mirror of
https://github.com/rails/rails.git
synced 2022-11-09 12:12:34 -05:00
1092c181b5
[#905 state:resolved] Signed-off-by: Jeremy Kemper <jeremy@bitsweat.net>
2805 lines
121 KiB
Ruby
2805 lines
121 KiB
Ruby
require 'yaml'
|
|
require 'set'
|
|
|
|
module ActiveRecord #:nodoc:
|
|
# Generic Active Record exception class.
|
|
class ActiveRecordError < StandardError
|
|
end
|
|
|
|
# Raised when the single-table inheritance mechanism fails to locate the subclass
|
|
# (for example due to improper usage of column that +inheritance_column+ points to).
|
|
class SubclassNotFound < ActiveRecordError #:nodoc:
|
|
end
|
|
|
|
# Raised when an object assigned to an association has an incorrect type.
|
|
#
|
|
# class Ticket < ActiveRecord::Base
|
|
# has_many :patches
|
|
# end
|
|
#
|
|
# class Patch < ActiveRecord::Base
|
|
# belongs_to :ticket
|
|
# end
|
|
#
|
|
# # Comments are not patches, this assignment raises AssociationTypeMismatch.
|
|
# @ticket.patches << Comment.new(:content => "Please attach tests to your patch.")
|
|
class AssociationTypeMismatch < ActiveRecordError
|
|
end
|
|
|
|
# Raised when unserialized object's type mismatches one specified for serializable field.
|
|
class SerializationTypeMismatch < ActiveRecordError
|
|
end
|
|
|
|
# Raised when adapter not specified on connection (or configuration file <tt>config/database.yml</tt> misses adapter field).
|
|
class AdapterNotSpecified < ActiveRecordError
|
|
end
|
|
|
|
# Raised when Active Record cannot find database adapter specified in <tt>config/database.yml</tt> or programmatically.
|
|
class AdapterNotFound < ActiveRecordError
|
|
end
|
|
|
|
# Raised when connection to the database could not been established (for example when <tt>connection=</tt> is given a nil object).
|
|
class ConnectionNotEstablished < ActiveRecordError
|
|
end
|
|
|
|
# Raised when Active Record cannot find record by given id or set of ids.
|
|
class RecordNotFound < ActiveRecordError
|
|
end
|
|
|
|
# Raised by ActiveRecord::Base.save! and ActiveRecord::Base.create! methods when record cannot be
|
|
# saved because record is invalid.
|
|
class RecordNotSaved < ActiveRecordError
|
|
end
|
|
|
|
# Raised when SQL statement cannot be executed by the database (for example, it's often the case for MySQL when Ruby driver used is too old).
|
|
class StatementInvalid < ActiveRecordError
|
|
end
|
|
|
|
# Raised when number of bind variables in statement given to <tt>:condition</tt> key (for example, when using +find+ method)
|
|
# does not match number of expected variables.
|
|
#
|
|
# For example, in
|
|
#
|
|
# Location.find :all, :conditions => ["lat = ? AND lng = ?", 53.7362]
|
|
#
|
|
# two placeholders are given but only one variable to fill them.
|
|
class PreparedStatementInvalid < ActiveRecordError
|
|
end
|
|
|
|
# Raised on attempt to save stale record. Record is stale when it's being saved in another query after
|
|
# instantiation, for example, when two users edit the same wiki page and one starts editing and saves
|
|
# the page before the other.
|
|
#
|
|
# Read more about optimistic locking in ActiveRecord::Locking module RDoc.
|
|
class StaleObjectError < ActiveRecordError
|
|
end
|
|
|
|
# Raised when association is being configured improperly or
|
|
# user tries to use offset and limit together with has_many or has_and_belongs_to_many associations.
|
|
class ConfigurationError < ActiveRecordError
|
|
end
|
|
|
|
# Raised on attempt to update record that is instantiated as read only.
|
|
class ReadOnlyRecord < ActiveRecordError
|
|
end
|
|
|
|
# ActiveRecord::Transactions::ClassMethods.transaction uses this exception
|
|
# to distinguish a deliberate rollback from other exceptional situations.
|
|
# Normally, raising an exception will cause the +transaction+ method to rollback
|
|
# the database transaction *and* pass on the exception. But if you raise an
|
|
# ActiveRecord::Rollback exception, then the database transaction will be rolled back,
|
|
# without passing on the exception.
|
|
#
|
|
# For example, you could do this in your controller to rollback a transaction:
|
|
#
|
|
# class BooksController < ActionController::Base
|
|
# def create
|
|
# Book.transaction do
|
|
# book = Book.new(params[:book])
|
|
# book.save!
|
|
# if today_is_friday?
|
|
# # The system must fail on Friday so that our support department
|
|
# # won't be out of job. We silently rollback this transaction
|
|
# # without telling the user.
|
|
# raise ActiveRecord::Rollback, "Call tech support!"
|
|
# end
|
|
# end
|
|
# # ActiveRecord::Rollback is the only exception that won't be passed on
|
|
# # by ActiveRecord::Base.transaction, so this line will still be reached
|
|
# # even on Friday.
|
|
# redirect_to root_url
|
|
# end
|
|
# end
|
|
class Rollback < ActiveRecordError
|
|
end
|
|
|
|
# Raised when attribute has a name reserved by Active Record (when attribute has name of one of Active Record instance methods).
|
|
class DangerousAttributeError < ActiveRecordError
|
|
end
|
|
|
|
# Raised when you've tried to access a column which wasn't loaded by your finder.
|
|
# Typically this is because <tt>:select</tt> has been specified.
|
|
class MissingAttributeError < NoMethodError
|
|
end
|
|
|
|
# Raised when unknown attributes are supplied via mass assignment.
|
|
class UnknownAttributeError < NoMethodError
|
|
end
|
|
|
|
# Raised when an error occurred while doing a mass assignment to an attribute through the
|
|
# <tt>attributes=</tt> method. The exception has an +attribute+ property that is the name of the
|
|
# offending attribute.
|
|
class AttributeAssignmentError < ActiveRecordError
|
|
attr_reader :exception, :attribute
|
|
def initialize(message, exception, attribute)
|
|
@exception = exception
|
|
@attribute = attribute
|
|
@message = message
|
|
end
|
|
end
|
|
|
|
# Raised when there are multiple errors while doing a mass assignment through the +attributes+
|
|
# method. The exception has an +errors+ property that contains an array of AttributeAssignmentError
|
|
# objects, each corresponding to the error while assigning to an attribute.
|
|
class MultiparameterAssignmentErrors < ActiveRecordError
|
|
attr_reader :errors
|
|
def initialize(errors)
|
|
@errors = errors
|
|
end
|
|
end
|
|
|
|
# Active Record objects don't specify their attributes directly, but rather infer them from the table definition with
|
|
# which they're linked. Adding, removing, and changing attributes and their type is done directly in the database. Any change
|
|
# is instantly reflected in the Active Record objects. The mapping that binds a given Active Record class to a certain
|
|
# database table will happen automatically in most common cases, but can be overwritten for the uncommon ones.
|
|
#
|
|
# See the mapping rules in table_name and the full example in link:files/README.html for more insight.
|
|
#
|
|
# == Creation
|
|
#
|
|
# Active Records accept constructor parameters either in a hash or as a block. The hash method is especially useful when
|
|
# you're receiving the data from somewhere else, like an HTTP request. It works like this:
|
|
#
|
|
# user = User.new(:name => "David", :occupation => "Code Artist")
|
|
# user.name # => "David"
|
|
#
|
|
# You can also use block initialization:
|
|
#
|
|
# user = User.new do |u|
|
|
# u.name = "David"
|
|
# u.occupation = "Code Artist"
|
|
# end
|
|
#
|
|
# And of course you can just create a bare object and specify the attributes after the fact:
|
|
#
|
|
# user = User.new
|
|
# user.name = "David"
|
|
# user.occupation = "Code Artist"
|
|
#
|
|
# == Conditions
|
|
#
|
|
# Conditions can either be specified as a string, array, or hash representing the WHERE-part of an SQL statement.
|
|
# The array form is to be used when the condition input is tainted and requires sanitization. The string form can
|
|
# be used for statements that don't involve tainted data. The hash form works much like the array form, except
|
|
# only equality and range is possible. Examples:
|
|
#
|
|
# class User < ActiveRecord::Base
|
|
# def self.authenticate_unsafely(user_name, password)
|
|
# find(:first, :conditions => "user_name = '#{user_name}' AND password = '#{password}'")
|
|
# end
|
|
#
|
|
# def self.authenticate_safely(user_name, password)
|
|
# find(:first, :conditions => [ "user_name = ? AND password = ?", user_name, password ])
|
|
# end
|
|
#
|
|
# def self.authenticate_safely_simply(user_name, password)
|
|
# find(:first, :conditions => { :user_name => user_name, :password => password })
|
|
# end
|
|
# end
|
|
#
|
|
# The <tt>authenticate_unsafely</tt> method inserts the parameters directly into the query and is thus susceptible to SQL-injection
|
|
# attacks if the <tt>user_name</tt> and +password+ parameters come directly from an HTTP request. The <tt>authenticate_safely</tt> and
|
|
# <tt>authenticate_safely_simply</tt> both will sanitize the <tt>user_name</tt> and +password+ before inserting them in the query,
|
|
# which will ensure that an attacker can't escape the query and fake the login (or worse).
|
|
#
|
|
# When using multiple parameters in the conditions, it can easily become hard to read exactly what the fourth or fifth
|
|
# question mark is supposed to represent. In those cases, you can resort to named bind variables instead. That's done by replacing
|
|
# the question marks with symbols and supplying a hash with values for the matching symbol keys:
|
|
#
|
|
# Company.find(:first, :conditions => [
|
|
# "id = :id AND name = :name AND division = :division AND created_at > :accounting_date",
|
|
# { :id => 3, :name => "37signals", :division => "First", :accounting_date => '2005-01-01' }
|
|
# ])
|
|
#
|
|
# Similarly, a simple hash without a statement will generate conditions based on equality with the SQL AND
|
|
# operator. For instance:
|
|
#
|
|
# Student.find(:all, :conditions => { :first_name => "Harvey", :status => 1 })
|
|
# Student.find(:all, :conditions => params[:student])
|
|
#
|
|
# A range may be used in the hash to use the SQL BETWEEN operator:
|
|
#
|
|
# Student.find(:all, :conditions => { :grade => 9..12 })
|
|
#
|
|
# An array may be used in the hash to use the SQL IN operator:
|
|
#
|
|
# Student.find(:all, :conditions => { :grade => [9,11,12] })
|
|
#
|
|
# == Overwriting default accessors
|
|
#
|
|
# All column values are automatically available through basic accessors on the Active Record object, but sometimes you
|
|
# want to specialize this behavior. This can be done by overwriting the default accessors (using the same
|
|
# name as the attribute) and calling <tt>read_attribute(attr_name)</tt> and <tt>write_attribute(attr_name, value)</tt> to actually change things.
|
|
# Example:
|
|
#
|
|
# class Song < ActiveRecord::Base
|
|
# # Uses an integer of seconds to hold the length of the song
|
|
#
|
|
# def length=(minutes)
|
|
# write_attribute(:length, minutes.to_i * 60)
|
|
# end
|
|
#
|
|
# def length
|
|
# read_attribute(:length) / 60
|
|
# end
|
|
# end
|
|
#
|
|
# You can alternatively use <tt>self[:attribute]=(value)</tt> and <tt>self[:attribute]</tt> instead of <tt>write_attribute(:attribute, value)</tt> and
|
|
# <tt>read_attribute(:attribute)</tt> as a shorter form.
|
|
#
|
|
# == Attribute query methods
|
|
#
|
|
# In addition to the basic accessors, query methods are also automatically available on the Active Record object.
|
|
# Query methods allow you to test whether an attribute value is present.
|
|
#
|
|
# For example, an Active Record User with the <tt>name</tt> attribute has a <tt>name?</tt> method that you can call
|
|
# to determine whether the user has a name:
|
|
#
|
|
# user = User.new(:name => "David")
|
|
# user.name? # => true
|
|
#
|
|
# anonymous = User.new(:name => "")
|
|
# anonymous.name? # => false
|
|
#
|
|
# == Accessing attributes before they have been typecasted
|
|
#
|
|
# Sometimes you want to be able to read the raw attribute data without having the column-determined typecast run its course first.
|
|
# That can be done by using the <tt><attribute>_before_type_cast</tt> accessors that all attributes have. For example, if your Account model
|
|
# has a <tt>balance</tt> attribute, you can call <tt>account.balance_before_type_cast</tt> or <tt>account.id_before_type_cast</tt>.
|
|
#
|
|
# This is especially useful in validation situations where the user might supply a string for an integer field and you want to display
|
|
# the original string back in an error message. Accessing the attribute normally would typecast the string to 0, which isn't what you
|
|
# want.
|
|
#
|
|
# == Dynamic attribute-based finders
|
|
#
|
|
# Dynamic attribute-based finders are a cleaner way of getting (and/or creating) objects by simple queries without turning to SQL. They work by
|
|
# appending the name of an attribute to <tt>find_by_</tt> or <tt>find_all_by_</tt>, so you get finders like <tt>Person.find_by_user_name</tt>,
|
|
# <tt>Person.find_all_by_last_name</tt>, and <tt>Payment.find_by_transaction_id</tt>. So instead of writing
|
|
# <tt>Person.find(:first, :conditions => ["user_name = ?", user_name])</tt>, you just do <tt>Person.find_by_user_name(user_name)</tt>.
|
|
# And instead of writing <tt>Person.find(:all, :conditions => ["last_name = ?", last_name])</tt>, you just do <tt>Person.find_all_by_last_name(last_name)</tt>.
|
|
#
|
|
# It's also possible to use multiple attributes in the same find by separating them with "_and_", so you get finders like
|
|
# <tt>Person.find_by_user_name_and_password</tt> or even <tt>Payment.find_by_purchaser_and_state_and_country</tt>. So instead of writing
|
|
# <tt>Person.find(:first, :conditions => ["user_name = ? AND password = ?", user_name, password])</tt>, you just do
|
|
# <tt>Person.find_by_user_name_and_password(user_name, password)</tt>.
|
|
#
|
|
# It's even possible to use all the additional parameters to find. For example, the full interface for <tt>Payment.find_all_by_amount</tt>
|
|
# is actually <tt>Payment.find_all_by_amount(amount, options)</tt>. And the full interface to <tt>Person.find_by_user_name</tt> is
|
|
# actually <tt>Person.find_by_user_name(user_name, options)</tt>. So you could call <tt>Payment.find_all_by_amount(50, :order => "created_on")</tt>.
|
|
#
|
|
# The same dynamic finder style can be used to create the object if it doesn't already exist. This dynamic finder is called with
|
|
# <tt>find_or_create_by_</tt> and will return the object if it already exists and otherwise creates it, then returns it. Protected attributes won't be set unless they are given in a block. For example:
|
|
#
|
|
# # No 'Summer' tag exists
|
|
# Tag.find_or_create_by_name("Summer") # equal to Tag.create(:name => "Summer")
|
|
#
|
|
# # Now the 'Summer' tag does exist
|
|
# Tag.find_or_create_by_name("Summer") # equal to Tag.find_by_name("Summer")
|
|
#
|
|
# # Now 'Bob' exist and is an 'admin'
|
|
# User.find_or_create_by_name('Bob', :age => 40) { |u| u.admin = true }
|
|
#
|
|
# Use the <tt>find_or_initialize_by_</tt> finder if you want to return a new record without saving it first. Protected attributes won't be set unless they are given in a block. For example:
|
|
#
|
|
# # No 'Winter' tag exists
|
|
# winter = Tag.find_or_initialize_by_name("Winter")
|
|
# winter.new_record? # true
|
|
#
|
|
# To find by a subset of the attributes to be used for instantiating a new object, pass a hash instead of
|
|
# a list of parameters. For example:
|
|
#
|
|
# Tag.find_or_create_by_name(:name => "rails", :creator => current_user)
|
|
#
|
|
# That will either find an existing tag named "rails", or create a new one while setting the user that created it.
|
|
#
|
|
# == Saving arrays, hashes, and other non-mappable objects in text columns
|
|
#
|
|
# Active Record can serialize any object in text columns using YAML. To do so, you must specify this with a call to the class method +serialize+.
