mirror of
https://github.com/rails/rails.git
synced 2022-11-09 12:12:34 -05:00
7438788481
- Chars#slice! now returns the slice instead of itself - Chars#slice! now removes the slice from itself Signed-off-by: Pratik Naik <pratiknaik@gmail.com>
701 lines
26 KiB
Ruby
701 lines
26 KiB
Ruby
# encoding: utf-8
|
||
|
||
module ActiveSupport #:nodoc:
|
||
module Multibyte #:nodoc:
|
||
# Chars enables you to work transparently with UTF-8 encoding in the Ruby String class without having extensive
|
||
# knowledge about the encoding. A Chars object accepts a string upon initialization and proxies String methods in an
|
||
# encoding safe manner. All the normal String methods are also implemented on the proxy.
|
||
#
|
||
# String methods are proxied through the Chars object, and can be accessed through the +mb_chars+ method. Methods
|
||
# which would normally return a String object now return a Chars object so methods can be chained.
|
||
#
|
||
# "The Perfect String ".mb_chars.downcase.strip.normalize #=> "the perfect string"
|
||
#
|
||
# Chars objects are perfectly interchangeable with String objects as long as no explicit class checks are made.
|
||
# If certain methods do explicitly check the class, call +to_s+ before you pass chars objects to them.
|
||
#
|
||
# bad.explicit_checking_method "T".mb_chars.downcase.to_s
|
||
#
|
||
# The default Chars implementation assumes that the encoding of the string is UTF-8, if you want to handle different
|
||
# encodings you can write your own multibyte string handler and configure it through
|
||
# ActiveSupport::Multibyte.proxy_class.
|
||
#
|
||
# class CharsForUTF32
|
||
# def size
|
||
# @wrapped_string.size / 4
|
||
# end
|
||
#
|
||
# def self.accepts?(string)
|
||
# string.length % 4 == 0
|
||
# end
|
||
# end
|
||
#
|
||
# ActiveSupport::Multibyte.proxy_class = CharsForUTF32
|
||
class Chars
|
||
# Hangul character boundaries and properties
|
||
HANGUL_SBASE = 0xAC00
|
||
HANGUL_LBASE = 0x1100
|
||
HANGUL_VBASE = 0x1161
|
||
HANGUL_TBASE = 0x11A7
|
||
HANGUL_LCOUNT = 19
|
||
HANGUL_VCOUNT = 21
|
||
HANGUL_TCOUNT = 28
|
||
HANGUL_NCOUNT = HANGUL_VCOUNT * HANGUL_TCOUNT
|
||
HANGUL_SCOUNT = 11172
|
||
HANGUL_SLAST = HANGUL_SBASE + HANGUL_SCOUNT
|
||
HANGUL_JAMO_FIRST = 0x1100
|
||
HANGUL_JAMO_LAST = 0x11FF
|
||
|
||
# All the unicode whitespace
|
||
UNICODE_WHITESPACE = [
|
||
(0x0009..0x000D).to_a, # White_Space # Cc [5] <control-0009>..<control-000D>
|
||
0x0020, # White_Space # Zs SPACE
|
||
0x0085, # White_Space # Cc <control-0085>
|
||
0x00A0, # White_Space # Zs NO-BREAK SPACE
|
||
0x1680, # White_Space # Zs OGHAM SPACE MARK
|
||
0x180E, # White_Space # Zs MONGOLIAN VOWEL SEPARATOR
|
||
(0x2000..0x200A).to_a, # White_Space # Zs [11] EN QUAD..HAIR SPACE
|
||
0x2028, # White_Space # Zl LINE SEPARATOR
|
||
0x2029, # White_Space # Zp PARAGRAPH SEPARATOR
|
||
0x202F, # White_Space # Zs NARROW NO-BREAK SPACE
|
||
