mirror of
https://github.com/rails/rails.git
synced 2022-11-09 12:12:34 -05:00
00f5551650
In addition to defining the association, a `required` association will also have its presence validated. Before: ```ruby belongs_to :account validates_presence_of :account ``` After: ```ruby belongs_to :account, required: true ``` This helps to draw a distinction between types of validations, since validations on associations are generally for data integrity purposes, and aren't usually set through form inputs.
1630 lines
86 KiB
Ruby
1630 lines
86 KiB
Ruby
require 'active_support/core_ext/enumerable'
|
|
require 'active_support/core_ext/string/conversions'
|
|
require 'active_support/core_ext/module/remove_method'
|
|
require 'active_record/errors'
|
|
|
|
module ActiveRecord
|
|
class AssociationNotFoundError < ConfigurationError #:nodoc:
|
|
def initialize(record, association_name)
|
|
super("Association named '#{association_name}' was not found on #{record.class.name}; perhaps you misspelled it?")
|
|
end
|
|
end
|
|
|
|
class InverseOfAssociationNotFoundError < ActiveRecordError #:nodoc:
|
|
def initialize(reflection, associated_class = nil)
|
|
super("Could not find the inverse association for #{reflection.name} (#{reflection.options[:inverse_of].inspect} in #{associated_class.nil? ? reflection.class_name : associated_class.name})")
|
|
end
|
|
end
|
|
|
|
class HasManyThroughAssociationNotFoundError < ActiveRecordError #:nodoc:
|
|
def initialize(owner_class_name, reflection)
|
|
super("Could not find the association #{reflection.options[:through].inspect} in model #{owner_class_name}")
|
|
end
|
|
end
|
|
|
|
class HasManyThroughAssociationPolymorphicSourceError < ActiveRecordError #:nodoc:
|
|
def initialize(owner_class_name, reflection, source_reflection)
|
|
super("Cannot have a has_many :through association '#{owner_class_name}##{reflection.name}' on the polymorphic object '#{source_reflection.class_name}##{source_reflection.name}' without 'source_type'. Try adding 'source_type: \"#{reflection.name.to_s.classify}\"' to 'has_many :through' definition.")
|
|
end
|
|
end
|
|
|
|
class HasManyThroughAssociationPolymorphicThroughError < ActiveRecordError #:nodoc:
|
|
def initialize(owner_class_name, reflection)
|
|
super("Cannot have a has_many :through association '#{owner_class_name}##{reflection.name}' which goes through the polymorphic association '#{owner_class_name}##{reflection.through_reflection.name}'.")
|
|
end
|
|
end
|
|
|
|
class HasManyThroughAssociationPointlessSourceTypeError < ActiveRecordError #:nodoc:
|
|
def initialize(owner_class_name, reflection, source_reflection)
|
|
super("Cannot have a has_many :through association '#{owner_class_name}##{reflection.name}' with a :source_type option if the '#{reflection.through_reflection.class_name}##{source_reflection.name}' is not polymorphic. Try removing :source_type on your association.")
|
|
end
|
|
end
|
|
|
|
class HasOneThroughCantAssociateThroughCollection < ActiveRecordError #:nodoc:
|
|
def initialize(owner_class_name, reflection, through_reflection)
|
|
super("Cannot have a has_one :through association '#{owner_class_name}##{reflection.name}' where the :through association '#{owner_class_name}##{through_reflection.name}' is a collection. Specify a has_one or belongs_to association in the :through option instead.")
|
|
end
|
|
end
|
|
|
|
class HasManyThroughSourceAssociationNotFoundError < ActiveRecordError #:nodoc:
|
|
def initialize(reflection)
|
|
through_reflection = reflection.through_reflection
|
|
source_reflection_names = reflection.source_reflection_names
|
|
source_associations = reflection.through_reflection.klass._reflections.keys
|
|
super("Could not find the source association(s) #{source_reflection_names.collect{ |a| a.inspect }.to_sentence(:two_words_connector => ' or ', :last_word_connector => ', or ', :locale => :en)} in model #{through_reflection.klass}. Try 'has_many #{reflection.name.inspect}, :through => #{through_reflection.name.inspect}, :source => <name>'. Is it one of #{source_associations.to_sentence(:two_words_connector => ' or ', :last_word_connector => ', or ', :locale => :en)}?")