|
|
# This makes it possible to store arrays, hashes, and other non-mappable objects without doing any additional work. Example:
|
|
#
|
|
# class User < ActiveRecord::Base
|
|
# serialize :preferences
|
|
# end
|
|
#
|
|
# user = User.create(:preferences => { "background" => "black", "display" => large })
|
|
# User.find(user.id).preferences # => { "background" => "black", "display" => large }
|
|
#
|
|
# You can also specify a class option as the second parameter that'll raise an exception if a serialized object is retrieved as a
|
|
# descendent of a class not in the hierarchy. Example:
|
|
#
|
|
# class User < ActiveRecord::Base
|
|
# serialize :preferences, Hash
|
|
# end
|
|
#
|
|
# user = User.create(:preferences => %w( one two three ))
|
|
# User.find(user.id).preferences # raises SerializationTypeMismatch
|
|
#
|
|
# == Single table inheritance
|
|
#
|
|
# Active Record allows inheritance by storing the name of the class in a column that by default is named "type" (can be changed
|
|
# by overwriting <tt>Base.inheritance_column</tt>). This means that an inheritance looking like this:
|
|
#
|
|
# class Company < ActiveRecord::Base; end
|
|
# class Firm < Company; end
|
|
# class Client < Company; end
|
|
# class PriorityClient < Client; end
|
|
#
|
|
# When you do <tt>Firm.create(:name => "37signals")</tt>, this record will be saved in the companies table with type = "Firm". You can then
|
|
# fetch this row again using <tt>Company.find(:first, "name = '37signals'")</tt> and it will return a Firm object.
|
|
#
|
|
# If you don't have a type column defined in your table, single-table inheritance won't be triggered. In that case, it'll work just
|
|
# like normal subclasses with no special magic for differentiating between them or reloading the right type with find.
|
|
#
|
|
# Note, all the attributes for all the cases are kept in the same table. Read more:
|
|
# http://www.martinfowler.com/eaaCatalog/singleTableInheritance.html
|
|
#
|
|
# == Connection to multiple databases in different models
|
|
#
|
|
# Connections are usually created through ActiveRecord::Base.establish_connection and retrieved by ActiveRecord::Base.connection.
|
|
# All classes inheriting from ActiveRecord::Base will use this connection. But you can also set a class-specific connection.
|
|
# For example, if Course is an ActiveRecord::Base, but resides in a different database, you can just say <tt>Course.establish_connection</tt>
|
|
# and Course and all of its subclasses will use this connection instead.
|
|
#
|
|
# This feature is implemented by keeping a connection pool in ActiveRecord::Base that is a Hash indexed by the class. If a connection is
|
|
# requested, the retrieve_connection method will go up the class-hierarchy until a connection is found in the connection pool.
|
|
#
|
|
# == Exceptions
|
|
#
|
|
# * ActiveRecordError - Generic error class and superclass of all other errors raised by Active Record.
|
|
# * AdapterNotSpecified - The configuration hash used in <tt>establish_connection</tt> didn't include an
|
|
# <tt>:adapter</tt> key.
|
|
# * AdapterNotFound - The <tt>:adapter</tt> key used in <tt>establish_connection</tt> specified a non-existent adapter
|
|
# (or a bad spelling of an existing one).
|
|
# * AssociationTypeMismatch - The object assigned to the association wasn't of the type specified in the association definition.
|
|
# * SerializationTypeMismatch - The serialized object wasn't of the class specified as the second parameter.
|
|
# * ConnectionNotEstablished+ - No connection has been established. Use <tt>establish_connection</tt> before querying.
|
|
# * RecordNotFound - No record responded to the +find+ method. Either the row with the given ID doesn't exist
|
|
# or the row didn't meet the additional restrictions. Some +find+ calls do not raise this exception to signal
|
|
# nothing was found, please check its documentation for further details.
|
|
# * StatementInvalid - The database server rejected the SQL statement. The precise error is added in the message.
|
|
# * MultiparameterAssignmentErrors - Collection of errors that occurred during a mass assignment using the
|
|
# <tt>attributes=</tt> method. The +errors+ property of this exception contains an array of AttributeAssignmentError
|
|
# objects that should be inspected to determine which attributes triggered the errors.
|
|
# * AttributeAssignmentError - An error occurred while doing a mass assignment through the <tt>attributes=</tt> method.
|
|
# You can inspect the +attribute+ property of the exception object to determine which attribute triggered the error.
|
|
#
|
|
# *Note*: The attributes listed are class-level attributes (accessible from both the class and instance level).
|
|
# So it's possible to assign a logger to the class through <tt>Base.logger=</tt> which will then be used by all
|
|
# instances in the current object space.
|
|
class Base
|
|
# Accepts a logger conforming to the interface of Log4r or the default Ruby 1.8+ Logger class, which is then passed
|
|
# on to any new database connections made and which can be retrieved on both a class and instance level by calling +logger+.
|
|
cattr_accessor :logger, :instance_writer => false
|
|
|
|
def self.inherited(child) #:nodoc:
|
|
@@subclasses[self] ||= []
|
|
@@subclasses[self] << child
|
|
super
|
|
end
|
|
|
|
def self.reset_subclasses #:nodoc:
|
|
nonreloadables = []
|
|
subclasses.each do |klass|
|
|
unless ActiveSupport::Dependencies.autoloaded? klass
|
|
nonreloadables << klass
|
|
next
|
|
end
|
|
klass.instance_variables.each { |var| klass.send(:remove_instance_variable, var) }
|
|
klass.instance_methods(false).each { |m| klass.send :undef_method, m }
|
|
end
|
|
@@subclasses = {}
|
|
nonreloadables.each { |klass| (@@subclasses[klass.superclass] ||= []) << klass }
|
|
end
|
|
|
|
@@subclasses = {}
|
|
|
|
cattr_accessor :configurations, :instance_writer => false
|
|
@@configurations = {}
|
|
|
|
# Accessor for the prefix type that will be prepended to every primary key column name. The options are :table_name and
|
|
# :table_name_with_underscore. If the first is specified, the Product class will look for "productid" instead of "id" as
|
|
# the primary column. If the latter is specified, the Product class will look for "product_id" instead of "id". Remember
|
|
# that this is a global setting for all Active Records.
|
|
cattr_accessor :primary_key_prefix_type, :instance_writer => false
|
|
@@primary_key_prefix_type = nil
|
|
|
|
# Accessor for the name of the prefix string to prepend to every table name. So if set to "basecamp_", all
|
|
# table names will be named like "basecamp_projects", "basecamp_people", etc. This is a convenient way of creating a namespace
|
|
# for tables in a shared database. By default, the prefix is the empty string.
|
|
cattr_accessor :table_name_prefix, :instance_writer => false
|
|
@@table_name_prefix = ""
|
|
|
|
# Works like +table_name_prefix+, but appends instead of prepends (set to "_basecamp" gives "projects_basecamp",
|
|
# "people_basecamp"). By default, the suffix is the empty string.
|
|
cattr_accessor :table_name_suffix, :instance_writer => false
|
|
@@table_name_suffix = ""
|
|
|
|
# Indicates whether table names should be the pluralized versions of the corresponding class names.
|
|
# If true, the default table name for a Product class will be +products+. If false, it would just be +product+.
|
|
# See table_name for the full rules on table/class naming. This is true, by default.
|
|
cattr_accessor :pluralize_table_names, :instance_writer => false
|
|
@@pluralize_table_names = true
|
|
|
|
# Determines whether to use ANSI codes to colorize the logging statements committed by the connection adapter. These colors
|
|
# make it much easier to overview things during debugging (when used through a reader like +tail+ and on a black background), but
|
|
# may complicate matters if you use software like syslog. This is true, by default.
|
|
cattr_accessor :colorize_logging, :instance_writer => false
|
|
@@colorize_logging = true
|
|
|
|
# Determines whether to use Time.local (using :local) or Time.utc (using :utc) when pulling dates and times from the database.
|
|
# This is set to :local by default.
|
|
cattr_accessor :default_timezone, :instance_writer => false
|
|
@@default_timezone = :local
|
|
|
|
# Determines whether to use a connection for each thread, or a single shared connection for all threads.
|
|
# Defaults to false. If you're writing a threaded application, set to true
|
|
# and periodically call verify_active_connections! to clear out connections
|
|
# assigned to stale threads.
|
|
cattr_accessor :allow_concurrency, :instance_writer => false
|
|
@@allow_concurrency = false
|
|
|
|
# Specifies the format to use when dumping the database schema with Rails'
|
|
# Rakefile. If :sql, the schema is dumped as (potentially database-
|
|
# specific) SQL statements. If :ruby, the schema is dumped as an
|
|
# ActiveRecord::Schema file which can be loaded into any database that
|
|
# supports migrations. Use :ruby if you want to have different database
|
|
# adapters for, e.g., your development and test environments.
|
|
cattr_accessor :schema_format , :instance_writer => false
|
|
@@schema_format = :ruby
|
|
|
|
# Specify whether or not to use timestamps for migration numbers
|
|
cattr_accessor :timestamped_migrations , :instance_writer => false
|
|
@@timestamped_migrations = true
|
|
|
|
# Determine whether to store the full constant name including namespace when using STI
|
|
superclass_delegating_accessor :store_full_sti_class
|
|
self.store_full_sti_class = false
|
|
|
|
class << self # Class methods
|
|
# Find operates with four different retrieval approaches:
|
|
#
|
|
# * Find by id - This can either be a specific id (1), a list of ids (1, 5, 6), or an array of ids ([5, 6, 10]).
|
|
# If no record can be found for all of the listed ids, then RecordNotFound will be raised.
|
|
# * Find first - This will return the first record matched by the options used. These options can either be specific
|
|
# conditions or merely an order. If no record can be matched, +nil+ is returned. Use
|
|
# <tt>Model.find(:first, *args)</tt> or its shortcut <tt>Model.first(*args)</tt>.
|
|
# * Find last - This will return the last record matched by the options used. These options can either be specific
|
|
# conditions or merely an order. If no record can be matched, +nil+ is returned. Use
|
|
# <tt>Model.find(:last, *args)</tt> or its shortcut <tt>Model.last(*args)</tt>.
|
|
# * Find all - This will return all the records matched by the options used.
|
|
# If no records are found, an empty array is returned. Use
|
|
# <tt>Model.find(:all, *args)</tt> or its shortcut <tt>Model.all(*args)</tt>.
|
|
#
|
|
# All approaches accept an options hash as their last parameter.
|
|
#
|
|
# ==== Attributes
|
|
#
|
|
# * <tt>:conditions</tt> - An SQL fragment like "administrator = 1" or <tt>[ "user_name = ?", username ]</tt>. See conditions in the intro.
|
|
# * <tt>:order</tt> - An SQL fragment like "created_at DESC, name".
|
|
# * <tt>:group</tt> - An attribute name by which the result should be grouped. Uses the <tt>GROUP BY</tt> SQL-clause.
|
|
# * <tt>:limit</tt> - An integer determining the limit on the number of rows that should be returned.
|
|
# * <tt>:offset</tt> - An integer determining the offset from where the rows should be fetched. So at 5, it would skip rows 0 through 4.
|
|
# * <tt>:joins</tt> - Either an SQL fragment for additional joins like "LEFT JOIN comments ON comments.post_id = id" (rarely needed)
|
|
# or named associations in the same form used for the <tt>:include</tt> option, which will perform an <tt>INNER JOIN</tt> on the associated table(s).
|
|
# If the value is a string, then the records will be returned read-only since they will have attributes that do not correspond to the table's columns.
|
|
# Pass <tt>:readonly => false</tt> to override.
|
|
# * <tt>:include</tt> - Names associations that should be loaded alongside. The symbols named refer
|
|
# to already defined associations. See eager loading under Associations.
|
|
# * <tt>:select</tt> - By default, this is "*" as in "SELECT * FROM", but can be changed if you, for example, want to do a join but not
|
|
# include the joined columns.
|
|
# * <tt>:from</tt> - By default, this is the table name of the class, but can be changed to an alternate table name (or even the name
|
|
# of a database view).
|
|
# * <tt>:readonly</tt> - Mark the returned records read-only so they cannot be saved or updated.
|
|
# * <tt>:lock</tt> - An SQL fragment like "FOR UPDATE" or "LOCK IN SHARE MODE".
|
|
# <tt>:lock => true</tt> gives connection's default exclusive lock, usually "FOR UPDATE".
|
|
#
|
|
# ==== Examples
|
|
#
|
|
# # find by id
|
|
# Person.find(1) # returns the object for ID = 1
|
|
# Person.find(1, 2, 6) # returns an array for objects with IDs in (1, 2, 6)
|
|
# Person.find([7, 17]) # returns an array for objects with IDs in (7, 17)
|
|
# Person.find([1]) # returns an array for the object with ID = 1
|
|
# Person.find(1, :conditions => "administrator = 1", :order => "created_on DESC")
|
|
#
|
|
# Note that returned records may not be in the same order as the ids you
|
|
# provide since database rows are unordered. Give an explicit <tt>:order</tt>
|
|
# to ensure the results are sorted.
|
|
#
|
|
# ==== Examples
|
|
#
|
|
# # find first
|
|
# Person.find(:first) # returns the first object fetched by SELECT * FROM people
|
|
# Person.find(:first, :conditions => [ "user_name = ?", user_name])
|
|
# Person.find(:first, :order => "created_on DESC", :offset => 5)
|
|
#
|
|
# # find last
|
|
# Person.find(:last) # returns the last object fetched by SELECT * FROM people
|
|
# Person.find(:last, :conditions => [ "user_name = ?", user_name])
|
|
# Person.find(:last, :order => "created_on DESC", :offset => 5)
|
|
#
|
|
# # find all
|
|
# Person.find(:all) # returns an array of objects for all the rows fetched by SELECT * FROM people
|
|
# Person.find(:all, :conditions => [ "category IN (?)", categories], :limit => 50)
|
|
# Person.find(:all, :conditions => { :friends => ["Bob", "Steve", "Fred"] }
|
|
# Person.find(:all, :offset => 10, :limit => 10)
|
|
# Person.find(:all, :include => [ :account, :friends ])
|
|
# Person.find(:all, :group => "category")
|
|
#
|
|
# Example for find with a lock: Imagine two concurrent transactions:
|
|
# each will read <tt>person.visits == 2</tt>, add 1 to it, and save, resulting
|
|
# in two saves of <tt>person.visits = 3</tt>. By locking the row, the second
|
|
# transaction has to wait until the first is finished; we get the
|
|
# expected <tt>person.visits == 4</tt>.
|
|
#
|
|
# Person.transaction do
|
|
# person = Person.find(1, :lock => true)
|
|
# person.visits += 1
|
|
# person.save!
|
|
# end
|
|
def find(*args)
|
|
options = args.extract_options!