0x205F, # White_Space # Zs MEDIUM MATHEMATICAL SPACE
|
||
0x3000, # White_Space # Zs IDEOGRAPHIC SPACE
|
||
].flatten.freeze
|
||
|
||
# BOM (byte order mark) can also be seen as whitespace, it's a non-rendering character used to distinguish
|
||
# between little and big endian. This is not an issue in utf-8, so it must be ignored.
|
||
UNICODE_LEADERS_AND_TRAILERS = UNICODE_WHITESPACE + [65279] # ZERO-WIDTH NO-BREAK SPACE aka BOM
|
||
|
||
# Returns a regular expression pattern that matches the passed Unicode codepoints
|
||
def self.codepoints_to_pattern(array_of_codepoints) #:nodoc:
|
||
array_of_codepoints.collect{ |e| [e].pack 'U*' }.join('|')
|
||
end
|
||
UNICODE_TRAILERS_PAT = /(#{codepoints_to_pattern(UNICODE_LEADERS_AND_TRAILERS)})+\Z/
|
||
UNICODE_LEADERS_PAT = /\A(#{codepoints_to_pattern(UNICODE_LEADERS_AND_TRAILERS)})+/
|
||
|
||
# Borrowed from the Kconv library by Shinji KONO - (also as seen on the W3C site)
|
||
UTF8_PAT = /\A(?:
|
||
[\x00-\x7f] |
|
||
[\xc2-\xdf] [\x80-\xbf] |
|
||
\xe0 [\xa0-\xbf] [\x80-\xbf] |
|
||
[\xe1-\xef] [\x80-\xbf] [\x80-\xbf] |
|
||
\xf0 [\x90-\xbf] [\x80-\xbf] [\x80-\xbf] |
|
||
[\xf1-\xf3] [\x80-\xbf] [\x80-\xbf] [\x80-\xbf] |
|
||
\xf4 [\x80-\x8f] [\x80-\xbf] [\x80-\xbf]
|
||
)*\z/xn
|
||
|
||
attr_reader :wrapped_string
|
||
alias to_s wrapped_string
|
||
alias to_str wrapped_string
|
||
|
||
if '1.9'.respond_to?(:force_encoding)
|
||
# Creates a new Chars instance by wrapping _string_.
|
||
def initialize(string)
|
||
@wrapped_string = string
|
||
@wrapped_string.force_encoding(Encoding::UTF_8) unless @wrapped_string.frozen?
|
||
end
|
||
else
|
||
def initialize(string) #:nodoc:
|
||
@wrapped_string = string
|
||
end
|
||
end
|
||
|
||
# Forward all undefined methods to the wrapped string.
|
||
def method_missing(method, *args, &block)
|
||
if method.to_s =~ /!$/
|
||
@wrapped_string.__send__(method, *args, &block)
|
||
self
|
||
else
|
||
result = @wrapped_string.__send__(method, *args, &block)
|
||
result.kind_of?(String) ? chars(result) : result
|
||
end
|
||
end
|
||
|
||
# Returns +true+ if _obj_ responds to the given method. Private methods are included in the search
|
||
# only if the optional second parameter evaluates to +true+.
|
||
def respond_to?(method, include_private=false)
|
||
super || @wrapped_string.respond_to?(method, include_private) || false
|
||
end
|
||
|
||
# Enable more predictable duck-typing on String-like classes. See Object#acts_like?.
|
||
def acts_like_string?
|
||
true
|
||
end
|
||
|
||
# Returns +true+ if the Chars class can and should act as a proxy for the string _string_. Returns
|
||
# +false+ otherwise.
|
||
def self.wants?(string)
|
||
$KCODE == 'UTF8' && consumes?(string)
|
||
end
|
||
|
||
# Returns +true+ when the proxy class can handle the string. Returns +false+ otherwise.
|
||
def self.consumes?(string)
|
||
# Unpack is a little bit faster than regular expressions.
|
||
string.unpack('U*')