|
|
end
|
|
end
|
|
|
|
class HasManyThroughCantAssociateThroughHasOneOrManyReflection < ActiveRecordError #:nodoc:
|
|
def initialize(owner, reflection)
|
|
super("Cannot modify association '#{owner.class.name}##{reflection.name}' because the source reflection class '#{reflection.source_reflection.class_name}' is associated to '#{reflection.through_reflection.class_name}' via :#{reflection.source_reflection.macro}.")
|
|
end
|
|
end
|
|
|
|
class HasManyThroughCantAssociateNewRecords < ActiveRecordError #:nodoc:
|
|
def initialize(owner, reflection)
|
|
super("Cannot associate new records through '#{owner.class.name}##{reflection.name}' on '#{reflection.source_reflection.class_name rescue nil}##{reflection.source_reflection.name rescue nil}'. Both records must have an id in order to create the has_many :through record associating them.")
|
|
end
|
|
end
|
|
|
|
class HasManyThroughCantDissociateNewRecords < ActiveRecordError #:nodoc:
|
|
def initialize(owner, reflection)
|
|
super("Cannot dissociate new records through '#{owner.class.name}##{reflection.name}' on '#{reflection.source_reflection.class_name rescue nil}##{reflection.source_reflection.name rescue nil}'. Both records must have an id in order to delete the has_many :through record associating them.")
|
|
end
|
|
end
|
|
|
|
class HasManyThroughNestedAssociationsAreReadonly < ActiveRecordError #:nodoc:
|
|
def initialize(owner, reflection)
|
|
super("Cannot modify association '#{owner.class.name}##{reflection.name}' because it goes through more than one other association.")
|
|
end
|
|
end
|
|
|
|
class EagerLoadPolymorphicError < ActiveRecordError #:nodoc:
|
|
def initialize(reflection)
|
|
super("Cannot eagerly load the polymorphic association #{reflection.name.inspect}")
|
|
end
|
|
end
|
|
|
|
class ReadOnlyAssociation < ActiveRecordError #:nodoc:
|
|
def initialize(reflection)
|
|
super("Cannot add to a has_many :through association. Try adding to #{reflection.through_reflection.name.inspect}.")
|
|
end
|
|
end
|
|
|
|
# This error is raised when trying to destroy a parent instance in N:1 or 1:1 associations
|
|
# (has_many, has_one) when there is at least 1 child associated instance.
|
|
# ex: if @project.tasks.size > 0, DeleteRestrictionError will be raised when trying to destroy @project
|
|
class DeleteRestrictionError < ActiveRecordError #:nodoc:
|
|
def initialize(name)
|
|
super("Cannot delete record because of dependent #{name}")
|
|
end
|
|
end
|
|
|
|
# See ActiveRecord::Associations::ClassMethods for documentation.
|
|
module Associations # :nodoc:
|
|
extend ActiveSupport::Autoload
|
|
extend ActiveSupport::Concern
|
|
|
|
# These classes will be loaded when associations are created.
|
|
# So there is no need to eager load them.
|
|
autoload :Association, 'active_record/associations/association'
|
|
autoload :SingularAssociation, 'active_record/associations/singular_association'
|
|
autoload :CollectionAssociation, 'active_record/associations/collection_association'
|
|
autoload :CollectionProxy, 'active_record/associations/collection_proxy'
|
|
|
|
autoload :BelongsToAssociation, 'active_record/associations/belongs_to_association'
|
|
autoload :BelongsToPolymorphicAssociation, 'active_record/associations/belongs_to_polymorphic_association'
|
|
autoload :HasManyAssociation, 'active_record/associations/has_many_association'
|
|
autoload :HasManyThroughAssociation, 'active_record/associations/has_many_through_association'
|
|
autoload :HasOneAssociation, 'active_record/associations/has_one_association'
|
|
autoload :HasOneThroughAssociation, 'active_record/associations/has_one_through_association'
|
|
autoload :ThroughAssociation, 'active_record/associations/through_association'
|
|
|
|
module Builder #:nodoc:
|
|
autoload :Association, 'active_record/associations/builder/association'
|
|
autoload :SingularAssociation, 'active_record/associations/builder/singular_association'
|
|
autoload :CollectionAssociation, 'active_record/associations/builder/collection_association'
|
|
|
|
autoload :BelongsTo, 'active_record/associations/builder/belongs_to'
|
|
autoload :HasOne, 'active_record/associations/builder/has_one'
|
|
autoload :HasMany, 'active_record/associations/builder/has_many'
|
|
autoload :HasAndBelongsToMany, 'active_record/associations/builder/has_and_belongs_to_many'
|
|
end
|
|
|
|
eager_autoload do
|
|
autoload :Preloader, 'active_record/associations/preloader'
|
|
autoload :JoinDependency, 'active_record/associations/join_dependency'
|
|
autoload :AssociationScope, 'active_record/associations/association_scope'
|
|
autoload :AliasTracker, 'active_record/associations/alias_tracker'
|
|
end
|
|
|
|
# Clears out the association cache.
|
|
def clear_association_cache #:nodoc:
|
|
@association_cache.clear if persisted?
|
|
end
|
|
|
|
# :nodoc:
|
|
attr_reader :association_cache
|
|
|
|
# Returns the association instance for the given name, instantiating it if it doesn't already exist
|
|
def association(name) #:nodoc:
|
|
association = association_instance_get(name)
|
|
|
|
if association.nil?
|
|
raise AssociationNotFoundError.new(self, name) unless reflection = self.class._reflect_on_association(name)
|
|
association = reflection.association_class.new(self, reflection)
|
|
association_instance_set(name, association)
|
|
end
|
|
|
|
association
|
|
end
|
|
|
|
private
|
|
# Returns the specified association instance if it responds to :loaded?, nil otherwise.
|
|
def association_instance_get(name)
|
|
@association_cache[name]
|
|
end
|
|
|
|
# Set the specified association instance.
|
|
def association_instance_set(name, association)
|
|
@association_cache[name] = association
|
|
end
|
|
|
|
# \Associations are a set of macro-like class methods for tying objects together through
|
|
# foreign keys. They express relationships like "Project has one Project Manager"
|
|
# or "Project belongs to a Portfolio". Each macro adds a number of methods to the
|
|
# class which are specialized according to the collection or association symbol and the
|
|
# options hash. It works much the same way as Ruby's own <tt>attr*</tt>
|
|
# methods.
|
|
#
|
|
# class Project < ActiveRecord::Base
|
|
# belongs_to :portfolio
|
|
# has_one :project_manager
|
|
# has_many :milestones
|
|
# has_and_belongs_to_many :categories
|
|
# end
|
|
#
|
|
# The project class now has the following methods (and more) to ease the traversal and
|
|
# manipulation of its relationships:
|
|
# * <tt>Project#portfolio, Project#portfolio=(portfolio), Project#portfolio.nil?</tt>
|
|
# * <tt>Project#project_manager, Project#project_manager=(project_manager), Project#project_manager.nil?,</tt>
|
|
# * <tt>Project#milestones.empty?, Project#milestones.size, Project#milestones, Project#milestones<<(milestone),</tt>
|
|
# <tt>Project#milestones.delete(milestone), Project#milestones.destroy(milestone), Project#milestones.find(milestone_id),</tt>
