1
0
Fork 0
mirror of https://github.com/rails/rails.git synced 2022-11-09 12:12:34 -05:00
rails--rails/activesupport/lib/active_support/multibyte/chars.rb
2009-11-08 22:49:31 -08:00

715 lines
27 KiB
Ruby
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# encoding: utf-8
require 'active_support/core_ext/string/access'
require 'active_support/core_ext/string/behavior'
module ActiveSupport #:nodoc:
module Multibyte #:nodoc:
# Chars enables you to work transparently with UTF-8 encoding in the Ruby String class without having extensive
# knowledge about the encoding. A Chars object accepts a string upon initialization and proxies String methods in an
# encoding safe manner. All the normal String methods are also implemented on the proxy.
#
# String methods are proxied through the Chars object, and can be accessed through the +mb_chars+ method. Methods
# which would normally return a String object now return a Chars object so methods can be chained.
#
# "The Perfect String ".mb_chars.downcase.strip.normalize #=> "the perfect string"
#
# Chars objects are perfectly interchangeable with String objects as long as no explicit class checks are made.
# If certain methods do explicitly check the class, call +to_s+ before you pass chars objects to them.
#
# bad.explicit_checking_method "T".mb_chars.downcase.to_s
#
# The default Chars implementation assumes that the encoding of the string is UTF-8, if you want to handle different
# encodings you can write your own multibyte string handler and configure it through
# ActiveSupport::Multibyte.proxy_class.
#
# class CharsForUTF32
# def size
# @wrapped_string.size / 4
# end
#
# def self.accepts?(string)
# string.length % 4 == 0
# end
# end
#
# ActiveSupport::Multibyte.proxy_class = CharsForUTF32
class Chars
# Hangul character boundaries and properties
HANGUL_SBASE = 0xAC00
HANGUL_LBASE = 0x1100
HANGUL_VBASE = 0x1161
HANGUL_TBASE = 0x11A7
HANGUL_LCOUNT = 19
HANGUL_VCOUNT = 21
HANGUL_TCOUNT = 28
HANGUL_NCOUNT = HANGUL_VCOUNT * HANGUL_TCOUNT
HANGUL_SCOUNT = 11172
HANGUL_SLAST = HANGUL_SBASE + HANGUL_SCOUNT
HANGUL_JAMO_FIRST = 0x1100
HANGUL_JAMO_LAST = 0x11FF
# All the unicode whitespace
UNICODE_WHITESPACE = [
(0x0009..0x000D).to_a, # White_Space # Cc [5] <control-0009>..<control-000D>
0x0020, # White_Space # Zs SPACE
0x0085, # White_Space # Cc <control-0085>
0x00A0, # White_Space # Zs NO-BREAK SPACE
0x1680, # White_Space # Zs OGHAM SPACE MARK
0x180E, # White_Space # Zs MONGOLIAN VOWEL SEPARATOR
(0x2000..0x200A).to_a, # White_Space # Zs [11] EN QUAD..HAIR SPACE
0x2028, # White_Space # Zl LINE SEPARATOR
0x2029, # White_Space # Zp PARAGRAPH SEPARATOR
0x202F, # White_Space # Zs NARROW NO-BREAK SPACE
0x205F, # White_Space # Zs MEDIUM MATHEMATICAL SPACE
0x3000, # White_Space # Zs IDEOGRAPHIC SPACE
].flatten.freeze
# BOM (byte order mark) can also be seen as whitespace, it's a non-rendering character used to distinguish
# between little and big endian. This is not an issue in utf-8, so it must be ignored.
UNICODE_LEADERS_AND_TRAILERS = UNICODE_WHITESPACE + [65279] # ZERO-WIDTH NO-BREAK SPACE aka BOM
# Returns a regular expression pattern that matches the passed Unicode codepoints
def self.codepoints_to_pattern(array_of_codepoints) #:nodoc:
array_of_codepoints.collect{ |e| [e].pack 'U*' }.join('|')
end
UNICODE_TRAILERS_PAT = /(#{codepoints_to_pattern(UNICODE_LEADERS_AND_TRAILERS)})+\Z/
UNICODE_LEADERS_PAT = /\A(#{codepoints_to_pattern(UNICODE_LEADERS_AND_TRAILERS)})+/
UTF8_PAT = ActiveSupport::Multibyte::VALID_CHARACTER['UTF-8']
attr_reader :wrapped_string
alias to_s wrapped_string
alias to_str wrapped_string
if '1.9'.respond_to?(:force_encoding)
# Creates a new Chars instance by wrapping _string_.
def initialize(string)
@wrapped_string = string
@wrapped_string.force_encoding(Encoding::UTF_8) unless @wrapped_string.frozen?