|
|
validate_find_options(options)
|
|
set_readonly_option!(options)
|
|
|
|
case args.first
|
|
when :first then find_initial(options)
|
|
when :last then find_last(options)
|
|
when :all then find_every(options)
|
|
else find_from_ids(args, options)
|
|
end
|
|
end
|
|
|
|
# A convenience wrapper for <tt>find(:first, *args)</tt>. You can pass in all the
|
|
# same arguments to this method as you can to <tt>find(:first)</tt>.
|
|
def first(*args)
|
|
find(:first, *args)
|
|
end
|
|
|
|
# A convenience wrapper for <tt>find(:last, *args)</tt>. You can pass in all the
|
|
# same arguments to this method as you can to <tt>find(:last)</tt>.
|
|
def last(*args)
|
|
find(:last, *args)
|
|
end
|
|
|
|
# This is an alias for find(:all). You can pass in all the same arguments to this method as you can
|
|
# to find(:all)
|
|
def all(*args)
|
|
find(:all, *args)
|
|
end
|
|
|
|
# Executes a custom SQL query against your database and returns all the results. The results will
|
|
# be returned as an array with columns requested encapsulated as attributes of the model you call
|
|
# this method from. If you call +Product.find_by_sql+ then the results will be returned in a Product
|
|
# object with the attributes you specified in the SQL query.
|
|
#
|
|
# If you call a complicated SQL query which spans multiple tables the columns specified by the
|
|
# SELECT will be attributes of the model, whether or not they are columns of the corresponding
|
|
# table.
|
|
#
|
|
# The +sql+ parameter is a full SQL query as a string. It will be called as is, there will be
|
|
# no database agnostic conversions performed. This should be a last resort because using, for example,
|
|
# MySQL specific terms will lock you to using that particular database engine or require you to
|
|
# change your call if you switch engines
|
|
#
|
|
# ==== Examples
|
|
# # A simple SQL query spanning multiple tables
|
|
# Post.find_by_sql "SELECT p.title, c.author FROM posts p, comments c WHERE p.id = c.post_id"
|
|
# > [#<Post:0x36bff9c @attributes={"title"=>"Ruby Meetup", "first_name"=>"Quentin"}>, ...]
|
|
#
|
|
# # You can use the same string replacement techniques as you can with ActiveRecord#find
|
|
# Post.find_by_sql ["SELECT title FROM posts WHERE author = ? AND created > ?", author_id, start_date]
|
|
# > [#<Post:0x36bff9c @attributes={"first_name"=>"The Cheap Man Buys Twice"}>, ...]
|
|
def find_by_sql(sql)
|
|
connection.select_all(sanitize_sql(sql), "#{name} Load").collect! { |record| instantiate(record) }
|
|
end
|
|
|
|
# Checks whether a record exists in the database that matches conditions given. These conditions
|
|
# can either be a single integer representing a primary key id to be found, or a condition to be
|
|
# matched like using ActiveRecord#find.
|
|
#
|
|
# The +id_or_conditions+ parameter can be an Integer or a String if you want to search the primary key
|
|
# column of the table for a matching id, or if you're looking to match against a condition you can use
|
|
# an Array or a Hash.
|
|
#
|
|
# Possible gotcha: You can't pass in a condition as a string e.g. "name = 'Jamie'", this would be
|
|
# sanitized and then queried against the primary key column as "id = 'name = \'Jamie"
|
|
#
|
|
# ==== Examples
|
|
# Person.exists?(5)
|
|
# Person.exists?('5')
|
|
# Person.exists?(:name => "David")
|
|
# Person.exists?(['name LIKE ?', "%#{query}%"])
|
|
def exists?(id_or_conditions)
|
|
connection.select_all(
|
|
construct_finder_sql(
|
|
:select => "#{quoted_table_name}.#{primary_key}",
|
|
:conditions => expand_id_conditions(id_or_conditions),
|
|
:limit => 1
|
|
),
|
|
"#{name} Exists"
|
|
).size > 0
|
|
end
|
|
|
|
# Creates an object (or multiple objects) and saves it to the database, if validations pass.
|
|
# The resulting object is returned whether the object was saved successfully to the database or not.
|
|
#
|
|
# The +attributes+ parameter can be either be a Hash or an Array of Hashes. These Hashes describe the
|
|
# attributes on the objects that are to be created.
|
|
#
|
|
# ==== Examples
|
|
# # Create a single new object
|
|
# User.create(:first_name => 'Jamie')
|
|
#
|
|
# # Create an Array of new objects
|
|
# User.create([{ :first_name => 'Jamie' }, { :first_name => 'Jeremy' }])
|
|
#
|
|
# # Create a single object and pass it into a block to set other attributes.
|
|
# User.create(:first_name => 'Jamie') do |u|
|
|
# u.is_admin = false
|
|
# end
|
|
#
|
|
# # Creating an Array of new objects using a block, where the block is executed for each object:
|
|
# User.create([{ :first_name => 'Jamie' }, { :first_name => 'Jeremy' }]) do |u|
|
|
# u.is_admin = false
|
|
# end
|
|
def create(attributes = nil, &block)
|
|
if attributes.is_a?(Array)
|
|
attributes.collect { |attr| create(attr, &block) }
|
|
else
|
|
object = new(attributes)
|
|
yield(object) if block_given?
|
|
object.save
|
|
object
|
|
end
|
|
end
|
|
|
|
# Updates an object (or multiple objects) and saves it to the database, if validations pass.
|
|
# The resulting object is returned whether the object was saved successfully to the database or not.
|
|
#
|
|
# ==== Attributes
|
|
#
|
|
# * +id+ - This should be the id or an array of ids to be updated.
|
|
# * +attributes+ - This should be a Hash of attributes to be set on the object, or an array of Hashes.
|
|
#
|
|
# ==== Examples
|
|
#
|
|
# # Updating one record:
|
|
# Person.update(15, { :user_name => 'Samuel', :group => 'expert' })
|
|
#
|
|
# # Updating multiple records:
|
|
# people = { 1 => { "first_name" => "David" }, 2 => { "first_name" => "Jeremy" } }
|
|
# Person.update(people.keys, people.values)
|
|
def update(id, attributes)
|
|
if id.is_a?(Array)
|
|
idx = -1
|
|
id.collect { |one_id| idx += 1; update(one_id, attributes[idx]) }
|
|
else
|
|
object = find(id)
|
|
object.update_attributes(attributes)
|
|
object
|
|
end
|
|
end
|
|
|
|
# Delete an object (or multiple objects) where the +id+ given matches the primary_key. A SQL +DELETE+ command
|
|
# is executed on the database which means that no callbacks are fired off running this. This is an efficient method
|
|
# of deleting records that don't need cleaning up after or other actions to be taken.
|
|
#
|
|
# Objects are _not_ instantiated with this method.
|
|
#
|
|
# ==== Attributes
|
|
#
|
|
# * +id+ - Can be either an Integer or an Array of Integers.
|
|
#
|
|
# ==== Examples
|
|
#
|
|
# # Delete a single object
|
|
# Todo.delete(1)
|
|
#
|
|
# # Delete multiple objects
|
|
# todos = [1,2,3]
|
|
# Todo.delete(todos)
|
|
def delete(id)
|
|
delete_all([ "#{connection.quote_column_name(primary_key)} IN (?)", id ])
|
|
end
|
|
|
|
# Destroy an object (or multiple objects) that has the given id, the object is instantiated first,
|
|
# therefore all callbacks and filters are fired off before the object is deleted. This method is
|
|
# less efficient than ActiveRecord#delete but allows cleanup methods and other actions to be run.
|
|
#
|
|
# This essentially finds the object (or multiple objects) with the given id, creates a new object
|
|
# from the attributes, and then calls destroy on it.
|
|
#
|
|
# ==== Attributes
|
|
#
|
|
# * +id+ - Can be either an Integer or an Array of Integers.
|
|
#
|
|
# ==== Examples
|
|
#
|
|
# # Destroy a single object
|
|
# Todo.destroy(1)
|
|
#
|
|
# # Destroy multiple objects
|
|
# todos = [1,2,3]
|
|
# Todo.destroy(todos)
|
|
def destroy(id)
|
|
if id.is_a?(Array)
|
|
id.map { |one_id| destroy(one_id) }
|
|
else
|
|
find(id).destroy
|
|
end
|
|
end
|
|
|
|
# Updates all records with details given if they match a set of conditions supplied, limits and order can
|
|
# also be supplied.
|
|
#
|
|
# ==== Attributes
|
|
#
|
|
# * +updates+ - A String of column and value pairs that will be set on any records that match conditions.
|
|
# * +conditions+ - An SQL fragment like "administrator = 1" or [ "user_name = ?", username ]. See conditions in the intro for more info.
|
|
# * +options+ - Additional options are <tt>:limit</tt> and/or <tt>:order</tt>, see the examples for usage.
|
|
#
|
|
# ==== Examples
|
|
#
|
|
# # Update all billing objects with the 3 different attributes given
|
|
# Billing.update_all( "category = 'authorized', approved = 1, author = 'David'" )
|
|
#
|
|
# # Update records that match our conditions
|
|
# Billing.update_all( "author = 'David'", "title LIKE '%Rails%'" )
|
|
#
|
|
# # Update records that match our conditions but limit it to 5 ordered by date
|
|
# Billing.update_all( "author = 'David'", "title LIKE '%Rails%'",
|
|
# :order => 'created_at', :limit => 5 )
|
|
def update_all(updates, conditions = nil, options = {})
|
|
sql = "UPDATE #{quoted_table_name} SET #{sanitize_sql_for_assignment(updates)} "
|
|
scope = scope(:find)
|
|
add_conditions!(sql, conditions, scope)
|
|
add_order!(sql, options[:order], nil)
|
|
add_limit!(sql, options, nil)
|
|
connection.update(sql, "#{name} Update")
|
|
end
|
|
|
|
# Destroys the records matching +conditions+ by instantiating each record and calling the destroy method.
|
|
# This means at least 2*N database queries to destroy N records, so avoid destroy_all if you are deleting
|
|
# many records. If you want to simply delete records without worrying about dependent associations or
|
|
# callbacks, use the much faster +delete_all+ method instead.
|
|
#
|
|
# ==== Attributes
|
|
#
|
|
# * +conditions+ - Conditions are specified the same way as with +find+ method.
|
|
#
|
|
# ==== Example
|
|
#
|
|
# Person.destroy_all "last_login < '2004-04-04'"
|
|
#
|
|
# This loads and destroys each person one by one, including its dependent associations and before_ and
|
|
# after_destroy callbacks.
|
|
def destroy_all(conditions = nil)
|
|
find(:all, :conditions => conditions).each { |object| object.destroy }
|
|
end
|
|
|
|
# Deletes the records matching +conditions+ without instantiating the records first, and hence not
|
|
# calling the destroy method and invoking callbacks. This is a single SQL query, much more efficient
|
|
# than destroy_all.
|
|
#
|
|
# ==== Attributes
|
|
#
|
|
# * +conditions+ - Conditions are specified the same way as with +find+ method.
|
|
#
|
|
# ==== Example
|
|
#
|
|
# Post.delete_all "person_id = 5 AND (category = 'Something' OR category = 'Else')"
|
|
#
|
|
# This deletes the affected posts all at once with a single DELETE query. If you need to destroy dependent
|
|
# associations or call your before_ or after_destroy callbacks, use the +destroy_all+ method instead.
|
|
def delete_all(conditions = nil)
|
|
sql = "DELETE FROM #{quoted_table_name} "
|
|
add_conditions!(sql, conditions, scope(:find))
|
|
connection.delete(sql, "#{name} Delete all")
|
|
end
|
|
|
|
# Returns the result of an SQL statement that should only include a COUNT(*) in the SELECT part.
|
|
# The use of this method should be restricted to complicated SQL queries that can't be executed
|
|
# using the ActiveRecord::Calculations class methods. Look into those before using this.
|
|
#
|
|
# ==== Attributes
|
|
#
|
|
# * +sql+ - An SQL statement which should return a count query from the database, see the example below.
|
|
#
|
|
# ==== Examples
|
|
#
|
|
# Product.count_by_sql "SELECT COUNT(*) FROM sales s, customers c WHERE s.customer_id = c.id"
|
|
def count_by_sql(sql)
|
|
sql = sanitize_conditions(sql)
|
|
connection.select_value(sql, "#{name} Count").to_i
|
|
end
|
|
|
|
# A generic "counter updater" implementation, intended primarily to be
|
|
# used by increment_counter and decrement_counter, but which may also
|
|
# be useful on its own. It simply does a direct SQL update for the record
|
|
# with the given ID, altering the given hash of counters by the amount
|
|
# given by the corresponding value:
|
|
#
|
|
# ==== Attributes
|
|
#
|
|
# * +id+ - The id of the object you wish to update a counter on.
|
|
# * +counters+ - An Array of Hashes containing the names of the fields
|
|
# to update as keys and the amount to update the field by as values.
|
|
#
|
|
# ==== Examples
|
|
#
|
|
# # For the Post with id of 5, decrement the comment_count by 1, and
|
|
# # increment the action_count by 1
|
|
# Post.update_counters 5, :comment_count => -1, :action_count => 1
|
|
# # Executes the following SQL:
|
|
# # UPDATE posts
|
|
# # SET comment_count = comment_count - 1,
|
|
# # action_count = action_count + 1
|
|
# # WHERE id = 5
|
|
def update_counters(id, counters)
|
|
updates = counters.inject([]) { |list, (counter_name, increment)|
|
|
sign = increment < 0 ? "-" : "+"
|
|
list << "#{connection.quote_column_name(counter_name)} = COALESCE(#{connection.quote_column_name(counter_name)}, 0) #{sign} #{increment.abs}"
|
|
}.join(", ")
|
|
update_all(updates, "#{connection.quote_column_name(primary_key)} = #{quote_value(id)}")
|
|
end
|
|
|
|
# Increment a number field by one, usually representing a count.
|
|
#
|
|
# This is used for caching aggregate values, so that they don't need to be computed every time.
|
|
# For example, a DiscussionBoard may cache post_count and comment_count otherwise every time the board is
|
|
# shown it would have to run an SQL query to find how many posts and comments there are.
|
|
#
|
|
# ==== Attributes
|
|
#
|
|
# * +counter_name+ - The name of the field that should be incremented.
|
|
# * +id+ - The id of the object that should be incremented.
|
|
#
|
|
# ==== Examples
|
|
#
|
|
# # Increment the post_count column for the record with an id of 5
|
|
# DiscussionBoard.increment_counter(:post_count, 5)
|
|
def increment_counter(counter_name, id)
|
|
update_counters(id, counter_name => 1)
|
|
end
|
|
|
|
# Decrement a number field by one, usually representing a count.
|
|
#
|
|
# This works the same as increment_counter but reduces the column value by 1 instead of increasing it.
|
|
#
|
|
# ==== Attributes
|
|
#
|
|
# * +counter_name+ - The name of the field that should be decremented.
|
|
# * +id+ - The id of the object that should be decremented.
|
|
#
|
|
# ==== Examples
|
|
#
|
|
# # Decrement the post_count column for the record with an id of 5
|
|
# DiscussionBoard.decrement_counter(:post_count, 5)
|
|
def decrement_counter(counter_name, id)
|
|
update_counters(id, counter_name => -1)
