mirror of
https://github.com/rails/rails.git
synced 2022-11-09 12:12:34 -05:00
9661395d38
git-svn-id: http://svn-commit.rubyonrails.org/rails/trunk@8381 5ecf4fe2-1ee6-0310-87b1-e25e094e27de
267 lines
14 KiB
Ruby
267 lines
14 KiB
Ruby
module ActiveRecord
|
|
module Calculations #:nodoc:
|
|
CALCULATIONS_OPTIONS = [:conditions, :joins, :order, :select, :group, :having, :distinct, :limit, :offset, :include]
|
|
def self.included(base)
|
|
base.extend(ClassMethods)
|
|
end
|
|
|
|
module ClassMethods
|
|
# Count operates using three different approaches.
|
|
#
|
|
# * Count all: By not passing any parameters to count, it will return a count of all the rows for the model.
|
|
# * Count using column : By passing a column name to count, it will return a count of all the rows for the model with supplied column present
|
|
# * Count using options will find the row count matched by the options used.
|
|
#
|
|
# The third approach, count using options, accepts an option hash as the only parameter. The options are:
|
|
#
|
|
# * <tt>:conditions</tt>: An SQL fragment like "administrator = 1" or [ "user_name = ?", username ]. See conditions in the intro.
|
|
# * <tt>:joins</tt>: Either an SQL fragment for additional joins like "LEFT JOIN comments ON comments.post_id = id" (rarely needed)
|
|
# or named associations in the same form used for the :include option, which will perform an INNER JOIN on the associated table(s).
|
|
# If the value is a string, then the records will be returned read-only since they will have attributes that do not correspond to the table's columns.
|
|
# Pass :readonly => false to override.
|
|
# * <tt>:include</tt>: Named associations that should be loaded alongside using LEFT OUTER JOINs. The symbols named refer
|
|
# to already defined associations. When using named associations, count returns the number of DISTINCT items for the model you're counting.
|
|
# See eager loading under Associations.
|
|
# * <tt>:order</tt>: An SQL fragment like "created_at DESC, name" (really only used with GROUP BY calculations).
|
|
# * <tt>:group</tt>: An attribute name by which the result should be grouped. Uses the GROUP BY SQL-clause.
|
|
# * <tt>:select</tt>: By default, this is * as in SELECT * FROM, but can be changed if you, for example, want to do a join but not
|
|
# include the joined columns.
|
|
# * <tt>:distinct</tt>: Set this to true to make this a distinct calculation, such as SELECT COUNT(DISTINCT posts.id) ...
|
|
#
|
|
# Examples for counting all:
|
|
# Person.count # returns the total count of all people
|
|
#
|
|
# Examples for counting by column:
|
|
# Person.count(:age) # returns the total count of all people whose age is present in database
|
|
#
|
|
# Examples for count with options:
|
|
# Person.count(:conditions => "age > 26")
|
|
# Person.count(:conditions => "age > 26 AND job.salary > 60000", :include => :job) # because of the named association, it finds the DISTINCT count using LEFT OUTER JOIN.
|
|
# Person.count(:conditions => "age > 26 AND job.salary > 60000", :joins => "LEFT JOIN jobs on jobs.person_id = person.id") # finds the number of rows matching the conditions and joins.
|
|
# Person.count('id', :conditions => "age > 26") # Performs a COUNT(id)
|
|
# Person.count(:all, :conditions => "age > 26") # Performs a COUNT(*) (:all is an alias for '*')
|
|
#
|
|
# Note: Person.count(:all) will not work because it will use :all as the condition. Use Person.count instead.
|
|
def count(*args)
|
|
calculate(:count, *construct_count_options_from_args(*args))
|
|
end
|
|
|
|
# Calculates the average value on a given column. The value is returned as a float. See #calculate for examples with options.
|
|
#
|
|
# Person.average('age')
|
|
def average(column_name, options = {})
|
|
calculate(:avg, column_name, options)
|
|
end
|
|
|
|
# Calculates the minimum value on a given column. The value is returned with the same data type of the column. See #calculate for examples with options.
|
|
#
|
|
# Person.minimum('age')
|
|
def minimum(column_name, options = {})
|
|
calculate(:min, column_name, options)
|
|
end
|
|
|
|
# Calculates the maximum value on a given column. The value is returned with the same data type of the column. See #calculate for examples with options.
|
|
#
|
|
# Person.maximum('age')
|
|
def maximum(column_name, options = {})
|
|
calculate(:max, column_name, options)
|
|
end
|
|
|
|
# Calculates the sum of values on a given column. The value is returned with the same data type of the column. See #calculate for examples with options.
|
|
#
|
|
# Person.sum('age')
|
|
def sum(column_name, options = {})
|
|
calculate(:sum, column_name, options)
|
|
end
|
|
|
|
# This calculates aggregate values in the given column. Methods for count, sum, average, minimum, and maximum have been added as shortcuts.
