1
0
Fork 0
mirror of https://github.com/rails/rails.git synced 2022-11-09 12:12:34 -05:00

Prettied up the README with syntax highlighting.

[ci skip]
This commit is contained in:
Philip Arndt 2013-06-28 04:11:25 +12:00
parent a1b7217871
commit 6d39b29361

View file

@ -21,13 +21,17 @@ For the moment, Arel uses Active Record's connection adapters to connect to the
Generating a query with Arel is simple. For example, in order to produce
SELECT * FROM users
```sql
SELECT * FROM users
```
you construct a table relation and convert it to sql:
users = Arel::Table.new(:users)
query = users.project(Arel.sql('*'))
query.to_sql
```ruby
users = Arel::Table.new(:users)
query = users.project(Arel.sql('*'))
query.to_sql
```
### More Sophisticated Queries
@ -35,45 +39,65 @@ Here is a whirlwind tour through the most common relational operators. These wil
First is the 'restriction' operator, `where`:
users.where(users[:name].eq('amy'))
# => SELECT * FROM users WHERE users.name = 'amy'
```ruby
users.where(users[:name].eq('amy'))
# => SELECT * FROM users WHERE users.name = 'amy'
```
What would, in SQL, be part of the `SELECT` clause is called in Arel a `projection`:
users.project(users[:id]) # => SELECT users.id FROM users
```ruby
users.project(users[:id])
# => SELECT users.id FROM users
```
Joins resemble SQL strongly:
users.join(photos).on(users[:id].eq(photos[:user_id]))
# => SELECT * FROM users INNER JOIN photos ON users.id = photos.user_id
```ruby
users.join(photos).on(users[:id].eq(photos[:user_id]))
# => SELECT * FROM users INNER JOIN photos ON users.id = photos.user_id
```
What are called `LIMIT` and `OFFSET` in SQL are called `take` and `skip` in Arel:
users.take(5) # => SELECT * FROM users LIMIT 5
users.skip(4) # => SELECT * FROM users OFFSET 4
```ruby
users.take(5) # => SELECT * FROM users LIMIT 5
users.skip(4) # => SELECT * FROM users OFFSET 4
```
`GROUP BY` is called `group`:
users.project(users[:name]).group(users[:name]) # => SELECT users.name FROM users GROUP BY users.name
```ruby
users.project(users[:name]).group(users[:name])
# => SELECT users.name FROM users GROUP BY users.name
```
The best property of the Relational Algebra is its "composability", or closure under all operations. For example, to restrict AND project, just "chain" the method invocations:
users \
.where(users[:name].eq('amy')) \
.project(users[:id]) \
# => SELECT users.id FROM users WHERE users.name = 'amy'
```ruby
users \
.where(users[:name].eq('amy')) \
.project(users[:id]) \
# => SELECT users.id FROM users WHERE users.name = 'amy'
```
All operators are chainable in this way, and they are chainable any number of times, in any order.
users.where(users[:name].eq('bob')).where(users[:age].lt(25))
```ruby
users.where(users[:name].eq('bob')).where(users[:age].lt(25))
```
Of course, many of the operators take multiple arguments, so the last example can be written more tersely:
users.where(users[:name].eq('bob'), users[:age].lt(25))
```ruby
users.where(users[:name].eq('bob'), users[:age].lt(25))
```
The `OR` operator works like this:
users.where(users[:name].eq('bob').or(users[:age].lt(25)))
```ruby
users.where(users[:name].eq('bob').or(users[:age].lt(25)))
```
The `AND` operator behaves similarly.
@ -85,38 +109,51 @@ The examples above are fairly simple and other libraries match or come close to
Suppose we have a table `products` with prices in different currencies. And we have a table `currency_rates`, of constantly changing currency rates. In Arel:
products = Arel::Table.new(:products)
products.columns # => [products[:id], products[:name], products[:price], products[:currency_id]]
```ruby
products = Arel::Table.new(:products)
products.columns
# => [products[:id], products[:name], products[:price], products[:currency_id]]
currency_rates = Arel::Table.new(:currency_rates)
currency_rates.columns # => [currency_rates[:from_id], currency_rates[:to_id], currency_rates[:date], currency_rates[:rate]]
currency_rates = Arel::Table.new(:currency_rates)
currency_rates.columns
# => [currency_rates[:from_id], currency_rates[:to_id], currency_rates[:date], currency_rates[:rate]]
```
Now, to order products by price in user preferred currency simply call:
products.
join(:currency_rates).on(products[:currency_id].eq(currency_rates[:from_id])).
where(currency_rates[:to_id].eq(user_preferred_currency), currency_rates[:date].eq(Date.today)).
order(products[:price] * currency_rates[:rate])
```ruby
products.
join(:currency_rates).on(products[:currency_id].eq(currency_rates[:from_id])).
where(currency_rates[:to_id].eq(user_preferred_currency), currency_rates[:date].eq(Date.today)).
order(products[:price] * currency_rates[:rate])
```
#### Complex Joins
Where Arel really shines in its ability to handle complex joins and aggregations. As a first example, let's consider an "adjacency list", a tree represented in a table. Suppose we have a table `comments`, representing a threaded discussion:
comments = Arel::Table.new(:comments)
```ruby
comments = Arel::Table.new(:comments)
```
And this table has the following attributes:
comments.columns # => [comments[:id], comments[:body], comments[:parent_id]]
```ruby
comments.columns
# => [comments[:id], comments[:body], comments[:parent_id]]
```
The `parent_id` column is a foreign key from the `comments` table to itself. Now, joining a table to itself requires aliasing in SQL. In fact, you may alias in Arel as well:
replies = comments.alias
comments_with_replies = \
comments.join(replies).on(replies[:parent_id].eq(comments[:id]))
# => SELECT * FROM comments INNER JOIN comments AS comments_2 WHERE comments_2.parent_id = comments.id
```ruby
replies = comments.alias
comments_with_replies = \
comments.join(replies).on(replies[:parent_id].eq(comments[:id]))
# => SELECT * FROM comments INNER JOIN comments AS comments_2 WHERE comments_2.parent_id = comments.id
```
This will return the first comment's reply's body.
### License
Arel is released under the [MIT License](http://opensource.org/licenses/MIT).