end
else
def initialize(string) #:nodoc:
@wrapped_string = string
end
end
# Forward all undefined methods to the wrapped string.
def method_missing(method, *args, &block)
if method.to_s =~ /!$/
@wrapped_string.__send__(method, *args, &block)
self
else
result = @wrapped_string.__send__(method, *args, &block)
result.kind_of?(String) ? chars(result) : result
end
end
# Returns +true+ if _obj_ responds to the given method. Private methods are included in the search
# only if the optional second parameter evaluates to +true+.
def respond_to?(method, include_private=false)
super || @wrapped_string.respond_to?(method, include_private) || false
end
# Enable more predictable duck-typing on String-like classes. See Object#acts_like?.
def acts_like_string?
true
end
# Returns +true+ if the Chars class can and should act as a proxy for the string _string_. Returns
# +false+ otherwise.
def self.wants?(string)
$KCODE == 'UTF8' && consumes?(string)
end
# Returns +true+ when the proxy class can handle the string. Returns +false+ otherwise.
def self.consumes?(string)
# Unpack is a little bit faster than regular expressions.
string.unpack('U*')
true
rescue ArgumentError
false
end
include Comparable
# Returns <tt>-1</tt>, <tt>0</tt> or <tt>+1</tt> depending on whether the Chars object is to be sorted before,
# equal or after the object on the right side of the operation. It accepts any object that implements +to_s+.
# See <tt>String#<=></tt> for more details.
#
# Example:
# 'é'.mb_chars <=> 'ü'.mb_chars #=> -1
def <=>(other)
@wrapped_string <=> other.to_s
end
# Returns a new Chars object containing the _other_ object concatenated to the string.
#
# Example:
# ('Café'.mb_chars + ' périferôl').to_s #=> "Café périferôl"
def +(other)
self << other
end
# Like <tt>String#=~</tt> only it returns the character offset (in codepoints) instead of the byte offset.
#
# Example:
# 'Café périferôl'.mb_chars =~ /ô/ #=> 12
def =~(other)
translate_offset(@wrapped_string =~ other)
end
# Works just like <tt>String#split</tt>, with the exception that the items in the resulting list are Chars
# instances instead of String. This makes chaining methods easier.
#
# Example:
# 'Café périferôl'.mb_chars.split(/é/).map { |part| part.upcase.to_s } #=> ["CAF", " P", "RIFERÔL"]
def split(*args)
@wrapped_string.split(*args).map { |i| i.mb_chars }
end
# Inserts the passed string at specified codepoint offsets.
#
# Example:
# 'Café'.mb_chars.insert(4, ' périferôl').to_s #=> "Café périferôl"
def insert(offset, fragment)
unpacked = self.class.u_unpack(@wrapped_string)
unless offset > unpacked.length
@wrapped_string.replace(
self.class.u_unpack(@wrapped_string).insert(offset, *self.class.u_unpack(fragment)).pack('U*')
)
else
raise IndexError, "index #{offset} out of string"
end
self
end
# Returns +true+ if contained string contains _other_. Returns +false+ otherwise.
#
# Example:
# 'Café'.mb_chars.include?('é') #=> true
def include?(other)
# We have to redefine this method because Enumerable defines it.
@wrapped_string.include?(other)
end
# Returns the position _needle_ in the string, counting in codepoints. Returns +nil+ if _needle_ isn't found.
#
# Example:
# 'Café périferôl'.mb_chars.index('ô') #=> 12
# 'Café périferôl'.mb_chars.index(/\w/u) #=> 0
def index(needle, offset=0)
wrapped_offset = first(offset).wrapped_string.length
index = @wrapped_string.index(needle, wrapped_offset)