|
|
# Options such as :conditions, :order, :group, :having, and :joins can be passed to customize the query.
|
|
#
|
|
# There are two basic forms of output:
|
|
# * Single aggregate value: The single value is type cast to Fixnum for COUNT, Float for AVG, and the given column's type for everything else.
|
|
# * Grouped values: This returns an ordered hash of the values and groups them by the :group option. It takes either a column name, or the name
|
|
# of a belongs_to association.
|
|
#
|
|
# values = Person.maximum(:age, :group => 'last_name')
|
|
# puts values["Drake"]
|
|
# => 43
|
|
#
|
|
# drake = Family.find_by_last_name('Drake')
|
|
# values = Person.maximum(:age, :group => :family) # Person belongs_to :family
|
|
# puts values[drake]
|
|
# => 43
|
|
#
|
|
# values.each do |family, max_age|
|
|
# ...
|
|
# end
|
|
#
|
|
# Options:
|
|
# * <tt>:conditions</tt> - An SQL fragment like "administrator = 1" or [ "user_name = ?", username ]. See conditions in the intro.
|
|
# * <tt>:include</tt>: Eager loading, see Associations for details. Since calculations don't load anything, the purpose of this is to access fields on joined tables in your conditions, order, or group clauses.
|
|
# * <tt>:joins</tt> - An SQL fragment for additional joins like "LEFT JOIN comments ON comments.post_id = id". (Rarely needed).
|
|
# The records will be returned read-only since they will have attributes that do not correspond to the table's columns.
|
|
# * <tt>:order</tt> - An SQL fragment like "created_at DESC, name" (really only used with GROUP BY calculations).
|
|
# * <tt>:group</tt> - An attribute name by which the result should be grouped. Uses the GROUP BY SQL-clause.
|
|
# * <tt>:select</tt> - By default, this is * as in SELECT * FROM, but can be changed if you for example want to do a join, but not
|
|
# include the joined columns.
|
|
# * <tt>:distinct</tt> - Set this to true to make this a distinct calculation, such as SELECT COUNT(DISTINCT posts.id) ...
|
|
#
|
|
# Examples:
|
|
# Person.calculate(:count, :all) # The same as Person.count
|
|
# Person.average(:age) # SELECT AVG(age) FROM people...
|
|
# Person.minimum(:age, :conditions => ['last_name != ?', 'Drake']) # Selects the minimum age for everyone with a last name other than 'Drake'
|
|
# Person.minimum(:age, :having => 'min(age) > 17', :group => :last_name) # Selects the minimum age for any family without any minors
|
|
def calculate(operation, column_name, options = {})
|
|
validate_calculation_options(operation, options)
|
|
column_name = options[:select] if options[:select]
|
|
column_name = '*' if column_name == :all
|
|
column = column_for column_name
|
|
catch :invalid_query do
|
|
if options[:group]
|
|
return execute_grouped_calculation(operation, column_name, column, options)
|
|
else
|
|
return execute_simple_calculation(operation, column_name, column, options)
|
|
end
|
|
end
|
|
0
|
|
end
|
|
|
|
protected
|
|
def construct_count_options_from_args(*args)
|
|
options = {}
|
|
column_name = :all
|
|
|
|
# We need to handle
|
|
# count()
|
|
# count(:column_name=:all)
|
|
# count(options={})
|
|
# count(column_name=:all, options={})
|
|
case args.size
|
|
when 1
|
|
args[0].is_a?(Hash) ? options = args[0] : column_name = args[0]
|
|
when 2
|
|
column_name, options = args
|
|
else
|
|
raise ArgumentError, "Unexpected parameters passed to count(): #{args.inspect}"
|
|
end if args.size > 0
|
|
|
|
[column_name, options]
|
|
end
|
|
|
|
def construct_calculation_sql(operation, column_name, options) #:nodoc:
|
|
operation = operation.to_s.downcase
|
|
options = options.symbolize_keys
|
|
|
|
scope = scope(:find)
|
|
merged_includes = merge_includes(scope ? scope[:include] : [], options[:include])
|
|
aggregate_alias = column_alias_for(operation, column_name)
|
|
|
|
if operation == 'count'
|
|
if merged_includes.any?
|
|
options[:distinct] = true
|
|
column_name = options[:select] || [connection.quote_table_name(table_name), primary_key] * '.'
|
|
end
|
|
|
|
if options[:distinct]
|
|
use_workaround = !connection.supports_count_distinct?