|
||
true
|
||
rescue ArgumentError
|
||
false
|
||
end
|
||
|
||
include Comparable
|
||
|
||
# Returns <tt>-1</tt>, <tt>0</tt> or <tt>+1</tt> depending on whether the Chars object is to be sorted before,
|
||
# equal or after the object on the right side of the operation. It accepts any object that implements +to_s+.
|
||
# See <tt>String#<=></tt> for more details.
|
||
#
|
||
# Example:
|
||
# 'é'.mb_chars <=> 'ü'.mb_chars #=> -1
|
||
def <=>(other)
|
||
@wrapped_string <=> other.to_s
|
||
end
|
||
|
||
# Returns a new Chars object containing the _other_ object concatenated to the string.
|
||
#
|
||
# Example:
|
||
# ('Café'.mb_chars + ' périferôl').to_s #=> "Café périferôl"
|
||
def +(other)
|
||
self << other
|
||
end
|
||
|
||
# Like <tt>String#=~</tt> only it returns the character offset (in codepoints) instead of the byte offset.
|
||
#
|
||
# Example:
|
||
# 'Café périferôl'.mb_chars =~ /ô/ #=> 12
|
||
def =~(other)
|
||
translate_offset(@wrapped_string =~ other)
|
||
end
|
||
|
||
# Works just like <tt>String#split</tt>, with the exception that the items in the resulting list are Chars
|
||
# instances instead of String. This makes chaining methods easier.
|
||
#
|
||
# Example:
|
||
# 'Café périferôl'.mb_chars.split(/é/).map { |part| part.upcase.to_s } #=> ["CAF", " P", "RIFERÔL"]
|
||
def split(*args)
|
||
@wrapped_string.split(*args).map { |i| i.mb_chars }
|
||
end
|
||
|
||
# Inserts the passed string at specified codepoint offsets.
|
||
#
|
||
# Example:
|
||
# 'Café'.mb_chars.insert(4, ' périferôl').to_s #=> "Café périferôl"
|
||
def insert(offset, fragment)
|
||
unpacked = self.class.u_unpack(@wrapped_string)
|
||
unless offset > unpacked.length
|
||
@wrapped_string.replace(
|
||
self.class.u_unpack(@wrapped_string).insert(offset, *self.class.u_unpack(fragment)).pack('U*')
|
||
)
|
||
else
|
||
raise IndexError, "index #{offset} out of string"
|
||
end
|
||
self
|
||
end
|
||
|
||
# Returns +true+ if contained string contains _other_. Returns +false+ otherwise.
|
||
#
|
||
# Example:
|
||
# 'Café'.mb_chars.include?('é') #=> true
|
||
def include?(other)
|
||
# We have to redefine this method because Enumerable defines it.
|
||
@wrapped_string.include?(other)
|
||
end
|
||
|
||
# Returns the position _needle_ in the string, counting in codepoints. Returns +nil+ if _needle_ isn't found.
|
||
#
|
||
# Example:
|
||
# 'Café périferôl'.mb_chars.index('ô') #=> 12
|
||
# 'Café périferôl'.mb_chars.index(/\w/u) #=> 0
|
||
def index(needle, offset=0)
|
||
index = @wrapped_string.index(needle, offset)
|
||
index ? (self.class.u_unpack(@wrapped_string.slice(0...index)).size) : nil
|
||
end
|
||
|
||
# Like <tt>String#[]=</tt>, except instead of byte offsets you specify character offsets.
|
||
#
|
||
# Example:
|
||
#
|
||
# s = "Müller"
|
||
# s.mb_chars[2] = "e" # Replace character with offset 2
|
||
# s
|
||
# #=> "Müeler"
|
||
#
|
||
# s = "Müller"
|
||
# s.mb_chars[1, 2] = "ö" # Replace 2 characters at character offset 1
|
||
# s
|
||
# #=> "Möler"
|
||
def []=(*args)
|
||
replace_by = args.pop
|
||
# Indexed replace with regular expressions already works
|
||
if args.first.is_a?(Regexp)
|
||
@wrapped_string[*args] = replace_by
|
||
else
|
||
result = self.class.u_unpack(@wrapped_string)
|
||
if args[0].is_a?(Fixnum)
|
||
raise IndexError, "index #{args[0]} out of string" if args[0] >= result.length
|
||
min = args[0]
|
||
max = args[1].nil? ? min : (min + args[1] - 1)
|
||
range = Range.new(min, max)
|
||
replace_by = [replace_by].pack('U') if replace_by.is_a?(Fixnum)
|
||
elsif args.first.is_a?(Range)
|
||
raise RangeError, "#{args[0]} out of range" if args[0].min >= result.length
|
||
range = args[0]
|
||
else
|
||
needle = args[0].to_s
|
||
min = index(needle)
|
||
max = min + self.class.u_unpack(needle).length - 1
|
||
range = Range.new(min, max)
|
||
end
|
||
result[range] = self.class.u_unpack(replace_by)
|
||
@wrapped_string.replace(result.pack('U*'))
