. You can also pass named routes such as `assert_redirected_to root_path` and Active Record objects such as `assert_redirected_to @article`.|
You'll see the usage of some of these assertions in the next chapter.
### A Brief Note About Test Cases
All the basic assertions such as `assert_equal` defined in `Minitest::Assertions` are also available in the classes we use in our own test cases. In fact, Rails provides the following classes for you to inherit from:
Just about every Rails application interacts heavily with a database and, as a result, your tests will need a database to interact with as well. To write efficient tests, you'll need to understand how to set up this database and populate it with sample data.
By default, every Rails application has three environments: development, test, and production. The database for each one of them is configured in `config/database.yml`.
A dedicated test database allows you to set up and interact with test data in isolation. This way your tests can mangle test data with confidence, without worrying about the data in the development or production databases.
### Maintaining the test database schema
In order to run your tests, your test database will need to have the current
structure. The test helper checks whether your test database has any pending
For good tests, you'll need to give some thought to setting up test data.
In Rails, you can handle this by defining and customizing fixtures.
You can find comprehensive documentation in the [Fixtures API documentation](http://api.rubyonrails.org/classes/ActiveRecord/FixtureSet.html).
#### What Are Fixtures?
_Fixtures_ is a fancy word for sample data. Fixtures allow you to populate your testing database with predefined data before your tests run. Fixtures are database independent and written in YAML. There is one file per model.
NOTE: Fixtures are not designed to create every object that your tests need, and are best managed when only used for default data that can be applied to the common case.
You'll find fixtures under your `test/fixtures` directory. When you run `rails generate model` to create a new model, Rails automatically creates fixture stubs in this directory.
#### YAML
YAML-formatted fixtures are a human-friendly way to describe your sample data. These types of fixtures have the **.yml** file extension (as in `users.yml`).
Here's a sample YAML fixture file:
```yaml
# lo & behold! I am a YAML comment!
david:
name: David Heinemeier Hansson
birthday: 1979-10-15
profession: Systems development
steve:
name: Steve Ross Kellock
birthday: 1974-09-27
profession: guy with keyboard
```
Each fixture is given a name followed by an indented list of colon-separated key/value pairs. Records are typically separated by a blank line. You can place comments in a fixture file by using the # character in the first column.
If you are working with [associations](/association_basics.html), you can simply
define a reference node between two different fixtures. Here's an example with
Notice the `category` key of the `first` article found in `fixtures/articles.yml` has a value of `about`. This tells Rails to load the category `about` found in `fixtures/categories.yml`.
NOTE: For associations to reference one another by name, you can use the fixture name instead of specifying the `id:` attribute on the associated fixtures. Rails will auto assign a primary key to be consistent between runs. For more information on this association behavior please read the [Fixtures API documentation](http://api.rubyonrails.org/classes/ActiveRecord/FixtureSet.html).
ERB allows you to embed Ruby code within templates. The YAML fixture format is pre-processed with ERB when Rails loads fixtures. This allows you to use Ruby to help you generate some sample data. For example, the following code generates a thousand users:
TIP: In order to remove existing data from the database, Rails tries to disable referential integrity triggers (like foreign keys and check constraints). If you are getting annoying permission errors on running tests, make sure the database user has privilege to disable these triggers in testing environment. (In PostgreSQL, only superusers can disable all triggers. Read more about PostgreSQL permissions [here](http://blog.endpoint.com/2012/10/postgres-system-triggers-error.html)).
Fixtures are instances of Active Record. As mentioned in point #3 above, you can access the object directly because it is automatically available as a method whose scope is local of the test case. For example:
```ruby
# this will return the User object for the fixture named david
users(:david)
# this will return the property for david called id
users(:david).id
# one can also access methods available on the User class
Model tests don't have their own superclass like `ActionMailer::TestCase` instead they inherit from [`ActiveSupport::TestCase`](http://api.rubyonrails.org/classes/ActiveSupport/TestCase.html).
Integration tests are used to test how various parts of your application interact. They are generally used to test important workflows within our application.
For creating Rails integration tests, we use the `test/integration` directory for our application. Rails provides a generator to create an integration test skeleton for us.
Here the test is inheriting from `ActionDispatch::IntegrationTest`. This makes some additional helpers available for us to use in our integration tests.
In addition to the standard testing helpers, inheriting from `ActionDispatch::IntegrationTest` comes with some additional helpers available when writing integration tests. Let's get briefly introduced to the three categories of helpers we get to choose from.
For dealing with the integration test runner, see [`ActionDispatch::Integration::Runner`](http://api.rubyonrails.org/classes/ActionDispatch/Integration/Runner.html).
When performing requests, we will have [`ActionDispatch::Integration::RequestHelpers`](http://api.rubyonrails.org/classes/ActionDispatch/Integration/RequestHelpers.html) available for our use.
If we need to modify the session, or state of our integration test, take a look at [`ActionDispatch::Integration::Session`](http://api.rubyonrails.org/classes/ActionDispatch/Integration/Session.html) to help.
Let's add an integration test to our blog application. We'll start with a basic workflow of creating a new blog article, to verify that everything is working properly.