index ? (self.class.u_unpack(@wrapped_string.slice(0...index)).size) : nil
end
# Returns the position _needle_ in the string, counting in
# codepoints, searching backward from _offset_ or the end of the
# string. Returns +nil+ if _needle_ isn't found.
#
# Example:
# 'Café périferôl'.mb_chars.rindex('é') #=> 6
# 'Café périferôl'.mb_chars.rindex(/\w/u) #=> 13
def rindex(needle, offset=nil)
offset ||= length
wrapped_offset = first(offset).wrapped_string.length
index = @wrapped_string.rindex(needle, wrapped_offset)
index ? (self.class.u_unpack(@wrapped_string.slice(0...index)).size) : nil
end
# Like <tt>String#[]=</tt>, except instead of byte offsets you specify character offsets.
#
# Example:
#
# s = "Müller"
# s.mb_chars[2] = "e" # Replace character with offset 2
# s
# #=> "Müeler"
#
# s = "Müller"
# s.mb_chars[1, 2] = "ö" # Replace 2 characters at character offset 1
# s
# #=> "Möler"
def []=(*args)
replace_by = args.pop
# Indexed replace with regular expressions already works
if args.first.is_a?(Regexp)
@wrapped_string[*args] = replace_by
else
result = self.class.u_unpack(@wrapped_string)
if args[0].is_a?(Fixnum)
raise IndexError, "index #{args[0]} out of string" if args[0] >= result.length
min = args[0]
max = args[1].nil? ? min : (min + args[1] - 1)
range = Range.new(min, max)
replace_by = [replace_by].pack('U') if replace_by.is_a?(Fixnum)
elsif args.first.is_a?(Range)
raise RangeError, "#{args[0]} out of range" if args[0].min >= result.length
range = args[0]
else
needle = args[0].to_s
min = index(needle)
max = min + self.class.u_unpack(needle).length - 1
range = Range.new(min, max)
end
result[range] = self.class.u_unpack(replace_by)
@wrapped_string.replace(result.pack('U*'))
end
end
# Works just like <tt>String#rjust</tt>, only integer specifies characters instead of bytes.
#
# Example:
#
# "¾ cup".mb_chars.rjust(8).to_s
# #=> " ¾ cup"
#
# "¾ cup".mb_chars.rjust(8, " ").to_s # Use non-breaking whitespace
# #=> "   ¾ cup"
def rjust(integer, padstr=' ')
justify(integer, :right, padstr)
end
# Works just like <tt>String#ljust</tt>, only integer specifies characters instead of bytes.
#
# Example:
#
# "¾ cup".mb_chars.rjust(8).to_s
# #=> "¾ cup "
#
# "¾ cup".mb_chars.rjust(8, " ").to_s # Use non-breaking whitespace
# #=> "¾ cup   "
def ljust(integer, padstr=' ')
justify(integer, :left, padstr)
end
# Works just like <tt>String#center</tt>, only integer specifies characters instead of bytes.
#
# Example:
#
# "¾ cup".mb_chars.center(8).to_s
# #=> " ¾ cup "
#
# "¾ cup".mb_chars.center(8, " ").to_s # Use non-breaking whitespace
# #=> " ¾ cup  "
def center(integer, padstr=' ')
justify(integer, :center, padstr)
end
# Strips entire range of Unicode whitespace from the right of the string.
def rstrip
chars(@wrapped_string.gsub(UNICODE_TRAILERS_PAT, ''))
end
# Strips entire range of Unicode whitespace from the left of the string.
def lstrip
chars(@wrapped_string.gsub(UNICODE_LEADERS_PAT, ''))
end
# Strips entire range of Unicode whitespace from the right and left of the string.
def strip
rstrip.lstrip
end
# Returns the number of codepoints in the string
def size
self.class.u_unpack(@wrapped_string).size
end
alias_method :length, :size
# Reverses all characters in the string.
#
# Example:
# 'Café'.mb_chars.reverse.to_s #=> 'éfaC'
def reverse
chars(self.class.g_unpack(@wrapped_string).reverse.flatten.pack('U*'))