|
||
end
|
||
end
|
||
|
||
# Works just like <tt>String#rjust</tt>, only integer specifies characters instead of bytes.
|
||
#
|
||
# Example:
|
||
#
|
||
# "¾ cup".mb_chars.rjust(8).to_s
|
||
# #=> " ¾ cup"
|
||
#
|
||
# "¾ cup".mb_chars.rjust(8, " ").to_s # Use non-breaking whitespace
|
||
# #=> " ¾ cup"
|
||
def rjust(integer, padstr=' ')
|
||
justify(integer, :right, padstr)
|
||
end
|
||
|
||
# Works just like <tt>String#ljust</tt>, only integer specifies characters instead of bytes.
|
||
#
|
||
# Example:
|
||
#
|
||
# "¾ cup".mb_chars.rjust(8).to_s
|
||
# #=> "¾ cup "
|
||
#
|
||
# "¾ cup".mb_chars.rjust(8, " ").to_s # Use non-breaking whitespace
|
||
# #=> "¾ cup "
|
||
def ljust(integer, padstr=' ')
|
||
justify(integer, :left, padstr)
|
||
end
|
||
|
||
# Works just like <tt>String#center</tt>, only integer specifies characters instead of bytes.
|
||
#
|
||
# Example:
|
||
#
|
||
# "¾ cup".mb_chars.center(8).to_s
|
||
# #=> " ¾ cup "
|
||
#
|
||
# "¾ cup".mb_chars.center(8, " ").to_s # Use non-breaking whitespace
|
||
# #=> " ¾ cup "
|
||
def center(integer, padstr=' ')
|
||
justify(integer, :center, padstr)
|
||
end
|
||
|
||
# Strips entire range of Unicode whitespace from the right of the string.
|
||
def rstrip
|
||
chars(@wrapped_string.gsub(UNICODE_TRAILERS_PAT, ''))
|
||
end
|
||
|
||
# Strips entire range of Unicode whitespace from the left of the string.
|
||
def lstrip
|
||
chars(@wrapped_string.gsub(UNICODE_LEADERS_PAT, ''))
|
||
end
|
||
|
||
# Strips entire range of Unicode whitespace from the right and left of the string.
|
||
def strip
|
||
rstrip.lstrip
|
||
end
|
||
|
||
# Returns the number of codepoints in the string
|
||
def size
|
||
self.class.u_unpack(@wrapped_string).size
|
||
end
|
||
alias_method :length, :size
|
||
|
||
# Reverses all characters in the string.
|
||
#
|
||
# Example:
|
||
# 'Café'.mb_chars.reverse.to_s #=> 'éfaC'
|
||
def reverse
|
||
chars(self.class.u_unpack(@wrapped_string).reverse.pack('U*'))