|
|
end
|
|
|
|
|
|
# Attributes named in this macro are protected from mass-assignment,
|
|
# such as <tt>new(attributes)</tt>,
|
|
# <tt>update_attributes(attributes)</tt>, or
|
|
# <tt>attributes=(attributes)</tt>.
|
|
#
|
|
# Mass-assignment to these attributes will simply be ignored, to assign
|
|
# to them you can use direct writer methods. This is meant to protect
|
|
# sensitive attributes from being overwritten by malicious users
|
|
# tampering with URLs or forms.
|
|
#
|
|
# class Customer < ActiveRecord::Base
|
|
# attr_protected :credit_rating
|
|
# end
|
|
#
|
|
# customer = Customer.new("name" => David, "credit_rating" => "Excellent")
|
|
# customer.credit_rating # => nil
|
|
# customer.attributes = { "description" => "Jolly fellow", "credit_rating" => "Superb" }
|
|
# customer.credit_rating # => nil
|
|
#
|
|
# customer.credit_rating = "Average"
|
|
# customer.credit_rating # => "Average"
|
|
#
|
|
# To start from an all-closed default and enable attributes as needed,
|
|
# have a look at +attr_accessible+.
|
|
def attr_protected(*attributes)
|
|
write_inheritable_attribute("attr_protected", Set.new(attributes.map(&:to_s)) + (protected_attributes || []))
|
|
end
|
|
|
|
# Returns an array of all the attributes that have been protected from mass-assignment.
|
|
def protected_attributes # :nodoc:
|
|
read_inheritable_attribute("attr_protected")
|
|
end
|
|
|
|
# Specifies a white list of model attributes that can be set via
|
|
# mass-assignment, such as <tt>new(attributes)</tt>,
|
|
# <tt>update_attributes(attributes)</tt>, or
|
|
# <tt>attributes=(attributes)</tt>
|
|
#
|
|
# This is the opposite of the +attr_protected+ macro: Mass-assignment
|
|
# will only set attributes in this list, to assign to the rest of
|
|
# attributes you can use direct writer methods. This is meant to protect
|
|
# sensitive attributes from being overwritten by malicious users
|
|
# tampering with URLs or forms. If you'd rather start from an all-open
|
|
# default and restrict attributes as needed, have a look at
|
|
# +attr_protected+.
|
|
#
|
|
# class Customer < ActiveRecord::Base
|
|
# attr_accessible :name, :nickname
|
|
# end
|
|
#
|
|
# customer = Customer.new(:name => "David", :nickname => "Dave", :credit_rating => "Excellent")
|
|
# customer.credit_rating # => nil
|
|
# customer.attributes = { :name => "Jolly fellow", :credit_rating => "Superb" }
|
|
# customer.credit_rating # => nil
|
|
#
|
|
# customer.credit_rating = "Average"
|
|
# customer.credit_rating # => "Average"
|
|
def attr_accessible(*attributes)
|
|
write_inheritable_attribute("attr_accessible", Set.new(attributes.map(&:to_s)) + (accessible_attributes || []))
|
|
end
|
|
|
|
# Returns an array of all the attributes that have been made accessible to mass-assignment.
|
|
def accessible_attributes # :nodoc:
|
|
read_inheritable_attribute("attr_accessible")
|
|
end
|
|
|
|
# Attributes listed as readonly can be set for a new record, but will be ignored in database updates afterwards.
|
|
def attr_readonly(*attributes)
|
|
write_inheritable_attribute("attr_readonly", Set.new(attributes.map(&:to_s)) + (readonly_attributes || []))
|
|
end
|
|
|
|
# Returns an array of all the attributes that have been specified as readonly.
|
|
def readonly_attributes
|
|
read_inheritable_attribute("attr_readonly")
|
|
end
|
|
|
|
# If you have an attribute that needs to be saved to the database as an object, and retrieved as the same object,
|
|
# then specify the name of that attribute using this method and it will be handled automatically.
|
|
# The serialization is done through YAML. If +class_name+ is specified, the serialized object must be of that
|
|
# class on retrieval or SerializationTypeMismatch will be raised.
|
|
#
|
|
# ==== Attributes
|
|
#
|
|
# * +attr_name+ - The field name that should be serialized.
|
|
# * +class_name+ - Optional, class name that the object type should be equal to.
|
|
#
|
|
# ==== Example
|
|
# # Serialize a preferences attribute
|
|
# class User
|
|
# serialize :preferences
|
|
# end
|
|
def serialize(attr_name, class_name = Object)
|
|
serialized_attributes[attr_name.to_s] = class_name
|
|
end
|
|
|
|
# Returns a hash of all the attributes that have been specified for serialization as keys and their class restriction as values.
|
|
def serialized_attributes
|
|
read_inheritable_attribute("attr_serialized") or write_inheritable_attribute("attr_serialized", {})
|
|
end
|
|
|
|
|
|
# Guesses the table name (in forced lower-case) based on the name of the class in the inheritance hierarchy descending
|
|
# directly from ActiveRecord::Base. So if the hierarchy looks like: Reply < Message < ActiveRecord::Base, then Message is used
|
|
# to guess the table name even when called on Reply. The rules used to do the guess are handled by the Inflector class
|
|
# in Active Support, which knows almost all common English inflections. You can add new inflections in config/initializers/inflections.rb.
|
|
#
|
|
# Nested classes are given table names prefixed by the singular form of
|
|
# the parent's table name. Enclosing modules are not considered.
|
|
#
|
|
# ==== Examples
|
|
#
|
|
# class Invoice < ActiveRecord::Base; end;
|
|
# file class table_name
|
|
# invoice.rb Invoice invoices
|
|
#
|
|
# class Invoice < ActiveRecord::Base; class Lineitem < ActiveRecord::Base; end; end;
|
|
# file class table_name
|
|
# invoice.rb Invoice::Lineitem invoice_lineitems
|
|
#
|
|
# module Invoice; class Lineitem < ActiveRecord::Base; end; end;
|
|
# file class table_name
|
|
# invoice/lineitem.rb Invoice::Lineitem lineitems
|
|
#
|
|
# Additionally, the class-level +table_name_prefix+ is prepended and the
|
|
# +table_name_suffix+ is appended. So if you have "myapp_" as a prefix,
|
|
# the table name guess for an Invoice class becomes "myapp_invoices".
|
|
# Invoice::Lineitem becomes "myapp_invoice_lineitems".
|
|
#
|
|
# You can also overwrite this class method to allow for unguessable
|
|
# links, such as a Mouse class with a link to a "mice" table. Example:
|
|
#
|
|
# class Mouse < ActiveRecord::Base
|
|
# set_table_name "mice"
|
|
# end
|
|
def table_name
|
|
reset_table_name
|
|
end
|
|
|
|
def reset_table_name #:nodoc:
|
|
base = base_class
|
|
|
|
name =
|
|
# STI subclasses always use their superclass' table.
|
|
unless self == base
|
|
base.table_name
|
|
else
|
|
# Nested classes are prefixed with singular parent table name.
|
|
if parent < ActiveRecord::Base && !parent.abstract_class?
|
|
contained = parent.table_name
|
|
contained = contained.singularize if parent.pluralize_table_names
|
|
contained << '_'
|
|
end
|
|
name = "#{table_name_prefix}#{contained}#{undecorated_table_name(base.name)}#{table_name_suffix}"
|
|
end
|
|
|
|
set_table_name(name)
|
|
name
|
|
end
|
|
|
|
# Defines the primary key field -- can be overridden in subclasses. Overwriting will negate any effect of the
|
|
# primary_key_prefix_type setting, though.
|
|
def primary_key
|
|
reset_primary_key
|
|
end
|
|
|
|
def reset_primary_key #:nodoc:
|
|
key = get_primary_key(base_class.name)
|
|
set_primary_key(key)
|
|
key
|
|
end
|
|
|
|
def get_primary_key(base_name) #:nodoc:
|
|
key = 'id'
|
|
case primary_key_prefix_type
|
|
when :table_name
|
|
key = base_name.to_s.foreign_key(false)
|
|
when :table_name_with_underscore
|
|
key = base_name.to_s.foreign_key
|
|
end
|
|
key
|
|
end
|
|
|
|
# Defines the column name for use with single table inheritance
|
|
# -- can be set in subclasses like so: self.inheritance_column = "type_id"
|
|
def inheritance_column
|
|
@inheritance_column ||= "type".freeze
|
|
end
|
|
|
|
# Lazy-set the sequence name to the connection's default. This method
|
|
# is only ever called once since set_sequence_name overrides it.
|
|
def sequence_name #:nodoc:
|
|
reset_sequence_name
|
|
end
|
|
|
|
def reset_sequence_name #:nodoc:
|
|
default = connection.default_sequence_name(table_name, primary_key)
|
|
set_sequence_name(default)
|
|
default
|
|
end
|
|
|
|
# Sets the table name to use to the given value, or (if the value
|
|
# is nil or false) to the value returned by the given block.
|
|
#
|
|
# class Project < ActiveRecord::Base
|
|
# set_table_name "project"
|
|
# end
|
|
def set_table_name(value = nil, &block)
|
|
define_attr_method :table_name, value, &block
|
|
end
|
|
alias :table_name= :set_table_name
|
|
|
|
# Sets the name of the primary key column to use to the given value,
|
|
# or (if the value is nil or false) to the value returned by the given
|
|
# block.
|
|
#
|
|
# class Project < ActiveRecord::Base
|
|
# set_primary_key "sysid"
|
|
# end
|
|
def set_primary_key(value = nil, &block)
|
|
define_attr_method :primary_key, value, &block
|
|
end
|
|
alias :primary_key= :set_primary_key
|
|
|
|
# Sets the name of the inheritance column to use to the given value,
|
|
# or (if the value # is nil or false) to the value returned by the
|
|
# given block.
|
|
#
|
|
# class Project < ActiveRecord::Base
|
|
# set_inheritance_column do
|
|
# original_inheritance_column + "_id"
|
|
# end
|
|
# end
|
|
def set_inheritance_column(value = nil, &block)
|
|
define_attr_method :inheritance_column, value, &block
|
|
end
|
|
alias :inheritance_column= :set_inheritance_column
|
|
|
|
# Sets the name of the sequence to use when generating ids to the given
|
|
# value, or (if the value is nil or false) to the value returned by the
|
|
# given block. This is required for Oracle and is useful for any
|
|
# database which relies on sequences for primary key generation.
|
|
#
|
|
# If a sequence name is not explicitly set when using Oracle or Firebird,
|
|
# it will default to the commonly used pattern of: #{table_name}_seq
|
|
#
|
|
# If a sequence name is not explicitly set when using PostgreSQL, it
|
|
# will discover the sequence corresponding to your primary key for you.
|
|
#
|
|
# class Project < ActiveRecord::Base
|
|
# set_sequence_name "projectseq" # default would have been "project_seq"
|
|
# end
|
|
def set_sequence_name(value = nil, &block)
|
|
define_attr_method :sequence_name, value, &block
|
|
end
|
|
alias :sequence_name= :set_sequence_name
|
|
|
|
# Turns the +table_name+ back into a class name following the reverse rules of +table_name+.
|
|
def class_name(table_name = table_name) # :nodoc:
|
|
# remove any prefix and/or suffix from the table name
|
|
class_name = table_name[table_name_prefix.length..-(table_name_suffix.length + 1)].camelize
|
|
class_name = class_name.singularize if pluralize_table_names
|
|
class_name
|
|
end
|
|
|
|
# Indicates whether the table associated with this class exists
|
|
def table_exists?
|
|
connection.table_exists?(table_name)
|
|
end
|
|
|
|
# Returns an array of column objects for the table associated with this class.
|
|
def columns
|
|
unless defined?(@columns) && @columns
|
|
@columns = connection.columns(table_name, "#{name} Columns")
|
|
@columns.each { |column| column.primary = column.name == primary_key }
|
|
end
|
|
@columns
|
|
end
|
|
|
|
# Returns a hash of column objects for the table associated with this class.
|
|
def columns_hash
|
|
@columns_hash ||= columns.inject({}) { |hash, column| hash[column.name] = column; hash }
|
|
end
|
|
|
|
# Returns an array of column names as strings.
|
|
def column_names
|
|
@column_names ||= columns.map { |column| column.name }
|
|
end
|
|
|
|
# Returns an array of column objects where the primary id, all columns ending in "_id" or "_count",
|
|
# and columns used for single table inheritance have been removed.
|
|
def content_columns
|
|
@content_columns ||= columns.reject { |c| c.primary || c.name =~ /(_id|_count)$/ || c.name == inheritance_column }
|
|
end
|
|
|
|
# Returns a hash of all the methods added to query each of the columns in the table with the name of the method as the key
|
|
# and true as the value. This makes it possible to do O(1) lookups in respond_to? to check if a given method for attribute
|
|
# is available.
|
|
def column_methods_hash #:nodoc:
|
|
@dynamic_methods_hash ||= column_names.inject(Hash.new(false)) do |methods, attr|
|
|
attr_name = attr.to_s
|
|
methods[attr.to_sym] = attr_name
|
|
methods["#{attr}=".to_sym] = attr_name
|
|
methods["#{attr}?".to_sym] = attr_name
|
|
methods["#{attr}_before_type_cast".to_sym] = attr_name
|
|
methods
|
|
end
|
|
end
|
|
|
|
# Resets all the cached information about columns, which will cause them to be reloaded on the next request.
|
|
def reset_column_information
|
|
generated_methods.each { |name| undef_method(name) }
|
|
@column_names = @columns = @columns_hash = @content_columns = @dynamic_methods_hash = @generated_methods = @inheritance_column = nil
|
|
end
|
|
|
|
def reset_column_information_and_inheritable_attributes_for_all_subclasses#:nodoc:
|
|
subclasses.each { |klass| klass.reset_inheritable_attributes; klass.reset_column_information }
|
|
end
|
|
|
|
def self_and_descendents_from_active_record#nodoc:
|
|
klass = self
|
|
classes = [klass]
|
|
while klass != klass.base_class
|
|
classes << klass = klass.superclass
|
|
end
|
|
classes
|
|
rescue
|
|
# OPTIMIZE this rescue is to fix this test: ./test/cases/reflection_test.rb:56:in `test_human_name_for_column'
|
|
# Appearantly the method base_class causes some trouble.
|
|
# It now works for sure.
|
|
[self]
|
|
end
|
|
|
|
# Transforms attribute key names into a more humane format, such as "First name" instead of "first_name". Example:
|
|
# Person.human_attribute_name("first_name") # => "First name"
|
|
# This used to be depricated in favor of humanize, but is now preferred, because it automatically uses the I18n
|
|
# module now.
|
|
# Specify +options+ with additional translating options.
|
|
def human_attribute_name(attribute_key_name, options = {})
|
|
defaults = self_and_descendents_from_active_record.map do |klass|
|
|
:"#{klass.name.underscore}.#{attribute_key_name}"
|
|
end
|
|
defaults << options[:default] if options[:default]
|
|
defaults.flatten!
|
|
defaults << attribute_key_name.humanize
|
|
options[:count] ||= 1
|
|
I18n.translate(defaults.shift, options.merge(:default => defaults, :scope => [:activerecord, :attributes]))
|
|
end
|
|
|
|
# Transform the modelname into a more humane format, using I18n.
|
|
# Defaults to the basic humanize method.
|
|
# Default scope of the translation is activerecord.models
|
|
# Specify +options+ with additional translating options.
|
|
def human_name(options = {})
|
|
defaults = self_and_descendents_from_active_record.map do |klass|
|
|
:"#{klass.name.underscore}"
|
|
end
|
|
defaults << self.name.humanize
|
|
I18n.translate(defaults.shift, {:scope => [:activerecord, :models], :count => 1, :default => defaults}.merge(options))
|
|
end
|
|
|
|
# True if this isn't a concrete subclass needing a STI type condition.
|
|
def descends_from_active_record?
|
|
if superclass.abstract_class?
|
|
superclass.descends_from_active_record?
|
|
else
|
|
superclass == Base || !columns_hash.include?(inheritance_column)
|
|
end
|
|
end
|
|
|
|
def finder_needs_type_condition? #:nodoc:
|
|
# This is like this because benchmarking justifies the strange :false stuff
|
|
:true == (@finder_needs_type_condition ||= descends_from_active_record? ? :false : :true)
|
|
end
|
|
|
|
# Returns a string like 'Post id:integer, title:string, body:text'
|
|
def inspect
|
|
if self == Base
|
|
super
|
|
elsif abstract_class?
|
|
"#{super}(abstract)"
|
|
elsif table_exists?