end
# Implements Unicode-aware slice with codepoints. Slicing on one point returns the codepoints for that
# character.
#
# Example:
# 'こんにちは'.mb_chars.slice(2..3).to_s #=> "にち"
def slice(*args)
if args.size > 2
raise ArgumentError, "wrong number of arguments (#{args.size} for 1)" # Do as if we were native
elsif (args.size == 2 && !(args.first.is_a?(Numeric) || args.first.is_a?(Regexp)))
raise TypeError, "cannot convert #{args.first.class} into Integer" # Do as if we were native
elsif (args.size == 2 && !args[1].is_a?(Numeric))
raise TypeError, "cannot convert #{args[1].class} into Integer" # Do as if we were native
elsif args[0].kind_of? Range
cps = self.class.u_unpack(@wrapped_string).slice(*args)
result = cps.nil? ? nil : cps.pack('U*')
elsif args[0].kind_of? Regexp
result = @wrapped_string.slice(*args)
elsif args.size == 1 && args[0].kind_of?(Numeric)
character = self.class.u_unpack(@wrapped_string)[args[0]]
result = character.nil? ? nil : [character].pack('U')
else
result = self.class.u_unpack(@wrapped_string).slice(*args).pack('U*')
end
result.nil? ? nil : chars(result)
end
alias_method :[], :slice
# Like <tt>String#slice!</tt>, except instead of byte offsets you specify character offsets.
#
# Example:
# s = 'こんにちは'
# s.mb_chars.slice!(2..3).to_s #=> "にち"
# s #=> "こんは"
def slice!(*args)
slice = self[*args]
self[*args] = ''
slice
end
# Limit the byte size of the string to a number of bytes without breaking characters. Usable
# when the storage for a string is limited for some reason.
#
# Example:
# s = 'こんにちは'
# s.mb_chars.limit(7) #=> "こに"
def limit(limit)
slice(0...translate_offset(limit))
end
# Returns the codepoint of the first character in the string.
#
# Example:
# 'こんにちは'.mb_chars.ord #=> 12371
def ord
self.class.u_unpack(@wrapped_string)[0]
end
# Convert characters in the string to uppercase.
#
# Example:
# 'Laurent, òu sont les tests?'.mb_chars.upcase.to_s #=> "LAURENT, ÒU SONT LES TESTS?"
def upcase
apply_mapping :uppercase_mapping
end
# Convert characters in the string to lowercase.
#
# Example:
# 'VĚDA A VÝZKUM'.mb_chars.downcase.to_s #=> "věda a výzkum"
def downcase
apply_mapping :lowercase_mapping
end
# Converts the first character to uppercase and the remainder to lowercase.
#
# Example:
# 'über'.mb_chars.capitalize.to_s #=> "Über"
def capitalize
(slice(0) || chars('')).upcase + (slice(1..-1) || chars('')).downcase
end
# Returns the KC normalization of the string by default. NFKC is considered the best normalization form for
# passing strings to databases and validations.
#
# * <tt>str</tt> - The string to perform normalization on.
# * <tt>form</tt> - The form you want to normalize in. Should be one of the following:
# <tt>:c</tt>, <tt>:kc</tt>, <tt>:d</tt>, or <tt>:kd</tt>. Default is
# ActiveSupport::Multibyte.default_normalization_form
def normalize(form=ActiveSupport::Multibyte.default_normalization_form)
# See http://www.unicode.org/reports/tr15, Table 1
codepoints = self.class.u_unpack(@wrapped_string)
chars(case form
when :d
self.class.reorder_characters(self.class.decompose_codepoints(:canonical, codepoints))
when :c
self.class.compose_codepoints(self.class.reorder_characters(self.class.decompose_codepoints(:canonical, codepoints)))
when :kd
self.class.reorder_characters(self.class.decompose_codepoints(:compatability, codepoints))
when :kc
self.class.compose_codepoints(self.class.reorder_characters(self.class.decompose_codepoints(:compatability, codepoints)))
else
raise ArgumentError, "#{form} is not a valid normalization variant", caller
end.pack('U*'))
end
# Performs canonical decomposition on all the characters.
#
# Example:
# 'é'.length #=> 2
# 'é'.mb_chars.decompose.to_s.length #=> 3
def decompose
chars(self.class.decompose_codepoints(:canonical, self.class.u_unpack(@wrapped_string)).pack('U*'))
end
# Performs composition on all the characters.
#
# Example:
# 'é'.length #=> 3
# 'é'.mb_chars.compose.to_s.length #=> 2
def compose
chars(self.class.compose_codepoints(self.class.u_unpack(@wrapped_string)).pack('U*'))
end
# Returns the number of grapheme clusters in the string.
#
# Example:
# 'क्षि'.mb_chars.length #=> 4
# 'क्षि'.mb_chars.g_length #=> 3
def g_length
self.class.g_unpack(@wrapped_string).length
end
# Replaces all ISO-8859-1 or CP1252 characters by their UTF-8 equivalent resulting in a valid UTF-8 string.
def tidy_bytes
chars(self.class.tidy_bytes(@wrapped_string))
end
%w(lstrip rstrip strip reverse upcase downcase tidy_bytes capitalize).each do |method|
define_method("#{method}!") do |*args|
unless args.nil?