|
||
end
|
||
|
||
# Implements Unicode-aware slice with codepoints. Slicing on one point returns the codepoints for that
|
||
# character.
|
||
#
|
||
# Example:
|
||
# 'こんにちは'.mb_chars.slice(2..3).to_s #=> "にち"
|
||
def slice(*args)
|
||
if args.size > 2
|
||
raise ArgumentError, "wrong number of arguments (#{args.size} for 1)" # Do as if we were native
|
||
elsif (args.size == 2 && !(args.first.is_a?(Numeric) || args.first.is_a?(Regexp)))
|
||
raise TypeError, "cannot convert #{args.first.class} into Integer" # Do as if we were native
|
||
elsif (args.size == 2 && !args[1].is_a?(Numeric))
|
||
raise TypeError, "cannot convert #{args[1].class} into Integer" # Do as if we were native
|
||
elsif args[0].kind_of? Range
|
||
cps = self.class.u_unpack(@wrapped_string).slice(*args)
|
||
result = cps.nil? ? nil : cps.pack('U*')
|
||
elsif args[0].kind_of? Regexp
|
||
result = @wrapped_string.slice(*args)
|
||
elsif args.size == 1 && args[0].kind_of?(Numeric)
|
||
character = self.class.u_unpack(@wrapped_string)[args[0]]
|
||
result = character.nil? ? nil : [character].pack('U')
|
||
else
|
||
result = self.class.u_unpack(@wrapped_string).slice(*args).pack('U*')
|
||
end
|
||
result.nil? ? nil : chars(result)
|
||
end
|
||
alias_method :[], :slice
|
||
|
||
# Like <tt>String#slice!</tt>, except instead of byte offsets you specify character offsets.
|
||
#
|
||
# Example:
|
||
# s = 'こんにちは'
|
||
# s.mb_chars.slice!(2..3).to_s #=> "にち"
|
||
# s #=> "こんは"
|
||
def slice!(*args)
|
||
slice = self[*args]
|
||
self[*args] = ''
|
||
slice
|
||
end
|
||
|
||
# Returns the codepoint of the first character in the string.
|
||
#
|
||
# Example:
|
||
# 'こんにちは'.mb_chars.ord #=> 12371
|
||
def ord
|
||
self.class.u_unpack(@wrapped_string)[0]
|
||
end
|
||
|
||
# Convert characters in the string to uppercase.
|
||
#
|
||
# Example:
|
||
# 'Laurent, òu sont les tests?'.mb_chars.upcase.to_s #=> "LAURENT, ÒU SONT LES TESTS?"
|
||
def upcase
|
||
apply_mapping :uppercase_mapping
|
||
end
|
||
|
||
# Convert characters in the string to lowercase.
|
||
#
|
||
# Example:
|
||
# 'VĚDA A VÝZKUM'.mb_chars.downcase.to_s #=> "věda a výzkum"
|
||
def downcase
|
||
apply_mapping :lowercase_mapping
|
||
end
|
||
|
||
# Converts the first character to uppercase and the remainder to lowercase.
|
||
#
|
||
# Example:
|
||
# 'über'.mb_chars.capitalize.to_s #=> "Über"
|
||
def capitalize
|
||
(slice(0) || chars('')).upcase + (slice(1..-1) || chars('')).downcase
|
||
end
|
||
|
||
# Returns the KC normalization of the string by default. NFKC is considered the best normalization form for
|
||
# passing strings to databases and validations.
|
||
#
|
||
# * <tt>str</tt> - The string to perform normalization on.
|
||
# * <tt>form</tt> - The form you want to normalize in. Should be one of the following:
|
||
# <tt>:c</tt>, <tt>:kc</tt>, <tt>:d</tt>, or <tt>:kd</tt>. Default is
|
||
# ActiveSupport::Multibyte.default_normalization_form
|
||
def normalize(form=ActiveSupport::Multibyte.default_normalization_form)
|
||
# See http://www.unicode.org/reports/tr15, Table 1
|
||
codepoints = self.class.u_unpack(@wrapped_string)
|
||
chars(case form
|
||
when :d
|
||
self.class.reorder_characters(self.class.decompose_codepoints(:canonical, codepoints))
|
||
when :c
|
||
self.class.compose_codepoints(self.class.reorder_characters(self.class.decompose_codepoints(:canonical, codepoints)))
|
||
when :kd
|
||
self.class.reorder_characters(self.class.decompose_codepoints(:compatability, codepoints))
|
||
when :kc
|
||
self.class.compose_codepoints(self.class.reorder_characters(self.class.decompose_codepoints(:compatability, codepoints)))
|
||
else
|
||
raise ArgumentError, "#{form} is not a valid normalization variant", caller
|
||
end.pack('U*'))