|
|
attr_list = columns.map { |c| "#{c.name}: #{c.type}" } * ', '
|
|
"#{super}(#{attr_list})"
|
|
else
|
|
"#{super}(Table doesn't exist)"
|
|
end
|
|
end
|
|
|
|
|
|
def quote_value(value, column = nil) #:nodoc:
|
|
connection.quote(value,column)
|
|
end
|
|
|
|
# Used to sanitize objects before they're used in an SQL SELECT statement. Delegates to <tt>connection.quote</tt>.
|
|
def sanitize(object) #:nodoc:
|
|
connection.quote(object)
|
|
end
|
|
|
|
# Log and benchmark multiple statements in a single block. Example:
|
|
#
|
|
# Project.benchmark("Creating project") do
|
|
# project = Project.create("name" => "stuff")
|
|
# project.create_manager("name" => "David")
|
|
# project.milestones << Milestone.find(:all)
|
|
# end
|
|
#
|
|
# The benchmark is only recorded if the current level of the logger is less than or equal to the <tt>log_level</tt>,
|
|
# which makes it easy to include benchmarking statements in production software that will remain inexpensive because
|
|
# the benchmark will only be conducted if the log level is low enough.
|
|
#
|
|
# The logging of the multiple statements is turned off unless <tt>use_silence</tt> is set to false.
|
|
def benchmark(title, log_level = Logger::DEBUG, use_silence = true)
|
|
if logger && logger.level <= log_level
|
|
result = nil
|
|
seconds = Benchmark.realtime { result = use_silence ? silence { yield } : yield }
|
|
logger.add(log_level, "#{title} (#{'%.5f' % seconds})")
|
|
result
|
|
else
|
|
yield
|
|
end
|
|
end
|
|
|
|
# Silences the logger for the duration of the block.
|
|
def silence
|
|
old_logger_level, logger.level = logger.level, Logger::ERROR if logger
|
|
yield
|
|
ensure
|
|
logger.level = old_logger_level if logger
|
|
end
|
|
|
|
# Overwrite the default class equality method to provide support for association proxies.
|
|
def ===(object)
|
|
object.is_a?(self)
|
|
end
|
|
|
|
# Returns the base AR subclass that this class descends from. If A
|
|
# extends AR::Base, A.base_class will return A. If B descends from A
|
|
# through some arbitrarily deep hierarchy, B.base_class will return A.
|
|
def base_class
|
|
class_of_active_record_descendant(self)
|
|
end
|
|
|
|
# Set this to true if this is an abstract class (see <tt>abstract_class?</tt>).
|
|
attr_accessor :abstract_class
|
|
|
|
# Returns whether this class is a base AR class. If A is a base class and
|
|
# B descends from A, then B.base_class will return B.
|
|
def abstract_class?
|
|
defined?(@abstract_class) && @abstract_class == true
|
|
end
|
|
|
|
def respond_to?(method_id, include_private = false)
|
|
if match = DynamicFinderMatch.match(method_id)
|
|
return true if all_attributes_exists?(match.attribute_names)
|
|
end
|
|
super
|
|
end
|
|
|
|
def sti_name
|
|
store_full_sti_class ? name : name.demodulize
|
|
end
|
|
|
|
# Merges conditions so that the result is a valid +condition+
|
|
def merge_conditions(*conditions)
|
|
segments = []
|
|
|
|
conditions.each do |condition|
|
|
unless condition.blank?
|
|
sql = sanitize_sql(condition)
|
|
segments << sql unless sql.blank?
|
|
end
|
|
end
|
|
|
|
"(#{segments.join(') AND (')})" unless segments.empty?
|
|
end
|
|
|
|
private
|
|
def find_initial(options)
|
|
options.update(:limit => 1)
|
|
find_every(options).first
|
|
end
|
|
|
|
def find_last(options)
|
|
order = options[:order]
|
|
|
|
if order
|
|
order = reverse_sql_order(order)
|
|
elsif !scoped?(:find, :order)
|
|
order = "#{table_name}.#{primary_key} DESC"
|
|
end
|
|
|
|
if scoped?(:find, :order)
|
|
scoped_order = reverse_sql_order(scope(:find, :order))
|
|
scoped_methods.select { |s| s[:find].update(:order => scoped_order) }
|
|
end
|
|
|
|
find_initial(options.merge({ :order => order }))
|
|
end
|
|
|
|
def reverse_sql_order(order_query)
|
|
reversed_query = order_query.split(/,/).each { |s|
|
|
if s.match(/\s(asc|ASC)$/)
|
|
s.gsub!(/\s(asc|ASC)$/, ' DESC')
|
|
elsif s.match(/\s(desc|DESC)$/)
|
|
s.gsub!(/\s(desc|DESC)$/, ' ASC')
|
|
elsif !s.match(/\s(asc|ASC|desc|DESC)$/)
|
|
s.concat(' DESC')
|
|
end
|
|
}.join(',')
|
|
end
|
|
|
|
def find_every(options)
|
|
include_associations = merge_includes(scope(:find, :include), options[:include])
|
|
|
|
if include_associations.any? && references_eager_loaded_tables?(options)
|
|
records = find_with_associations(options)
|
|
else
|
|
records = find_by_sql(construct_finder_sql(options))
|
|
if include_associations.any?
|
|
preload_associations(records, include_associations)
|
|
end
|
|
end
|
|
|
|
records.each { |record| record.readonly! } if options[:readonly]
|
|
|
|
records
|
|
end
|
|
|
|
def find_from_ids(ids, options)
|
|
expects_array = ids.first.kind_of?(Array)
|
|
return ids.first if expects_array && ids.first.empty?
|
|
|
|
ids = ids.flatten.compact.uniq
|
|
|
|
case ids.size
|
|
when 0
|
|
raise RecordNotFound, "Couldn't find #{name} without an ID"
|
|
when 1
|
|
result = find_one(ids.first, options)
|
|
expects_array ? [ result ] : result
|
|
else
|
|
find_some(ids, options)
|
|
end
|
|
end
|
|
|
|
def find_one(id, options)
|
|
conditions = " AND (#{sanitize_sql(options[:conditions])})" if options[:conditions]
|
|
options.update :conditions => "#{quoted_table_name}.#{connection.quote_column_name(primary_key)} = #{quote_value(id,columns_hash[primary_key])}#{conditions}"
|
|
|
|
# Use find_every(options).first since the primary key condition
|
|
# already ensures we have a single record. Using find_initial adds
|
|
# a superfluous :limit => 1.
|
|
if result = find_every(options).first
|
|
result
|
|
else
|
|
raise RecordNotFound, "Couldn't find #{name} with ID=#{id}#{conditions}"
|
|
end
|
|
end
|
|
|
|
def find_some(ids, options)
|
|
conditions = " AND (#{sanitize_sql(options[:conditions])})" if options[:conditions]
|
|
ids_list = ids.map { |id| quote_value(id,columns_hash[primary_key]) }.join(',')
|
|
options.update :conditions => "#{quoted_table_name}.#{connection.quote_column_name(primary_key)} IN (#{ids_list})#{conditions}"
|
|
|
|
result = find_every(options)
|
|
|
|
# Determine expected size from limit and offset, not just ids.size.
|
|
expected_size =
|
|
if options[:limit] && ids.size > options[:limit]
|
|
options[:limit]
|
|
else
|
|
ids.size
|
|
end
|
|
|
|
# 11 ids with limit 3, offset 9 should give 2 results.
|
|
if options[:offset] && (ids.size - options[:offset] < expected_size)
|
|
expected_size = ids.size - options[:offset]
|
|
end
|
|
|
|
if result.size == expected_size
|
|
result
|
|
else
|
|
raise RecordNotFound, "Couldn't find all #{name.pluralize} with IDs (#{ids_list})#{conditions} (found #{result.size} results, but was looking for #{expected_size})"
|
|
end
|
|
end
|
|
|
|
# Finder methods must instantiate through this method to work with the
|
|
# single-table inheritance model that makes it possible to create
|
|
# objects of different types from the same table.
|
|
def instantiate(record)
|
|
object =
|
|
if subclass_name = record[inheritance_column]
|
|
# No type given.
|
|
if subclass_name.empty?
|
|
allocate
|
|
|
|
else
|
|
# Ignore type if no column is present since it was probably
|
|
# pulled in from a sloppy join.
|
|
unless columns_hash.include?(inheritance_column)
|
|
allocate
|
|
|
|
else
|
|
begin
|
|
compute_type(subclass_name).allocate
|
|
rescue NameError
|
|
raise SubclassNotFound,
|
|
"The single-table inheritance mechanism failed to locate the subclass: '#{record[inheritance_column]}'. " +
|
|
"This error is raised because the column '#{inheritance_column}' is reserved for storing the class in case of inheritance. " +
|
|
"Please rename this column if you didn't intend it to be used for storing the inheritance class " +
|
|
"or overwrite #{self.to_s}.inheritance_column to use another column for that information."
|
|
end
|
|
end
|
|
end
|
|
else
|
|
allocate
|
|
end
|
|
|
|
object.instance_variable_set("@attributes", record)
|
|
object.instance_variable_set("@attributes_cache", Hash.new)
|
|
|
|
if object.respond_to_without_attributes?(:after_find)
|
|
object.send(:callback, :after_find)
|
|
end
|
|
|
|
if object.respond_to_without_attributes?(:after_initialize)
|
|
object.send(:callback, :after_initialize)
|
|
end
|
|
|
|
object
|
|
end
|
|
|
|
# Nest the type name in the same module as this class.
|
|
# Bar is "MyApp::Business::Bar" relative to MyApp::Business::Foo
|
|
def type_name_with_module(type_name)
|
|
if store_full_sti_class
|
|
type_name
|
|
else
|
|
(/^::/ =~ type_name) ? type_name : "#{parent.name}::#{type_name}"
|
|
end
|
|
end
|
|
|
|
def construct_finder_sql(options)
|
|
scope = scope(:find)
|
|
sql = "SELECT #{options[:select] || (scope && scope[:select]) || ((options[:joins] || (scope && scope[:joins])) && quoted_table_name + '.*') || '*'} "
|
|
sql << "FROM #{(scope && scope[:from]) || options[:from] || quoted_table_name} "
|
|
|
|
add_joins!(sql, options, scope)
|
|
add_conditions!(sql, options[:conditions], scope)
|
|
|
|
add_group!(sql, options[:group], scope)
|
|
add_order!(sql, options[:order], scope)
|
|
add_limit!(sql, options, scope)
|
|
add_lock!(sql, options, scope)
|
|
|
|
sql
|
|
end
|
|
|
|
# Merges includes so that the result is a valid +include+
|
|
def merge_includes(first, second)
|
|
(safe_to_array(first) + safe_to_array(second)).uniq
|
|
end
|
|
|
|
# Object#to_a is deprecated, though it does have the desired behavior
|
|
def safe_to_array(o)
|
|
case o
|
|
when NilClass
|
|
[]
|
|
when Array
|
|
o
|
|
else
|
|
[o]
|
|
end
|
|
end
|
|
|
|
def add_order!(sql, order, scope = :auto)
|
|
scope = scope(:find) if :auto == scope
|
|
scoped_order = scope[:order] if scope
|
|
if order
|
|
sql << " ORDER BY #{order}"
|
|
sql << ", #{scoped_order}" if scoped_order
|
|
else
|
|
sql << " ORDER BY #{scoped_order}" if scoped_order
|
|
end
|
|
end
|
|
|
|
def add_group!(sql, group, scope = :auto)
|
|
if group
|
|
sql << " GROUP BY #{group}"
|
|
else
|
|
scope = scope(:find) if :auto == scope
|
|
if scope && (scoped_group = scope[:group])
|
|
sql << " GROUP BY #{scoped_group}"
|
|
end
|
|
end
|
|
end
|
|
|
|
# The optional scope argument is for the current <tt>:find</tt> scope.
|
|
def add_limit!(sql, options, scope = :auto)
|
|
scope = scope(:find) if :auto == scope
|
|
|
|
if scope
|
|
options[:limit] ||= scope[:limit]
|
|
options[:offset] ||= scope[:offset]
|
|
end
|
|
|
|
connection.add_limit_offset!(sql, options)
|
|
end
|
|
|
|
# The optional scope argument is for the current <tt>:find</tt> scope.
|
|
# The <tt>:lock</tt> option has precedence over a scoped <tt>:lock</tt>.
|
|
def add_lock!(sql, options, scope = :auto)
|
|
scope = scope(:find) if :auto == scope
|
|
options = options.reverse_merge(:lock => scope[:lock]) if scope
|
|
connection.add_lock!(sql, options)
|
|
end
|
|
|
|
# The optional scope argument is for the current <tt>:find</tt> scope.
|
|
def add_joins!(sql, options, scope = :auto)
|
|
scope = scope(:find) if :auto == scope
|
|
[(scope && scope[:joins]), options[:joins]].each do |join|
|
|
case join
|
|
when Symbol, Hash, Array
|
|
join_dependency = ActiveRecord::Associations::ClassMethods::InnerJoinDependency.new(self, join, nil)
|
|
sql << " #{join_dependency.join_associations.collect { |assoc| assoc.association_join }.join} "
|
|
else
|
|
sql << " #{join} "
|
|
end
|
|
end
|
|
end
|
|
|
|
# Adds a sanitized version of +conditions+ to the +sql+ string. Note that the passed-in +sql+ string is changed.
|
|
# The optional scope argument is for the current <tt>:find</tt> scope.
|
|
def add_conditions!(sql, conditions, scope = :auto)
|
|
scope = scope(:find) if :auto == scope
|
|
conditions = [conditions]
|
|
conditions << scope[:conditions] if scope
|
|
conditions << type_condition if finder_needs_type_condition?
|
|
merged_conditions = merge_conditions(*conditions)
|
|
sql << "WHERE #{merged_conditions} " unless merged_conditions.blank?
|
|
end
|
|
|
|
def type_condition(table_alias=nil)
|
|
quoted_table_alias = self.connection.quote_table_name(table_alias || table_name)
|
|
quoted_inheritance_column = connection.quote_column_name(inheritance_column)
|
|
type_condition = subclasses.inject("#{quoted_table_alias}.#{quoted_inheritance_column} = '#{sti_name}' ") do |condition, subclass|
|
|
condition << "OR #{quoted_table_alias}.#{quoted_inheritance_column} = '#{subclass.sti_name}' "
|
|
end
|
|
|
|
" (#{type_condition}) "
|
|
end
|
|
|
|
# Guesses the table name, but does not decorate it with prefix and suffix information.
|
|
def undecorated_table_name(class_name = base_class.name)
|
|
table_name = class_name.to_s.demodulize.underscore
|
|
table_name = table_name.pluralize if pluralize_table_names
|
|
table_name
|
|
end
|
|
|
|
# Enables dynamic finders like find_by_user_name(user_name) and find_by_user_name_and_password(user_name, password) that are turned into
|
|
# find(:first, :conditions => ["user_name = ?", user_name]) and find(:first, :conditions => ["user_name = ? AND password = ?", user_name, password])
|
|
# respectively. Also works for find(:all) by using find_all_by_amount(50) that is turned into find(:all, :conditions => ["amount = ?", 50]).
|
|
#
|
|
# It's even possible to use all the additional parameters to find. For example, the full interface for find_all_by_amount
|
|
# is actually find_all_by_amount(amount, options).
|
|
#
|
|
# This also enables you to initialize a record if it is not found, such as find_or_initialize_by_amount(amount)
|
|
# or find_or_create_by_user_and_password(user, password).
|
|
#
|
|
# Each dynamic finder or initializer/creator is also defined in the class after it is first invoked, so that future
|
|
# attempts to use it do not run through method_missing.
|
|
def method_missing(method_id, *arguments)
|
|
if match = DynamicFinderMatch.match(method_id)
|
|
attribute_names = match.attribute_names
|
|
super unless all_attributes_exists?(attribute_names)
|
|
if match.finder?
|
|
finder = match.finder
|
|
bang = match.bang?
|
|
self.class_eval %{
|
|
def self.#{method_id}(*args)
|
|
options = args.extract_options!