We'll start by generating our integration test skeleton:
We will take a look at `assert_select` to query the resulting HTML of a request in the "Testing Views" section below. It is used for testing the response of our request by asserting the presence of key HTML elements and their content.
We were able to successfully test a very small workflow for visiting our blog and creating a new article. If we wanted to take this further we could add tests for commenting, removing articles, or editing comments. Integration tests are a great place to experiment with all kinds of use-cases for our applications.
In Rails, testing the various actions of a controller is a form of writing functional tests. Remember your controllers handle the incoming web requests to your application and eventually respond with a rendered view. When writing functional tests, you are testing how your actions handle the requests and the expected result or response, in some cases an HTML view.
NOTE: If you try running `test_should_create_article` test from `articles_controller_test.rb` it will fail on account of the newly added model level validation and rightly so.
NOTE: If you followed the steps in the Basic Authentication section, you'll need to add the following to the `setup` block to get all the tests passing:
All of request types have equivalent methods that you can use. In a typical C.R.U.D. application you'll be using `get`, `post`, `put` and `delete` more often.
NOTE: Functional tests do not verify whether the specified request type is accepted by the action, we're more concerned with the result. Request tests exist for this use case to make your tests more purposeful.
As is the case with normal Hash objects, you can access the values by referencing the keys by string. You can also reference them by symbol name. For example:
Notice we're starting to see some duplication in these three tests, they both access the same Article fixture data. We can D.R.Y. this up by using the `setup` and `teardown` methods provided by `ActiveSupport::Callbacks`.
Similar to other callbacks in Rails, the `setup` and `teardown` methods can also be used by passing a block, lambda, or method name as a symbol to call.
For more information on routing assertions available in Rails, see the API documentation for [`ActionDispatch::Assertions::RoutingAssertions`](http://api.rubyonrails.org/classes/ActionDispatch/Assertions/RoutingAssertions.html).
Testing the response to your request by asserting the presence of key HTML elements and their content is a common way to test the views of your application. Like route tests, view tests reside in `test/controllers/` or are part of controller tests. The `assert_select` method allows you to query HTML elements of the response by using a simple yet powerful syntax.
`assert_select(selector, [equality], [message])` ensures that the equality condition is met on the selected elements through the selector. The selector may be a CSS selector expression (String) or an expression with substitution values.
`assert_select(element, selector, [equality], [message])` ensures that the equality condition is met on all the selected elements through the selector starting from the _element_ (instance of `Nokogiri::XML::Node` or `Nokogiri::XML::NodeSet`) and its descendants.
This assertion is quite powerful. For more advanced usage, refer to its [documentation](https://github.com/rails/rails-dom-testing/blob/master/lib/rails/dom/testing/assertions/selector_assertions.rb).
| `assert_select_email` | Allows you to make assertions on the body of an e-mail. |
| `assert_select_encoded` | Allows you to make assertions on encoded HTML. It does this by un-encoding the contents of each element and then calling the block with all the un-encoded elements.|
| `css_select(selector)` or `css_select(element, selector)` | Returns an array of all the elements selected by the _selector_. In the second variant it first matches the base _element_ and tries to match the _selector_ expression on any of its children. If there are no matches both variants return an empty array.|
The goals of testing your mailer classes are to ensure that:
* emails are being processed (created and sent)
* the email content is correct (subject, sender, body, etc)
* the right emails are being sent at the right times
#### From All Sides
There are two aspects of testing your mailer, the unit tests and the functional tests. In the unit tests, you run the mailer in isolation with tightly controlled inputs and compare the output to a known value (a fixture.) In the functional tests you don't so much test the minute details produced by the mailer; instead, we test that our controllers and models are using the mailer in the right way. You test to prove that the right email was sent at the right time.
### Unit Testing
In order to test that your mailer is working as expected, you can use unit tests to compare the actual results of the mailer with pre-written examples of what should be produced.
#### Revenge of the Fixtures
For the purposes of unit testing a mailer, fixtures are used to provide an example of how the output _should_ look. Because these are example emails, and not Active Record data like the other fixtures, they are kept in their own subdirectory apart from the other fixtures. The name of the directory within `test/fixtures` directly corresponds to the name of the mailer. So, for a mailer named `UserMailer`, the fixtures should reside in `test/fixtures/user_mailer` directory.
When you generated your mailer, the generator creates stub fixtures for each of the mailers actions. If you didn't use the generator, you'll have to create those files yourself.
Here's a unit test to test a mailer named `UserMailer` whose action `invite` is used to send an invitation to a friend. It is an adapted version of the base test created by the generator for an `invite` action.
Functional testing for mailers involves more than just checking that the email body, recipients and so forth are correct. In functional mail tests you call the mail deliver methods and check that the appropriate emails have been appended to the delivery list. It is fairly safe to assume that the deliver methods themselves do their job. You are probably more interested in whether your own business logic is sending emails when you expect them to go out. For example, you can check that the invite friend operation is sending an email appropriately:
Active Job ships with a bunch of custom assertions that can be used to lessen the verbosity of tests. For a full list of available assertions, see the API documentation for [`ActiveJob::TestHelper`](http://api.rubyonrails.org/classes/ActiveJob/TestHelper.html).