|
||
end
|
||
|
||
# Performs canonical decomposition on all the characters.
|
||
#
|
||
# Example:
|
||
# 'é'.length #=> 2
|
||
# 'é'.mb_chars.decompose.to_s.length #=> 3
|
||
def decompose
|
||
chars(self.class.decompose_codepoints(:canonical, self.class.u_unpack(@wrapped_string)).pack('U*'))
|
||
end
|
||
|
||
# Performs composition on all the characters.
|
||
#
|
||
# Example:
|
||
# 'é'.length #=> 3
|
||
# 'é'.mb_chars.compose.to_s.length #=> 2
|
||
def compose
|
||
chars(self.class.compose_codepoints(self.class.u_unpack(@wrapped_string)).pack('U*'))
|
||
end
|
||
|
||
# Returns the number of grapheme clusters in the string.
|
||
#
|
||
# Example:
|
||
# 'क्षि'.mb_chars.length #=> 4
|
||
# 'क्षि'.mb_chars.g_length #=> 3
|
||
def g_length
|
||
self.class.g_unpack(@wrapped_string).length
|
||
end
|
||
|
||
# Replaces all ISO-8859-1 or CP1252 characters by their UTF-8 equivalent resulting in a valid UTF-8 string.
|
||
def tidy_bytes
|
||
chars(self.class.tidy_bytes(@wrapped_string))
|
||
end
|
||
|
||
%w(lstrip rstrip strip reverse upcase downcase tidy_bytes capitalize).each do |method|
|
||
define_method("#{method}!") do |*args|
|
||
unless args.nil?
|
||
@wrapped_string = send(method, *args).to_s
|
||
else
|
||
@wrapped_string = send(method).to_s
|
||
end
|
||
self
|
||
end
|
||
end
|
||
|
||
class << self
|
||
|
||
# Unpack the string at codepoints boundaries. Raises an EncodingError when the encoding of the string isn't
|
||
# valid UTF-8.
|
||
#
|
||
# Example:
|
||
# Chars.u_unpack('Café') #=> [67, 97, 102, 233]
|
||
def u_unpack(string)
|
||
begin
|
||
string.unpack 'U*'
|
||
rescue ArgumentError
|
||
raise EncodingError, 'malformed UTF-8 character'
|
||
end
|
||
end
|
||
|
||
# Detect whether the codepoint is in a certain character class. Returns +true+ when it's in the specified
|
||
# character class and +false+ otherwise. Valid character classes are: <tt>:cr</tt>, <tt>:lf</tt>, <tt>:l</tt>,
|
||
# <tt>:v</tt>, <tt>:lv</tt>, <tt>:lvt</tt> and <tt>:t</tt>.
|
||
#
|
||
# Primarily used by the grapheme cluster support.
|
||
def in_char_class?(codepoint, classes)
|
||
classes.detect { |c| UCD.boundary[c] === codepoint } ? true : false
|
||
end
|
||
|
||
# Unpack the string at grapheme boundaries. Returns a list of character lists.
|
||
#
|
||
# Example:
|
||
# Chars.g_unpack('क्षि') #=> [[2325, 2381], [2359], [2367]]
|
||
# Chars.g_unpack('Café') #=> [[67], [97], [102], [233]]
|
||
def g_unpack(string)
|
||
codepoints = u_unpack(string)
|
||
unpacked = []
|
||
pos = 0
|
||
marker = 0
|
||
eoc = codepoints.length
|
||
while(pos < eoc)
|
||
pos += 1
|
||
previous = codepoints[pos-1]
|
||
current = codepoints[pos]
|
||
if (
|
||
# CR X LF
|
||
one = ( previous == UCD.boundary[:cr] and current == UCD.boundary[:lf] ) or
|
||
# L X (L|V|LV|LVT)
|
||
two = ( UCD.boundary[:l] === previous and in_char_class?(current, [:l,:v,:lv,:lvt]) ) or
|
||
# (LV|V) X (V|T)
|
||
three = ( in_char_class?(previous, [:lv,:v]) and in_char_class?(current, [:v,:t]) ) or
|
||
# (LVT|T) X (T)
|
||
four = ( in_char_class?(previous, [:lvt,:t]) and UCD.boundary[:t] === current ) or
|
||
# X Extend
|
||
five = (UCD.boundary[:extend] === current)
|
||
)
|
||
else
|
||
unpacked << codepoints[marker..pos-1]