|
|
attributes = construct_attributes_from_arguments([:#{attribute_names.join(',:')}], args)
|
|
finder_options = { :conditions => attributes }
|
|
validate_find_options(options)
|
|
set_readonly_option!(options)
|
|
|
|
#{'result = ' if bang}if options[:conditions]
|
|
with_scope(:find => finder_options) do
|
|
ActiveSupport::Deprecation.silence { send(:#{finder}, options) }
|
|
end
|
|
else
|
|
ActiveSupport::Deprecation.silence { send(:#{finder}, options.merge(finder_options)) }
|
|
end
|
|
#{'result || raise(RecordNotFound)' if bang}
|
|
end
|
|
}, __FILE__, __LINE__
|
|
send(method_id, *arguments)
|
|
elsif match.instantiator?
|
|
instantiator = match.instantiator
|
|
self.class_eval %{
|
|
def self.#{method_id}(*args)
|
|
guard_protected_attributes = false
|
|
|
|
if args[0].is_a?(Hash)
|
|
guard_protected_attributes = true
|
|
attributes = args[0].with_indifferent_access
|
|
find_attributes = attributes.slice(*[:#{attribute_names.join(',:')}])
|
|
else
|
|
find_attributes = attributes = construct_attributes_from_arguments([:#{attribute_names.join(',:')}], args)
|
|
end
|
|
|
|
options = { :conditions => find_attributes }
|
|
set_readonly_option!(options)
|
|
|
|
record = find_initial(options)
|
|
|
|
if record.nil?
|
|
record = self.new { |r| r.send(:attributes=, attributes, guard_protected_attributes) }
|
|
#{'yield(record) if block_given?'}
|
|
#{'record.save' if instantiator == :create}
|
|
record
|
|
else
|
|
record
|
|
end
|
|
end
|
|
}, __FILE__, __LINE__
|
|
send(method_id, *arguments)
|
|
end
|
|
else
|
|
super
|
|
end
|
|
end
|
|
|
|
def construct_attributes_from_arguments(attribute_names, arguments)
|
|
attributes = {}
|
|
attribute_names.each_with_index { |name, idx| attributes[name] = arguments[idx] }
|
|
attributes
|
|
end
|
|
|
|
# Similar in purpose to +expand_hash_conditions_for_aggregates+.
|
|
def expand_attribute_names_for_aggregates(attribute_names)
|
|
expanded_attribute_names = []
|
|
attribute_names.each do |attribute_name|
|
|
unless (aggregation = reflect_on_aggregation(attribute_name.to_sym)).nil?
|
|
aggregate_mapping(aggregation).each do |field_attr, aggregate_attr|
|
|
expanded_attribute_names << field_attr
|
|
end
|
|
else
|
|
expanded_attribute_names << attribute_name
|
|
end
|
|
end
|
|
expanded_attribute_names
|
|
end
|
|
|
|
def all_attributes_exists?(attribute_names)
|
|
attribute_names = expand_attribute_names_for_aggregates(attribute_names)
|
|
attribute_names.all? { |name| column_methods_hash.include?(name.to_sym) }
|
|
end
|
|
|
|
def attribute_condition(argument)
|
|
case argument
|
|
when nil then "IS ?"
|
|
when Array, ActiveRecord::Associations::AssociationCollection, ActiveRecord::NamedScope::Scope then "IN (?)"
|
|
when Range then "BETWEEN ? AND ?"
|
|
else "= ?"
|
|
end
|
|
end
|
|
|
|
# Interpret Array and Hash as conditions and anything else as an id.
|
|
def expand_id_conditions(id_or_conditions)
|
|
case id_or_conditions
|
|
when Array, Hash then id_or_conditions
|
|
else sanitize_sql(primary_key => id_or_conditions)
|
|
end
|
|
end
|
|
|
|
|
|
# Defines an "attribute" method (like +inheritance_column+ or
|
|
# +table_name+). A new (class) method will be created with the
|
|
# given name. If a value is specified, the new method will
|
|
# return that value (as a string). Otherwise, the given block
|
|
# will be used to compute the value of the method.
|
|
#
|
|
# The original method will be aliased, with the new name being
|
|
# prefixed with "original_". This allows the new method to
|
|
# access the original value.
|
|
#
|
|
# Example:
|
|
#
|
|
# class A < ActiveRecord::Base
|
|
# define_attr_method :primary_key, "sysid"
|
|
# define_attr_method( :inheritance_column ) do
|
|
# original_inheritance_column + "_id"
|
|
# end
|
|
# end
|
|
def define_attr_method(name, value=nil, &block)
|
|
sing = class << self; self; end
|
|
sing.send :alias_method, "original_#{name}", name
|
|
if block_given?
|
|
sing.send :define_method, name, &block
|
|
else
|
|
# use eval instead of a block to work around a memory leak in dev
|
|
# mode in fcgi
|
|
sing.class_eval "def #{name}; #{value.to_s.inspect}; end"
|
|
end
|
|
end
|
|
|
|
protected
|
|
# Scope parameters to method calls within the block. Takes a hash of method_name => parameters hash.
|
|
# method_name may be <tt>:find</tt> or <tt>:create</tt>. <tt>:find</tt> parameters may include the <tt>:conditions</tt>, <tt>:joins</tt>,
|
|
# <tt>:include</tt>, <tt>:offset</tt>, <tt>:limit</tt>, and <tt>:readonly</tt> options. <tt>:create</tt> parameters are an attributes hash.
|
|
#
|
|
# class Article < ActiveRecord::Base
|
|
# def self.create_with_scope
|
|
# with_scope(:find => { :conditions => "blog_id = 1" }, :create => { :blog_id => 1 }) do
|
|
# find(1) # => SELECT * from articles WHERE blog_id = 1 AND id = 1
|
|
# a = create(1)
|
|
# a.blog_id # => 1
|
|
# end
|
|
# end
|
|
# end
|
|
#
|
|
# In nested scopings, all previous parameters are overwritten by the innermost rule, with the exception of
|
|
# <tt>:conditions</tt> and <tt>:include</tt> options in <tt>:find</tt>, which are merged.
|
|
#
|
|
# class Article < ActiveRecord::Base
|
|
# def self.find_with_scope
|
|
# with_scope(:find => { :conditions => "blog_id = 1", :limit => 1 }, :create => { :blog_id => 1 }) do
|
|
# with_scope(:find => { :limit => 10 })
|
|
# find(:all) # => SELECT * from articles WHERE blog_id = 1 LIMIT 10
|
|
# end
|
|
# with_scope(:find => { :conditions => "author_id = 3" })
|
|
# find(:all) # => SELECT * from articles WHERE blog_id = 1 AND author_id = 3 LIMIT 1
|
|
# end
|
|
# end
|
|
# end
|
|
# end
|
|
#
|
|
# You can ignore any previous scopings by using the <tt>with_exclusive_scope</tt> method.
|
|
#
|
|
# class Article < ActiveRecord::Base
|
|
# def self.find_with_exclusive_scope
|
|
# with_scope(:find => { :conditions => "blog_id = 1", :limit => 1 }) do
|
|
# with_exclusive_scope(:find => { :limit => 10 })
|
|
# find(:all) # => SELECT * from articles LIMIT 10
|
|
# end
|
|
# end
|
|
# end
|
|
# end
|
|
def with_scope(method_scoping = {}, action = :merge, &block)
|
|
method_scoping = method_scoping.method_scoping if method_scoping.respond_to?(:method_scoping)
|
|
|
|
# Dup first and second level of hash (method and params).
|
|
method_scoping = method_scoping.inject({}) do |hash, (method, params)|
|
|
hash[method] = (params == true) ? params : params.dup
|
|
hash
|
|
end
|
|
|
|
method_scoping.assert_valid_keys([ :find, :create ])
|
|
|
|
if f = method_scoping[:find]
|
|
f.assert_valid_keys(VALID_FIND_OPTIONS)
|
|
set_readonly_option! f
|
|
end
|
|
|
|
# Merge scopings
|
|
if action == :merge && current_scoped_methods
|
|
method_scoping = current_scoped_methods.inject(method_scoping) do |hash, (method, params)|
|
|
case hash[method]
|
|
when Hash
|
|
if method == :find
|
|
(hash[method].keys + params.keys).uniq.each do |key|
|
|
merge = hash[method][key] && params[key] # merge if both scopes have the same key
|
|
if key == :conditions && merge
|
|
hash[method][key] = merge_conditions(params[key], hash[method][key])
|
|
elsif key == :include && merge
|
|
hash[method][key] = merge_includes(hash[method][key], params[key]).uniq
|
|
else
|
|
hash[method][key] = hash[method][key] || params[key]
|
|
end
|
|
end
|
|
else
|
|
hash[method] = params.merge(hash[method])
|
|
end
|
|
else
|
|
hash[method] = params
|
|
end
|
|
hash
|
|
end
|
|
end
|
|
|
|
self.scoped_methods << method_scoping
|
|
|
|
begin
|
|
yield
|
|
ensure
|
|
self.scoped_methods.pop
|
|
end
|
|
end
|
|
|
|
# Works like with_scope, but discards any nested properties.
|
|
def with_exclusive_scope(method_scoping = {}, &block)
|
|
with_scope(method_scoping, :overwrite, &block)
|
|
end
|
|
|
|
def subclasses #:nodoc:
|
|
@@subclasses[self] ||= []
|
|
@@subclasses[self] + extra = @@subclasses[self].inject([]) {|list, subclass| list + subclass.subclasses }
|
|
end
|
|
|
|
# Test whether the given method and optional key are scoped.
|
|
def scoped?(method, key = nil) #:nodoc:
|
|
if current_scoped_methods && (scope = current_scoped_methods[method])
|
|
!key || scope.has_key?(key)
|
|
end
|
|
end
|
|
|
|
# Retrieve the scope for the given method and optional key.
|
|
def scope(method, key = nil) #:nodoc:
|
|
if current_scoped_methods && (scope = current_scoped_methods[method])
|
|
key ? scope[key] : scope
|
|
end
|
|
end
|
|
|
|
def thread_safe_scoped_methods #:nodoc:
|
|
scoped_methods = (Thread.current[:scoped_methods] ||= {})
|
|
scoped_methods[self] ||= []
|
|
end
|
|
|
|
def single_threaded_scoped_methods #:nodoc:
|
|
@scoped_methods ||= []
|
|
end
|
|
|
|
# pick up the correct scoped_methods version from @@allow_concurrency
|
|
if @@allow_concurrency
|
|
alias_method :scoped_methods, :thread_safe_scoped_methods
|
|
else
|
|
alias_method :scoped_methods, :single_threaded_scoped_methods
|
|
end
|
|
|
|
def current_scoped_methods #:nodoc:
|
|
scoped_methods.last
|
|
end
|
|
|
|
# Returns the class type of the record using the current module as a prefix. So descendents of
|
|
# MyApp::Business::Account would appear as MyApp::Business::AccountSubclass.
|
|
def compute_type(type_name)
|
|
modularized_name = type_name_with_module(type_name)
|
|
silence_warnings do
|
|
begin
|
|
class_eval(modularized_name, __FILE__, __LINE__)
|
|
rescue NameError
|
|
class_eval(type_name, __FILE__, __LINE__)
|
|
end
|
|
end
|
|
end
|
|
|
|
# Returns the class descending directly from Active Record in the inheritance hierarchy.
|
|
def class_of_active_record_descendant(klass)
|
|
if klass.superclass == Base || klass.superclass.abstract_class?
|
|
klass
|
|
elsif klass.superclass.nil?
|
|
raise ActiveRecordError, "#{name} doesn't belong in a hierarchy descending from ActiveRecord"
|
|
else
|
|
class_of_active_record_descendant(klass.superclass)
|
|
end
|
|
end
|
|
|
|
# Returns the name of the class descending directly from Active Record in the inheritance hierarchy.
|
|
def class_name_of_active_record_descendant(klass) #:nodoc:
|
|
klass.base_class.name
|
|
end
|
|
|
|
# Accepts an array, hash, or string of SQL conditions and sanitizes
|
|
# them into a valid SQL fragment for a WHERE clause.
|
|
# ["name='%s' and group_id='%s'", "foo'bar", 4] returns "name='foo''bar' and group_id='4'"
|
|
# { :name => "foo'bar", :group_id => 4 } returns "name='foo''bar' and group_id='4'"
|
|
# "name='foo''bar' and group_id='4'" returns "name='foo''bar' and group_id='4'"
|
|
def sanitize_sql_for_conditions(condition)
|
|
return nil if condition.blank?
|
|
|
|
case condition
|
|
when Array; sanitize_sql_array(condition)
|
|
when Hash; sanitize_sql_hash_for_conditions(condition)
|
|
else condition
|
|
end
|
|
end
|
|
alias_method :sanitize_sql, :sanitize_sql_for_conditions
|
|
|
|
# Accepts an array, hash, or string of SQL conditions and sanitizes
|
|
# them into a valid SQL fragment for a SET clause.
|
|
# { :name => nil, :group_id => 4 } returns "name = NULL , group_id='4'"
|
|
def sanitize_sql_for_assignment(assignments)
|
|
case assignments
|
|
when Array; sanitize_sql_array(assignments)
|
|
when Hash; sanitize_sql_hash_for_assignment(assignments)
|
|
else assignments
|
|
end
|
|
end
|
|
|
|
def aggregate_mapping(reflection)
|
|
mapping = reflection.options[:mapping] || [reflection.name, reflection.name]
|
|
mapping.first.is_a?(Array) ? mapping : [mapping]
|
|
end
|
|
|
|
# Accepts a hash of SQL conditions and replaces those attributes
|
|
# that correspond to a +composed_of+ relationship with their expanded
|
|
# aggregate attribute values.
|
|
# Given:
|
|
# class Person < ActiveRecord::Base
|
|
# composed_of :address, :class_name => "Address",
|
|
# :mapping => [%w(address_street street), %w(address_city city)]
|
|
# end
|
|
# Then:
|
|
# { :address => Address.new("813 abc st.", "chicago") }
|
|
# # => { :address_street => "813 abc st.", :address_city => "chicago" }
|
|
def expand_hash_conditions_for_aggregates(attrs)
|
|
expanded_attrs = {}
|
|
attrs.each do |attr, value|
|
|
unless (aggregation = reflect_on_aggregation(attr.to_sym)).nil?
|
|
mapping = aggregate_mapping(aggregation)
|
|
mapping.each do |field_attr, aggregate_attr|
|
|
if mapping.size == 1 && !value.respond_to?(aggregate_attr)
|
|
expanded_attrs[field_attr] = value
|
|
else
|
|
expanded_attrs[field_attr] = value.send(aggregate_attr)
|
|
end
|
|
end
|
|
else
|
|
expanded_attrs[attr] = value
|
|
end
|
|
end
|
|
expanded_attrs
|
|
end
|
|
|
|
# Sanitizes a hash of attribute/value pairs into SQL conditions for a WHERE clause.
|
|
# { :name => "foo'bar", :group_id => 4 }
|
|
# # => "name='foo''bar' and group_id= 4"
|
|
# { :status => nil, :group_id => [1,2,3] }
|
|
# # => "status IS NULL and group_id IN (1,2,3)"
|
|
# { :age => 13..18 }
|
|
# # => "age BETWEEN 13 AND 18"
|
|
# { 'other_records.id' => 7 }
|
|
# # => "`other_records`.`id` = 7"
|
|
# { :other_records => { :id => 7 } }
|
|
# # => "`other_records`.`id` = 7"
|
|
# And for value objects on a composed_of relationship:
|
|
# { :address => Address.new("123 abc st.", "chicago") }
|
|
# # => "address_street='123 abc st.' and address_city='chicago'"
|
|
def sanitize_sql_hash_for_conditions(attrs, table_name = quoted_table_name)
|
|
attrs = expand_hash_conditions_for_aggregates(attrs)
|
|
|
|
conditions = attrs.map do |attr, value|
|
|
unless value.is_a?(Hash)
|
|
attr = attr.to_s
|
|
|
|
# Extract table name from qualified attribute names.
|
|
if attr.include?('.')