@wrapped_string = send(method, *args).to_s
else
@wrapped_string = send(method).to_s
end
self
end
end
class << self
# Unpack the string at codepoints boundaries. Raises an EncodingError when the encoding of the string isn't
# valid UTF-8.
#
# Example:
# Chars.u_unpack('Café') #=> [67, 97, 102, 233]
def u_unpack(string)
begin
string.unpack 'U*'
rescue ArgumentError
raise EncodingError, 'malformed UTF-8 character'
end
end
# Detect whether the codepoint is in a certain character class. Returns +true+ when it's in the specified
# character class and +false+ otherwise. Valid character classes are: <tt>:cr</tt>, <tt>:lf</tt>, <tt>:l</tt>,
# <tt>:v</tt>, <tt>:lv</tt>, <tt>:lvt</tt> and <tt>:t</tt>.
#
# Primarily used by the grapheme cluster support.
def in_char_class?(codepoint, classes)
classes.detect { |c| UCD.boundary[c] === codepoint } ? true : false
end
# Unpack the string at grapheme boundaries. Returns a list of character lists.
#
# Example:
# Chars.g_unpack('क्षि') #=> [[2325, 2381], [2359], [2367]]
# Chars.g_unpack('Café') #=> [[67], [97], [102], [233]]
def g_unpack(string)
codepoints = u_unpack(string)
unpacked = []
pos = 0
marker = 0
eoc = codepoints.length
while(pos < eoc)
pos += 1
previous = codepoints[pos-1]
current = codepoints[pos]
if (
# CR X LF
one = ( previous == UCD.boundary[:cr] and current == UCD.boundary[:lf] ) or
# L X (L|V|LV|LVT)
two = ( UCD.boundary[:l] === previous and in_char_class?(current, [:l,:v,:lv,:lvt]) ) or
# (LV|V) X (V|T)
three = ( in_char_class?(previous, [:lv,:v]) and in_char_class?(current, [:v,:t]) ) or
# (LVT|T) X (T)
four = ( in_char_class?(previous, [:lvt,:t]) and UCD.boundary[:t] === current ) or
# X Extend
five = (UCD.boundary[:extend] === current)
)
else
unpacked << codepoints[marker..pos-1]
marker = pos
end
end
unpacked
end
# Reverse operation of g_unpack.
#
# Example:
# Chars.g_pack(Chars.g_unpack('क्षि')) #=> 'क्षि'
def g_pack(unpacked)
(unpacked.flatten).pack('U*')
end
def padding(padsize, padstr=' ') #:nodoc:
if padsize != 0
new(padstr * ((padsize / u_unpack(padstr).size) + 1)).slice(0, padsize)
else
''
end
end
# Re-order codepoints so the string becomes canonical.
def reorder_characters(codepoints)
length = codepoints.length- 1
pos = 0
while pos < length do
cp1, cp2 = UCD.codepoints[codepoints[pos]], UCD.codepoints[codepoints[pos+1]]
if (cp1.combining_class > cp2.combining_class) && (cp2.combining_class > 0)
codepoints[pos..pos+1] = cp2.code, cp1.code
pos += (pos > 0 ? -1 : 1)