|
||
marker = pos
|
||
end
|
||
end
|
||
unpacked
|
||
end
|
||
|
||
# Reverse operation of g_unpack.
|
||
#
|
||
# Example:
|
||
# Chars.g_pack(Chars.g_unpack('क्षि')) #=> 'क्षि'
|
||
def g_pack(unpacked)
|
||
(unpacked.flatten).pack('U*')
|
||
end
|
||
|
||
def padding(padsize, padstr=' ') #:nodoc:
|
||
if padsize != 0
|
||
new(padstr * ((padsize / u_unpack(padstr).size) + 1)).slice(0, padsize)
|
||
else
|
||
''
|
||
end
|
||
end
|
||
|
||
# Re-order codepoints so the string becomes canonical.
|
||
def reorder_characters(codepoints)
|
||
length = codepoints.length- 1
|
||
pos = 0
|
||
while pos < length do
|
||
cp1, cp2 = UCD.codepoints[codepoints[pos]], UCD.codepoints[codepoints[pos+1]]
|
||
if (cp1.combining_class > cp2.combining_class) && (cp2.combining_class > 0)
|
||
codepoints[pos..pos+1] = cp2.code, cp1.code
|
||
pos += (pos > 0 ? -1 : 1)
|
||
else
|
||
pos += 1
|
||
end
|
||
end
|
||
codepoints
|
||
end
|
||
|
||
# Decompose composed characters to the decomposed form.
|
||
def decompose_codepoints(type, codepoints)
|
||
codepoints.inject([]) do |decomposed, cp|
|
||
# if it's a hangul syllable starter character
|
||
if HANGUL_SBASE <= cp and cp < HANGUL_SLAST
|
||
sindex = cp - HANGUL_SBASE
|
||
ncp = [] # new codepoints
|
||
ncp << HANGUL_LBASE + sindex / HANGUL_NCOUNT
|
||
ncp << HANGUL_VBASE + (sindex % HANGUL_NCOUNT) / HANGUL_TCOUNT
|
||
tindex = sindex % HANGUL_TCOUNT
|
||
ncp << (HANGUL_TBASE + tindex) unless tindex == 0
|
||
decomposed.concat ncp
|
||
# if the codepoint is decomposable in with the current decomposition type
|
||
elsif (ncp = UCD.codepoints[cp].decomp_mapping) and (!UCD.codepoints[cp].decomp_type || type == :compatability)
|
||
decomposed.concat decompose_codepoints(type, ncp.dup)
|
||
else
|
||
decomposed << cp
|
||
end
|
||
end
|
||
end
|
||
|
||
# Compose decomposed characters to the composed form.
|
||
def compose_codepoints(codepoints)
|
||
pos = 0
|
||
eoa = codepoints.length - 1
|
||
starter_pos = 0
|
||
starter_char = codepoints[0]
|
||
previous_combining_class = -1
|
||
while pos < eoa
|
||
pos += 1
|
||
lindex = starter_char - HANGUL_LBASE
|
||
# -- Hangul
|
||
if 0 <= lindex and lindex < HANGUL_LCOUNT
|
||
vindex = codepoints[starter_pos+1] - HANGUL_VBASE rescue vindex = -1
|
||
if 0 <= vindex and vindex < HANGUL_VCOUNT
|
||
tindex = codepoints[starter_pos+2] - HANGUL_TBASE rescue tindex = -1
|
||
if 0 <= tindex and tindex < HANGUL_TCOUNT
|
||
j = starter_pos + 2
|
||
eoa -= 2
|
||
else
|
||
tindex = 0
|
||
j = starter_pos + 1
|
||
eoa -= 1
|
||
end
|
||
codepoints[starter_pos..j] = (lindex * HANGUL_VCOUNT + vindex) * HANGUL_TCOUNT + tindex + HANGUL_SBASE
|
||
end
|
||
starter_pos += 1
|
||
starter_char = codepoints[starter_pos]
|
||
# -- Other characters
|
||
else
|
||
current_char = codepoints[pos]
|
||
current = UCD.codepoints[current_char]
|
||
if current.combining_class > previous_combining_class
|
||
if ref = UCD.composition_map[starter_char]
|
||
composition = ref[current_char]
|
||
else
|
||
composition = nil
|
||
end
|
||
unless composition.nil?