|
|
table_name, attr = attr.split('.', 2)
|
|
table_name = connection.quote_table_name(table_name)
|
|
end
|
|
|
|
"#{table_name}.#{connection.quote_column_name(attr)} #{attribute_condition(value)}"
|
|
else
|
|
sanitize_sql_hash_for_conditions(value, connection.quote_table_name(attr.to_s))
|
|
end
|
|
end.join(' AND ')
|
|
|
|
replace_bind_variables(conditions, expand_range_bind_variables(attrs.values))
|
|
end
|
|
alias_method :sanitize_sql_hash, :sanitize_sql_hash_for_conditions
|
|
|
|
# Sanitizes a hash of attribute/value pairs into SQL conditions for a SET clause.
|
|
# { :status => nil, :group_id => 1 }
|
|
# # => "status = NULL , group_id = 1"
|
|
def sanitize_sql_hash_for_assignment(attrs)
|
|
attrs.map do |attr, value|
|
|
"#{connection.quote_column_name(attr)} = #{quote_bound_value(value)}"
|
|
end.join(', ')
|
|
end
|
|
|
|
# Accepts an array of conditions. The array has each value
|
|
# sanitized and interpolated into the SQL statement.
|
|
# ["name='%s' and group_id='%s'", "foo'bar", 4] returns "name='foo''bar' and group_id='4'"
|
|
def sanitize_sql_array(ary)
|
|
statement, *values = ary
|
|
if values.first.is_a?(Hash) and statement =~ /:\w+/
|
|
replace_named_bind_variables(statement, values.first)
|
|
elsif statement.include?('?')
|
|
replace_bind_variables(statement, values)
|
|
else
|
|
statement % values.collect { |value| connection.quote_string(value.to_s) }
|
|
end
|
|
end
|
|
|
|
alias_method :sanitize_conditions, :sanitize_sql
|
|
|
|
def replace_bind_variables(statement, values) #:nodoc:
|
|
raise_if_bind_arity_mismatch(statement, statement.count('?'), values.size)
|
|
bound = values.dup
|
|
statement.gsub('?') { quote_bound_value(bound.shift) }
|
|
end
|
|
|
|
def replace_named_bind_variables(statement, bind_vars) #:nodoc:
|
|
statement.gsub(/(:?):([a-zA-Z]\w*)/) do
|
|
if $1 == ':' # skip postgresql casts
|
|
$& # return the whole match
|
|
elsif bind_vars.include?(match = $2.to_sym)
|
|
quote_bound_value(bind_vars[match])
|
|
else
|
|
raise PreparedStatementInvalid, "missing value for :#{match} in #{statement}"
|
|
end
|
|
end
|
|
end
|
|
|
|
def expand_range_bind_variables(bind_vars) #:nodoc:
|
|
expanded = []
|
|
|
|
bind_vars.each do |var|
|
|
next if var.is_a?(Hash)
|
|
|
|
if var.is_a?(Range)
|
|
expanded << var.first
|
|
expanded << var.last
|
|
else
|
|
expanded << var
|
|
end
|
|
end
|
|
|
|
expanded
|
|
end
|
|
|
|
def quote_bound_value(value) #:nodoc:
|
|
if value.respond_to?(:map) && !value.is_a?(String)
|
|
if value.respond_to?(:empty?) && value.empty?
|
|
connection.quote(nil)
|
|
else
|
|
value.map { |v| connection.quote(v) }.join(',')
|
|
end
|
|
else
|
|
connection.quote(value)
|
|
end
|
|
end
|
|
|
|
def raise_if_bind_arity_mismatch(statement, expected, provided) #:nodoc:
|
|
unless expected == provided
|
|
raise PreparedStatementInvalid, "wrong number of bind variables (#{provided} for #{expected}) in: #{statement}"
|
|
end
|
|
end
|
|
|
|
VALID_FIND_OPTIONS = [ :conditions, :include, :joins, :limit, :offset,
|
|
:order, :select, :readonly, :group, :from, :lock ]
|
|
|
|
def validate_find_options(options) #:nodoc:
|
|
options.assert_valid_keys(VALID_FIND_OPTIONS)
|
|
end
|
|
|
|
def set_readonly_option!(options) #:nodoc:
|
|
# Inherit :readonly from finder scope if set. Otherwise,
|
|
# if :joins is not blank then :readonly defaults to true.
|
|
unless options.has_key?(:readonly)
|
|
if scoped_readonly = scope(:find, :readonly)
|
|
options[:readonly] = scoped_readonly
|
|
elsif !options[:joins].blank? && !options[:select]
|
|
options[:readonly] = true
|
|
end
|
|
end
|
|
end
|
|
|
|
def encode_quoted_value(value) #:nodoc:
|
|
quoted_value = connection.quote(value)
|
|
quoted_value = "'#{quoted_value[1..-2].gsub(/\'/, "\\\\'")}'" if quoted_value.include?("\\\'") # (for ruby mode) "
|
|
quoted_value
|
|
end
|
|
end
|
|
|
|
public
|
|
# New objects can be instantiated as either empty (pass no construction parameter) or pre-set with
|
|
# attributes but not yet saved (pass a hash with key names matching the associated table column names).
|
|
# In both instances, valid attribute keys are determined by the column names of the associated table --
|
|
# hence you can't have attributes that aren't part of the table columns.
|
|
def initialize(attributes = nil)
|
|
@attributes = attributes_from_column_definition
|
|
@attributes_cache = {}
|
|
@new_record = true
|
|
ensure_proper_type
|
|
self.attributes = attributes unless attributes.nil?
|
|
self.class.send(:scope, :create).each { |att,value| self.send("#{att}=", value) } if self.class.send(:scoped?, :create)
|
|
result = yield self if block_given?
|
|
callback(:after_initialize) if respond_to_without_attributes?(:after_initialize)
|
|
result
|
|
end
|
|
|
|
# A model instance's primary key is always available as model.id
|
|
# whether you name it the default 'id' or set it to something else.
|
|
def id
|
|
attr_name = self.class.primary_key
|
|
column = column_for_attribute(attr_name)
|
|
|
|
self.class.send(:define_read_method, :id, attr_name, column)
|
|
# now that the method exists, call it
|
|
self.send attr_name.to_sym
|
|
|
|
end
|
|
|
|
# Enables Active Record objects to be used as URL parameters in Action Pack automatically.
|
|
def to_param
|
|
# We can't use alias_method here, because method 'id' optimizes itself on the fly.
|
|
(id = self.id) ? id.to_s : nil # Be sure to stringify the id for routes
|
|
end
|
|
|
|
# Returns a cache key that can be used to identify this record.
|
|
#
|
|
# ==== Examples
|
|
#
|
|
# Product.new.cache_key # => "products/new"
|
|
# Product.find(5).cache_key # => "products/5" (updated_at not available)
|
|
# Person.find(5).cache_key # => "people/5-20071224150000" (updated_at available)
|
|
def cache_key
|
|
case
|
|
when new_record?
|
|
"#{self.class.model_name.cache_key}/new"
|
|
when timestamp = self[:updated_at]
|
|
"#{self.class.model_name.cache_key}/#{id}-#{timestamp.to_s(:number)}"
|
|
else
|
|
"#{self.class.model_name.cache_key}/#{id}"
|
|
end
|
|
end
|
|
|
|
def id_before_type_cast #:nodoc:
|
|
read_attribute_before_type_cast(self.class.primary_key)
|
|
end
|
|
|
|
def quoted_id #:nodoc:
|
|
quote_value(id, column_for_attribute(self.class.primary_key))
|
|
end
|
|
|
|
# Sets the primary ID.
|
|
def id=(value)
|
|
write_attribute(self.class.primary_key, value)
|
|
end
|
|
|
|
# Returns true if this object hasn't been saved yet -- that is, a record for the object doesn't exist yet.
|
|
def new_record?
|
|
defined?(@new_record) && @new_record
|
|
end
|
|
|
|
# * No record exists: Creates a new record with values matching those of the object attributes.
|
|
# * A record does exist: Updates the record with values matching those of the object attributes.
|
|
#
|
|
# Note: If your model specifies any validations then the method declaration dynamically
|
|
# changes to:
|
|
# save(perform_validation=true)
|
|
# Calling save(false) saves the model without running validations.
|
|
# See ActiveRecord::Validations for more information.
|
|
def save
|
|
create_or_update
|
|
end
|
|
|
|
# Attempts to save the record, but instead of just returning false if it couldn't happen, it raises a
|
|
# RecordNotSaved exception
|
|
def save!
|
|
create_or_update || raise(RecordNotSaved)
|
|
end
|
|
|
|
# Deletes the record in the database and freezes this instance to reflect that no changes should
|
|
# be made (since they can't be persisted).
|
|
def destroy
|
|
unless new_record?
|
|
connection.delete <<-end_sql, "#{self.class.name} Destroy"
|
|
DELETE FROM #{self.class.quoted_table_name}
|
|
WHERE #{connection.quote_column_name(self.class.primary_key)} = #{quoted_id}
|
|
end_sql
|
|
end
|
|
|
|
freeze
|
|
end
|
|
|
|
# Returns a clone of the record that hasn't been assigned an id yet and
|
|
# is treated as a new record. Note that this is a "shallow" clone:
|
|
# it copies the object's attributes only, not its associations.
|
|
# The extent of a "deep" clone is application-specific and is therefore
|
|
# left to the application to implement according to its need.
|
|
def clone
|
|
attrs = clone_attributes(:read_attribute_before_type_cast)
|
|
attrs.delete(self.class.primary_key)
|
|
record = self.class.new
|
|
record.send :instance_variable_set, '@attributes', attrs
|
|
record
|
|
end
|
|
|
|
# Returns an instance of the specified +klass+ with the attributes of the current record. This is mostly useful in relation to
|
|
# single-table inheritance structures where you want a subclass to appear as the superclass. This can be used along with record
|
|
# identification in Action Pack to allow, say, <tt>Client < Company</tt> to do something like render <tt>:partial => @client.becomes(Company)</tt>
|
|
# to render that instance using the companies/company partial instead of clients/client.
|
|
#
|
|
# Note: The new instance will share a link to the same attributes as the original class. So any change to the attributes in either
|
|
# instance will affect the other.
|
|
def becomes(klass)
|
|
returning klass.new do |became|
|
|
became.instance_variable_set("@attributes", @attributes)
|
|
became.instance_variable_set("@attributes_cache", @attributes_cache)
|
|
became.instance_variable_set("@new_record", new_record?)
|
|
end
|
|
end
|
|
|
|
# Updates a single attribute and saves the record without going through the normal validation procedure.
|
|
# This is especially useful for boolean flags on existing records. The regular +update_attribute+ method
|
|
# in Base is replaced with this when the validations module is mixed in, which it is by default.
|
|
def update_attribute(name, value)
|
|
send(name.to_s + '=', value)
|
|
save(false)
|
|
end
|
|
|
|
# Updates all the attributes from the passed-in Hash and saves the record. If the object is invalid, the saving will
|
|
# fail and false will be returned.
|
|
def update_attributes(attributes)
|
|
self.attributes = attributes
|
|
save
|
|
end
|
|
|
|
# Updates an object just like Base.update_attributes but calls save! instead of save so an exception is raised if the record is invalid.
|
|
def update_attributes!(attributes)
|
|
self.attributes = attributes
|
|
save!
|
|
end
|
|
|
|
# Initializes +attribute+ to zero if +nil+ and adds the value passed as +by+ (default is 1).
|
|
# The increment is performed directly on the underlying attribute, no setter is invoked.
|
|
# Only makes sense for number-based attributes. Returns +self+.
|
|
def increment(attribute, by = 1)
|
|
self[attribute] ||= 0
|
|
self[attribute] += by
|
|
self
|
|
end
|
|
|
|
# Wrapper around +increment+ that saves the record. This method differs from
|
|
# its non-bang version in that it passes through the attribute setter.
|
|
# Saving is not subjected to validation checks. Returns +true+ if the
|
|
# record could be saved.
|
|
def increment!(attribute, by = 1)
|
|
increment(attribute, by).update_attribute(attribute, self[attribute])
|
|
end
|
|
|
|
# Initializes +attribute+ to zero if +nil+ and subtracts the value passed as +by+ (default is 1).
|
|
# The decrement is performed directly on the underlying attribute, no setter is invoked.
|
|
# Only makes sense for number-based attributes. Returns +self+.
|
|
def decrement(attribute, by = 1)
|
|
self[attribute] ||= 0
|
|
self[attribute] -= by
|
|
self
|
|
end
|
|
|
|
# Wrapper around +decrement+ that saves the record. This method differs from
|
|
# its non-bang version in that it passes through the attribute setter.
|
|
# Saving is not subjected to validation checks. Returns +true+ if the
|
|
# record could be saved.
|
|
def decrement!(attribute, by = 1)
|
|
decrement(attribute, by).update_attribute(attribute, self[attribute])
|
|
end
|
|
|
|
# Assigns to +attribute+ the boolean opposite of <tt>attribute?</tt>. So
|
|
# if the predicate returns +true+ the attribute will become +false+. This
|
|
# method toggles directly the underlying value without calling any setter.
|
|
# Returns +self+.
|
|
def toggle(attribute)
|
|
self[attribute] = !send("#{attribute}?")
|
|
self
|
|
end
|
|
|
|
# Wrapper around +toggle+ that saves the record. This method differs from
|
|
# its non-bang version in that it passes through the attribute setter.
|
|
# Saving is not subjected to validation checks. Returns +true+ if the
|
|
# record could be saved.
|
|
def toggle!(attribute)
|
|
toggle(attribute).update_attribute(attribute, self[attribute])
|
|
end
|
|
|
|
# Reloads the attributes of this object from the database.
|
|
# The optional options argument is passed to find when reloading so you
|
|
# may do e.g. record.reload(:lock => true) to reload the same record with
|
|
# an exclusive row lock.
|
|
def reload(options = nil)
|
|
clear_aggregation_cache
|
|
clear_association_cache
|
|
@attributes.update(self.class.find(self.id, options).instance_variable_get('@attributes'))
|
|
@attributes_cache = {}
|
|
self
|
|
end
|
|
|
|
# Returns the value of the attribute identified by <tt>attr_name</tt> after it has been typecast (for example,
|
|
# "2004-12-12" in a data column is cast to a date object, like Date.new(2004, 12, 12)).
|
|
# (Alias for the protected read_attribute method).
|
|
def [](attr_name)
|
|
read_attribute(attr_name)
|
|
end
|
|
|
|
# Updates the attribute identified by <tt>attr_name</tt> with the specified +value+.
|
|
# (Alias for the protected write_attribute method).
|
|
def []=(attr_name, value)
|
|
write_attribute(attr_name, value)
|
|
end
|
|
|
|
# Allows you to set all the attributes at once by passing in a hash with keys
|
|
# matching the attribute names (which again matches the column names). Sensitive attributes can be protected
|
|
# from this form of mass-assignment by using the +attr_protected+ macro. Or you can alternatively
|
|
# specify which attributes *can* be accessed with the +attr_accessible+ macro. Then all the
|
|
# attributes not included in that won't be allowed to be mass-assigned.
|
|
def attributes=(new_attributes, guard_protected_attributes = true)
|
|
return if new_attributes.nil?
|
|
attributes = new_attributes.dup
|
|
attributes.stringify_keys!