|
|
end
|
|
end
|
|
|
|
sql = "SELECT #{operation}(#{'DISTINCT ' if options[:distinct]}#{column_name}) AS #{aggregate_alias}"
|
|
|
|
# A (slower) workaround if we're using a backend, like sqlite, that doesn't support COUNT DISTINCT.
|
|
sql = "SELECT COUNT(*) AS #{aggregate_alias}" if use_workaround
|
|
|
|
sql << ", #{options[:group_field]} AS #{options[:group_alias]}" if options[:group]
|
|
sql << " FROM (SELECT DISTINCT #{column_name}" if use_workaround
|
|
sql << " FROM #{connection.quote_table_name(table_name)} "
|
|
if merged_includes.any?
|
|
join_dependency = ActiveRecord::Associations::ClassMethods::JoinDependency.new(self, merged_includes, options[:joins])
|
|
sql << join_dependency.join_associations.collect{|join| join.association_join }.join
|
|
end
|
|
add_joins!(sql, options, scope)
|
|
add_conditions!(sql, options[:conditions], scope)
|
|
add_limited_ids_condition!(sql, options, join_dependency) if join_dependency && !using_limitable_reflections?(join_dependency.reflections) && ((scope && scope[:limit]) || options[:limit])
|
|
|
|
if options[:group]
|
|
group_key = connection.adapter_name == 'FrontBase' ? :group_alias : :group_field
|
|
sql << " GROUP BY #{options[group_key]} "
|
|
end
|
|
|
|
if options[:group] && options[:having]
|
|
# FrontBase requires identifiers in the HAVING clause and chokes on function calls
|
|
if connection.adapter_name == 'FrontBase'
|
|
options[:having].downcase!
|
|
options[:having].gsub!(/#{operation}\s*\(\s*#{column_name}\s*\)/, aggregate_alias)
|
|
end
|
|
|
|
sql << " HAVING #{options[:having]} "
|
|
end
|
|
|
|
sql << " ORDER BY #{options[:order]} " if options[:order]
|
|
add_limit!(sql, options, scope)
|
|
sql << ')' if use_workaround
|
|
sql
|
|
end
|
|
|
|
def execute_simple_calculation(operation, column_name, column, options) #:nodoc:
|
|
value = connection.select_value(construct_calculation_sql(operation, column_name, options))
|
|
type_cast_calculated_value(value, column, operation)
|
|
end
|
|
|
|
def execute_grouped_calculation(operation, column_name, column, options) #:nodoc:
|
|
group_attr = options[:group].to_s
|
|
association = reflect_on_association(group_attr.to_sym)
|
|
associated = association && association.macro == :belongs_to # only count belongs_to associations
|
|
group_field = (associated ? "#{options[:group]}_id" : options[:group]).to_s
|
|
group_alias = column_alias_for(group_field)
|
|
group_column = column_for group_field
|
|
sql = construct_calculation_sql(operation, column_name, options.merge(:group_field => group_field, :group_alias => group_alias))
|
|
calculated_data = connection.select_all(sql)
|
|
aggregate_alias = column_alias_for(operation, column_name)
|
|
|
|
if association
|
|
key_ids = calculated_data.collect { |row| row[group_alias] }
|
|
key_records = association.klass.base_class.find(key_ids)
|
|
key_records = key_records.inject({}) { |hsh, r| hsh.merge(r.id => r) }
|
|
end
|
|
|
|
calculated_data.inject(ActiveSupport::OrderedHash.new) do |all, row|
|
|
key = type_cast_calculated_value(row[group_alias], group_column)
|
|
key = key_records[key] if associated
|
|
value = row[aggregate_alias]
|
|
all << [key, type_cast_calculated_value(value, column, operation)]
|
|
end
|
|
end
|
|
|
|
private
|
|
def validate_calculation_options(operation, options = {})
|
|
options.assert_valid_keys(CALCULATIONS_OPTIONS)
|
|
end
|
|
|
|
# Converts a given key to the value that the database adapter returns as
|
|
# a usable column name.
|
|
# users.id #=> users_id
|
|
# sum(id) #=> sum_id
|
|
# count(distinct users.id) #=> count_distinct_users_id
|
|
# count(*) #=> count_all
|
|
def column_alias_for(*keys)
|
|
connection.table_alias_for(keys.join(' ').downcase.gsub(/\*/, 'all').gsub(/\W+/, ' ').strip.gsub(/ +/, '_'))
|
|
end
|
|
|
|
def column_for(field)
|
|
field_name = field.to_s.split('.').last
|
|
columns.detect { |c| c.name.to_s == field_name }
|
|
end
|
|
|
|
def type_cast_calculated_value(value, column, operation = nil)
|
|
operation = operation.to_s.downcase
|
|
case operation
|
|
when 'count' then value.to_i
|
|
when 'avg' then value && value.to_f
|
|
else column ? column.type_cast(value) : value
|
|
end
|
|
end
|
|
end
|
|
end
|
|
end
|