|
||
codepoints[starter_pos] = composition
|
||
starter_char = composition
|
||
codepoints.delete_at pos
|
||
eoa -= 1
|
||
pos -= 1
|
||
previous_combining_class = -1
|
||
else
|
||
previous_combining_class = current.combining_class
|
||
end
|
||
else
|
||
previous_combining_class = current.combining_class
|
||
end
|
||
if current.combining_class == 0
|
||
starter_pos = pos
|
||
starter_char = codepoints[pos]
|
||
end
|
||
end
|
||
end
|
||
codepoints
|
||
end
|
||
|
||
# Replaces all ISO-8859-1 or CP1252 characters by their UTF-8 equivalent resulting in a valid UTF-8 string.
|
||
def tidy_bytes(string)
|
||
string.split(//u).map do |c|
|
||
c.force_encoding(Encoding::ASCII) if c.respond_to?(:force_encoding)
|
||
|
||
if !UTF8_PAT.match(c)
|
||
n = c.unpack('C')[0]
|
||
n < 128 ? n.chr :
|
||
n < 160 ? [UCD.cp1252[n] || n].pack('U') :
|
||
n < 192 ? "\xC2" + n.chr : "\xC3" + (n-64).chr
|
||
else
|
||
c
|
||
end
|
||
end.join
|
||
end
|
||
end
|
||
|
||
protected
|
||
|
||
def translate_offset(byte_offset) #:nodoc:
|
||
return nil if byte_offset.nil?
|
||
return 0 if @wrapped_string == ''
|
||
chunk = @wrapped_string[0..byte_offset]
|
||
begin
|
||
begin
|
||
chunk.unpack('U*').length - 1
|
||
rescue ArgumentError => e
|
||
chunk = @wrapped_string[0..(byte_offset+=1)]
|
||
# Stop retrying at the end of the string
|
||
raise e unless byte_offset < chunk.length
|
||
# We damaged a character, retry
|
||
retry
|
||
end
|
||
# Catch the ArgumentError so we can throw our own
|
||
rescue ArgumentError
|
||
raise EncodingError, 'malformed UTF-8 character'
|
||
end
|
||
end
|
||
|
||
def justify(integer, way, padstr=' ') #:nodoc:
|
||
raise ArgumentError, "zero width padding" if padstr.length == 0
|
||
padsize = integer - size
|
||
padsize = padsize > 0 ? padsize : 0
|
||
case way
|
||
when :right
|
||
result = @wrapped_string.dup.insert(0, self.class.padding(padsize, padstr))
|
||
when :left
|
||
result = @wrapped_string.dup.insert(-1, self.class.padding(padsize, padstr))
|
||
when :center
|
||
lpad = self.class.padding((padsize / 2.0).floor, padstr)
|
||
rpad = self.class.padding((padsize / 2.0).ceil, padstr)
|
||
result = @wrapped_string.dup.insert(0, lpad).insert(-1, rpad)
|
||
end
|
||
chars(result)
|
||
end
|
||
|
||
def apply_mapping(mapping) #:nodoc:
|
||
chars(self.class.u_unpack(@wrapped_string).map do |codepoint|
|
||
cp = UCD.codepoints[codepoint]
|
||
if cp and (ncp = cp.send(mapping)) and ncp > 0
|
||
ncp
|
||
else
|
||
codepoint
|
||
end
|
||
end.pack('U*'))
|
||
end
|
||
|
||
def chars(string) #:nodoc:
|
||
self.class.new(string)
|
||
end
|
||
end
|
||
end
|
||
end
|