|
|
|
|
multi_parameter_attributes = []
|
|
attributes = remove_attributes_protected_from_mass_assignment(attributes) if guard_protected_attributes
|
|
|
|
attributes.each do |k, v|
|
|
if k.include?("(")
|
|
multi_parameter_attributes << [ k, v ]
|
|
else
|
|
respond_to?(:"#{k}=") ? send(:"#{k}=", v) : raise(UnknownAttributeError, "unknown attribute: #{k}")
|
|
end
|
|
end
|
|
|
|
assign_multiparameter_attributes(multi_parameter_attributes)
|
|
end
|
|
|
|
|
|
# Returns a hash of all the attributes with their names as keys and the values of the attributes as values.
|
|
def attributes
|
|
self.attribute_names.inject({}) do |attrs, name|
|
|
attrs[name] = read_attribute(name)
|
|
attrs
|
|
end
|
|
end
|
|
|
|
# Returns a hash of attributes before typecasting and deserialization.
|
|
def attributes_before_type_cast
|
|
self.attribute_names.inject({}) do |attrs, name|
|
|
attrs[name] = read_attribute_before_type_cast(name)
|
|
attrs
|
|
end
|
|
end
|
|
|
|
# Format attributes nicely for inspect.
|
|
def attribute_for_inspect(attr_name)
|
|
value = read_attribute(attr_name)
|
|
|
|
if value.is_a?(String) && value.length > 50
|
|
"#{value[0..50]}...".inspect
|
|
elsif value.is_a?(Date) || value.is_a?(Time)
|
|
%("#{value.to_s(:db)}")
|
|
else
|
|
value.inspect
|
|
end
|
|
end
|
|
|
|
# Returns true if the specified +attribute+ has been set by the user or by a database load and is neither
|
|
# nil nor empty? (the latter only applies to objects that respond to empty?, most notably Strings).
|
|
def attribute_present?(attribute)
|
|
value = read_attribute(attribute)
|
|
!value.blank?
|
|
end
|
|
|
|
# Returns true if the given attribute is in the attributes hash
|
|
def has_attribute?(attr_name)
|
|
@attributes.has_key?(attr_name.to_s)
|
|
end
|
|
|
|
# Returns an array of names for the attributes available on this object sorted alphabetically.
|
|
def attribute_names
|
|
@attributes.keys.sort
|
|
end
|
|
|
|
# Returns the column object for the named attribute.
|
|
def column_for_attribute(name)
|
|
self.class.columns_hash[name.to_s]
|
|
end
|
|
|
|
# Returns true if the +comparison_object+ is the same object, or is of the same type and has the same id.
|
|
def ==(comparison_object)
|
|
comparison_object.equal?(self) ||
|
|
(comparison_object.instance_of?(self.class) &&
|
|
comparison_object.id == id &&
|
|
!comparison_object.new_record?)
|
|
end
|
|
|
|
# Delegates to ==
|
|
def eql?(comparison_object)
|
|
self == (comparison_object)
|
|
end
|
|
|
|
# Delegates to id in order to allow two records of the same type and id to work with something like:
|
|
# [ Person.find(1), Person.find(2), Person.find(3) ] & [ Person.find(1), Person.find(4) ] # => [ Person.find(1) ]
|
|
def hash
|
|
id.hash
|
|
end
|
|
|
|
# Freeze the attributes hash such that associations are still accessible, even on destroyed records.
|
|
def freeze
|
|
@attributes.freeze; self
|
|
end
|
|
|
|
# Returns +true+ if the attributes hash has been frozen.
|
|
def frozen?
|
|
@attributes.frozen?
|
|
end
|
|
|
|
# Returns +true+ if the record is read only. Records loaded through joins with piggy-back
|
|
# attributes will be marked as read only since they cannot be saved.
|
|
def readonly?
|
|
defined?(@readonly) && @readonly == true
|
|
end
|
|
|
|
# Marks this record as read only.
|
|
def readonly!
|
|
@readonly = true
|
|
end
|
|
|
|
# Returns the contents of the record as a nicely formatted string.
|
|
def inspect
|
|
attributes_as_nice_string = self.class.column_names.collect { |name|
|
|
if has_attribute?(name) || new_record?
|
|
"#{name}: #{attribute_for_inspect(name)}"
|
|
end
|
|
}.compact.join(", ")
|
|
"#<#{self.class} #{attributes_as_nice_string}>"
|
|
end
|
|
|
|
private
|
|
def create_or_update
|
|
raise ReadOnlyRecord if readonly?
|
|
result = new_record? ? create : update
|
|
result != false
|
|
end
|
|
|
|
# Updates the associated record with values matching those of the instance attributes.
|
|
# Returns the number of affected rows.
|
|
def update(attribute_names = @attributes.keys)
|
|
quoted_attributes = attributes_with_quotes(false, false, attribute_names)
|
|
return 0 if quoted_attributes.empty?
|
|
connection.update(
|
|
"UPDATE #{self.class.quoted_table_name} " +
|
|
"SET #{quoted_comma_pair_list(connection, quoted_attributes)} " +
|
|
"WHERE #{connection.quote_column_name(self.class.primary_key)} = #{quote_value(id)}",
|
|
"#{self.class.name} Update"
|
|
)
|
|
end
|
|
|
|
# Creates a record with values matching those of the instance attributes
|
|
# and returns its id.
|
|
def create
|
|
if self.id.nil? && connection.prefetch_primary_key?(self.class.table_name)
|
|
self.id = connection.next_sequence_value(self.class.sequence_name)
|
|
end
|
|
|
|
quoted_attributes = attributes_with_quotes
|
|
|
|
statement = if quoted_attributes.empty?
|
|
connection.empty_insert_statement(self.class.table_name)
|
|
else
|
|
"INSERT INTO #{self.class.quoted_table_name} " +
|
|
"(#{quoted_column_names.join(', ')}) " +
|
|
"VALUES(#{quoted_attributes.values.join(', ')})"
|
|
end
|
|
|
|
self.id = connection.insert(statement, "#{self.class.name} Create",
|
|
self.class.primary_key, self.id, self.class.sequence_name)
|
|
|
|
@new_record = false
|
|
id
|
|
end
|
|
|
|
# Sets the attribute used for single table inheritance to this class name if this is not the ActiveRecord::Base descendent.
|
|
# Considering the hierarchy Reply < Message < ActiveRecord::Base, this makes it possible to do Reply.new without having to
|
|
# set <tt>Reply[Reply.inheritance_column] = "Reply"</tt> yourself. No such attribute would be set for objects of the
|
|
# Message class in that example.
|
|
def ensure_proper_type
|
|
unless self.class.descends_from_active_record?
|
|
write_attribute(self.class.inheritance_column, self.class.sti_name)
|
|
end
|
|
end
|
|
|
|
def convert_number_column_value(value)
|
|
if value == false
|
|
0
|
|
elsif value == true
|
|
1
|
|
elsif value.is_a?(String) && value.blank?
|
|
nil
|
|
else
|
|
value
|
|
end
|
|
end
|
|
|
|
def remove_attributes_protected_from_mass_assignment(attributes)
|
|
safe_attributes =
|
|
if self.class.accessible_attributes.nil? && self.class.protected_attributes.nil?
|
|
attributes.reject { |key, value| attributes_protected_by_default.include?(key.gsub(/\(.+/, "")) }
|
|
elsif self.class.protected_attributes.nil?
|
|
attributes.reject { |key, value| !self.class.accessible_attributes.include?(key.gsub(/\(.+/, "")) || attributes_protected_by_default.include?(key.gsub(/\(.+/, "")) }
|
|
elsif self.class.accessible_attributes.nil?
|
|
attributes.reject { |key, value| self.class.protected_attributes.include?(key.gsub(/\(.+/,"")) || attributes_protected_by_default.include?(key.gsub(/\(.+/, "")) }
|
|
else
|
|
raise "Declare either attr_protected or attr_accessible for #{self.class}, but not both."
|
|
end
|
|
|
|
removed_attributes = attributes.keys - safe_attributes.keys
|
|
|
|
if removed_attributes.any?
|
|
log_protected_attribute_removal(removed_attributes)
|
|
end
|
|
|
|
safe_attributes
|
|
end
|
|
|
|
# Removes attributes which have been marked as readonly.
|
|
def remove_readonly_attributes(attributes)
|
|
unless self.class.readonly_attributes.nil?
|
|
attributes.delete_if { |key, value| self.class.readonly_attributes.include?(key.gsub(/\(.+/,"")) }
|
|
else
|
|
attributes
|
|
end
|
|
end
|
|
|
|
def log_protected_attribute_removal(*attributes)
|
|
logger.debug "WARNING: Can't mass-assign these protected attributes: #{attributes.join(', ')}"
|
|
end
|
|
|
|
# The primary key and inheritance column can never be set by mass-assignment for security reasons.
|
|
def attributes_protected_by_default
|
|
default = [ self.class.primary_key, self.class.inheritance_column ]
|
|
default << 'id' unless self.class.primary_key.eql? 'id'
|
|
default
|
|
end
|
|
|
|
# Returns a copy of the attributes hash where all the values have been safely quoted for use in
|
|
# an SQL statement.
|
|
def attributes_with_quotes(include_primary_key = true, include_readonly_attributes = true, attribute_names = @attributes.keys)
|
|
quoted = {}
|
|
connection = self.class.connection
|
|
attribute_names.each do |name|
|
|
if (column = column_for_attribute(name)) && (include_primary_key || !column.primary)
|
|
value = read_attribute(name)
|
|
|
|
# We need explicit to_yaml because quote() does not properly convert Time/Date fields to YAML.
|
|
if value && self.class.serialized_attributes.has_key?(name) && (value.acts_like?(:date) || value.acts_like?(:time))
|
|
value = value.to_yaml
|
|
end
|
|
|
|
quoted[name] = connection.quote(value, column)
|
|
end
|
|
end
|
|
include_readonly_attributes ? quoted : remove_readonly_attributes(quoted)
|
|
end
|
|
|
|
# Quote strings appropriately for SQL statements.
|
|
def quote_value(value, column = nil)
|
|
self.class.connection.quote(value, column)
|
|
end
|
|
|
|
# Interpolate custom SQL string in instance context.
|
|
# Optional record argument is meant for custom insert_sql.
|
|
def interpolate_sql(sql, record = nil)
|
|
instance_eval("%@#{sql.gsub('@', '\@')}@")
|
|
end
|
|
|
|
# Initializes the attributes array with keys matching the columns from the linked table and
|
|
# the values matching the corresponding default value of that column, so
|
|
# that a new instance, or one populated from a passed-in Hash, still has all the attributes
|
|
# that instances loaded from the database would.
|
|
def attributes_from_column_definition
|
|
self.class.columns.inject({}) do |attributes, column|
|
|
attributes[column.name] = column.default unless column.name == self.class.primary_key
|
|
attributes
|
|
end
|
|
end
|
|
|
|
# Instantiates objects for all attribute classes that needs more than one constructor parameter. This is done
|
|
# by calling new on the column type or aggregation type (through composed_of) object with these parameters.
|
|
# So having the pairs written_on(1) = "2004", written_on(2) = "6", written_on(3) = "24", will instantiate
|
|
# written_on (a date type) with Date.new("2004", "6", "24"). You can also specify a typecast character in the
|
|
# parentheses to have the parameters typecasted before they're used in the constructor. Use i for Fixnum, f for Float,
|
|
# s for String, and a for Array. If all the values for a given attribute are empty, the attribute will be set to nil.
|
|
def assign_multiparameter_attributes(pairs)
|
|
execute_callstack_for_multiparameter_attributes(
|
|
extract_callstack_for_multiparameter_attributes(pairs)
|
|
)
|
|
end
|
|
|
|
def instantiate_time_object(name, values)
|
|
if self.class.time_zone_aware_attributes && !self.class.skip_time_zone_conversion_for_attributes.include?(name.to_sym)
|
|
Time.zone.local(*values)
|
|
else
|
|
Time.time_with_datetime_fallback(@@default_timezone, *values)
|
|
end
|
|
end
|
|
|
|
def execute_callstack_for_multiparameter_attributes(callstack)
|
|
errors = []
|
|
callstack.each do |name, values|
|
|
klass = (self.class.reflect_on_aggregation(name.to_sym) || column_for_attribute(name)).klass
|
|
if values.empty?
|
|
send(name + "=", nil)
|
|
else
|
|
begin
|
|
value = if Time == klass
|
|
instantiate_time_object(name, values)
|
|
elsif Date == klass
|
|
begin
|
|
Date.new(*values)
|
|
rescue ArgumentError => ex # if Date.new raises an exception on an invalid date
|
|
instantiate_time_object(name, values).to_date # we instantiate Time object and convert it back to a date thus using Time's logic in handling invalid dates
|
|
end
|
|
else
|
|
klass.new(*values)
|
|
end
|
|
|
|
send(name + "=", value)
|
|
rescue => ex
|
|
errors << AttributeAssignmentError.new("error on assignment #{values.inspect} to #{name}", ex, name)
|
|
end
|
|
end
|
|
end
|
|
unless errors.empty?
|
|
raise MultiparameterAssignmentErrors.new(errors), "#{errors.size} error(s) on assignment of multiparameter attributes"
|
|
end
|
|
end
|
|
|
|
def extract_callstack_for_multiparameter_attributes(pairs)
|
|
attributes = { }
|
|
|
|
for pair in pairs
|
|
multiparameter_name, value = pair
|
|
attribute_name = multiparameter_name.split("(").first
|
|
attributes[attribute_name] = [] unless attributes.include?(attribute_name)
|
|
|
|
unless value.empty?
|
|
attributes[attribute_name] <<
|
|
[ find_parameter_position(multiparameter_name), type_cast_attribute_value(multiparameter_name, value) ]
|
|
end
|
|
end
|
|
|
|
attributes.each { |name, values| attributes[name] = values.sort_by{ |v| v.first }.collect { |v| v.last } }
|
|
end
|
|
|
|
def type_cast_attribute_value(multiparameter_name, value)
|
|
multiparameter_name =~ /\([0-9]*([a-z])\)/ ? value.send("to_" + $1) : value
|
|
end
|
|
|
|
def find_parameter_position(multiparameter_name)
|
|
multiparameter_name.scan(/\(([0-9]*).*\)/).first.first
|
|
end
|
|
|
|
# Returns a comma-separated pair list, like "key1 = val1, key2 = val2".
|
|
def comma_pair_list(hash)
|
|
hash.inject([]) { |list, pair| list << "#{pair.first} = #{pair.last}" }.join(", ")
|
|
end
|
|
|
|
def quoted_column_names(attributes = attributes_with_quotes)
|
|
connection = self.class.connection
|
|
attributes.keys.collect do |column_name|
|
|
connection.quote_column_name(column_name)
|
|
end
|
|
end
|
|
|
|
def self.quoted_table_name
|
|
self.connection.quote_table_name(self.table_name)
|
|
end
|
|
|
|
def quote_columns(quoter, hash)
|
|
hash.inject({}) do |quoted, (name, value)|
|
|
quoted[quoter.quote_column_name(name)] = value
|
|
quoted
|
|
end
|
|
end
|
|
|
|
def quoted_comma_pair_list(quoter, hash)
|
|
comma_pair_list(quote_columns(quoter, hash))
|
|
end
|
|
|
|
def object_from_yaml(string)
|
|
return string unless string.is_a?(String)
|
|
YAML::load(string) rescue string
|
|
end
|
|
|
|
def clone_attributes(reader_method = :read_attribute, attributes = {})
|
|
self.attribute_names.inject(attributes) do |attrs, name|
|
|
attrs[name] = clone_attribute_value(reader_method, name)
|
|
attrs
|
|
end
|
|
end
|
|
|
|
def clone_attribute_value(reader_method, attribute_name)
|
|
value = send(reader_method, attribute_name)
|
|
value.duplicable? ? value.clone : value
|
|
rescue TypeError, NoMethodError
|
|
value
|
|
end
|
|
end
|
|
end
|