else
pos += 1
end
end
codepoints
end
# Decompose composed characters to the decomposed form.
def decompose_codepoints(type, codepoints)
codepoints.inject([]) do |decomposed, cp|
# if it's a hangul syllable starter character
if HANGUL_SBASE <= cp and cp < HANGUL_SLAST
sindex = cp - HANGUL_SBASE
ncp = [] # new codepoints
ncp << HANGUL_LBASE + sindex / HANGUL_NCOUNT
ncp << HANGUL_VBASE + (sindex % HANGUL_NCOUNT) / HANGUL_TCOUNT
tindex = sindex % HANGUL_TCOUNT
ncp << (HANGUL_TBASE + tindex) unless tindex == 0
decomposed.concat ncp
# if the codepoint is decomposable in with the current decomposition type
elsif (ncp = UCD.codepoints[cp].decomp_mapping) and (!UCD.codepoints[cp].decomp_type || type == :compatability)
decomposed.concat decompose_codepoints(type, ncp.dup)
else
decomposed << cp
end
end
end
# Compose decomposed characters to the composed form.
def compose_codepoints(codepoints)
pos = 0
eoa = codepoints.length - 1
starter_pos = 0
starter_char = codepoints[0]
previous_combining_class = -1
while pos < eoa
pos += 1
lindex = starter_char - HANGUL_LBASE
# -- Hangul
if 0 <= lindex and lindex < HANGUL_LCOUNT
vindex = codepoints[starter_pos+1] - HANGUL_VBASE rescue vindex = -1
if 0 <= vindex and vindex < HANGUL_VCOUNT
tindex = codepoints[starter_pos+2] - HANGUL_TBASE rescue tindex = -1
if 0 <= tindex and tindex < HANGUL_TCOUNT
j = starter_pos + 2
eoa -= 2
else
tindex = 0
j = starter_pos + 1
eoa -= 1
end
codepoints[starter_pos..j] = (lindex * HANGUL_VCOUNT + vindex) * HANGUL_TCOUNT + tindex + HANGUL_SBASE
end
starter_pos += 1
starter_char = codepoints[starter_pos]
# -- Other characters
else
current_char = codepoints[pos]
current = UCD.codepoints[current_char]
if current.combining_class > previous_combining_class
if ref = UCD.composition_map[starter_char]
composition = ref[current_char]
else
composition = nil
end
unless composition.nil?
codepoints[starter_pos] = composition
starter_char = composition
codepoints.delete_at pos
eoa -= 1
pos -= 1
previous_combining_class = -1
else
previous_combining_class = current.combining_class
end
else
previous_combining_class = current.combining_class
end
if current.combining_class == 0
starter_pos = pos
starter_char = codepoints[pos]
end
end
end
codepoints
end
# Replaces all ISO-8859-1 or CP1252 characters by their UTF-8 equivalent resulting in a valid UTF-8 string.
def tidy_bytes(string)
string.split(//u).map do |c|
c.force_encoding(Encoding::ASCII) if c.respond_to?(:force_encoding)
if !ActiveSupport::Multibyte::VALID_CHARACTER['UTF-8'].match(c)
n = c.unpack('C')[0]
n < 128 ? n.chr :
n < 160 ? [UCD.cp1252[n] || n].pack('U') :
n < 192 ? "\xC2" + n.chr : "\xC3" + (n-64).chr
else
c
end
end.join
end
end
protected
def translate_offset(byte_offset) #:nodoc:
return nil if byte_offset.nil?
return 0 if @wrapped_string == ''
if @wrapped_string.respond_to?(:force_encoding)
@wrapped_string = @wrapped_string.dup.force_encoding(Encoding::ASCII_8BIT)
end
begin
@wrapped_string[0...byte_offset].unpack('U*').length
rescue ArgumentError => e
byte_offset -= 1
retry
end
end
def justify(integer, way, padstr=' ') #:nodoc:
raise ArgumentError, "zero width padding" if padstr.length == 0
padsize = integer - size
padsize = padsize > 0 ? padsize : 0
case way
when :right
result = @wrapped_string.dup.insert(0, self.class.padding(padsize, padstr))
when :left
result = @wrapped_string.dup.insert(-1, self.class.padding(padsize, padstr))
when :center
lpad = self.class.padding((padsize / 2.0).floor, padstr)
rpad = self.class.padding((padsize / 2.0).ceil, padstr)
result = @wrapped_string.dup.insert(0, lpad).insert(-1, rpad)
end
chars(result)
end
def apply_mapping(mapping) #:nodoc:
chars(self.class.u_unpack(@wrapped_string).map do |codepoint|
cp = UCD.codepoints[codepoint]
if cp and (ncp = cp.send(mapping)) and ncp > 0
ncp
else
codepoint
end
end.pack('U*'))
end
def chars(string) #:nodoc:
self.class.new(string)
end
end
end
end