|
|
# <tt>Project#milestones.build, Project#milestones.create</tt>
|
|
# * <tt>Project#categories.empty?, Project#categories.size, Project#categories, Project#categories<<(category1),</tt>
|
|
# <tt>Project#categories.delete(category1), Project#categories.destroy(category1)</tt>
|
|
#
|
|
# === A word of warning
|
|
#
|
|
# Don't create associations that have the same name as instance methods of
|
|
# <tt>ActiveRecord::Base</tt>. Since the association adds a method with that name to
|
|
# its model, it will override the inherited method and break things.
|
|
# For instance, +attributes+ and +connection+ would be bad choices for association names.
|
|
#
|
|
# == Auto-generated methods
|
|
# See also Instance Public methods below for more details.
|
|
#
|
|
# === Singular associations (one-to-one)
|
|
# | | belongs_to |
|
|
# generated methods | belongs_to | :polymorphic | has_one
|
|
# ----------------------------------+------------+--------------+---------
|
|
# other(force_reload=false) | X | X | X
|
|
# other=(other) | X | X | X
|
|
# build_other(attributes={}) | X | | X
|
|
# create_other(attributes={}) | X | | X
|
|
# create_other!(attributes={}) | X | | X
|
|
#
|
|
# ===Collection associations (one-to-many / many-to-many)
|
|
# | | | has_many
|
|
# generated methods | habtm | has_many | :through
|
|
# ----------------------------------+-------+----------+----------
|
|
# others(force_reload=false) | X | X | X
|
|
# others=(other,other,...) | X | X | X
|
|
# other_ids | X | X | X
|
|
# other_ids=(id,id,...) | X | X | X
|
|
# others<< | X | X | X
|
|
# others.push | X | X | X
|
|
# others.concat | X | X | X
|
|
# others.build(attributes={}) | X | X | X
|
|
# others.create(attributes={}) | X | X | X
|
|
# others.create!(attributes={}) | X | X | X
|
|
# others.size | X | X | X
|
|
# others.length | X | X | X
|
|
# others.count | X | X | X
|
|
# others.sum(*args) | X | X | X
|
|
# others.empty? | X | X | X
|
|
# others.clear | X | X | X
|
|
# others.delete(other,other,...) | X | X | X
|
|
# others.delete_all | X | X | X
|
|
# others.destroy(other,other,...) | X | X | X
|
|
# others.destroy_all | X | X | X
|
|
# others.find(*args) | X | X | X
|
|
# others.exists? | X | X | X
|
|
# others.distinct | X | X | X
|
|
# others.uniq | X | X | X
|
|
# others.reset | X | X | X
|
|
#
|
|
# === Overriding generated methods
|
|
#
|
|
# Association methods are generated in a module that is included into the model class,
|
|
# which allows you to easily override with your own methods and call the original
|
|
# generated method with +super+. For example:
|
|
#
|
|
# class Car < ActiveRecord::Base
|
|
# belongs_to :owner
|
|
# belongs_to :old_owner
|
|
# def owner=(new_owner)
|
|
# self.old_owner = self.owner
|
|
# super
|
|
# end
|
|
# end
|
|
#
|
|
# If your model class is <tt>Project</tt>, the module is
|
|
# named <tt>Project::GeneratedFeatureMethods</tt>. The GeneratedFeatureMethods module is
|
|
# included in the model class immediately after the (anonymous) generated attributes methods
|
|
# module, meaning an association will override the methods for an attribute with the same name.
|
|
#
|
|
# == Cardinality and associations
|
|
#
|
|
# Active Record associations can be used to describe one-to-one, one-to-many and many-to-many
|
|
# relationships between models. Each model uses an association to describe its role in
|
|
# the relation. The +belongs_to+ association is always used in the model that has
|
|
# the foreign key.
|
|
#
|
|
# === One-to-one
|
|
#
|
|
# Use +has_one+ in the base, and +belongs_to+ in the associated model.
|
|
#
|
|
# class Employee < ActiveRecord::Base
|
|
# has_one :office
|
|
# end
|
|
# class Office < ActiveRecord::Base
|
|
# belongs_to :employee # foreign key - employee_id
|
|
# end
|
|
#
|
|
# === One-to-many
|
|
#
|
|
# Use +has_many+ in the base, and +belongs_to+ in the associated model.
|
|
#
|
|
# class Manager < ActiveRecord::Base
|
|
# has_many :employees
|
|
# end
|
|
# class Employee < ActiveRecord::Base
|
|
# belongs_to :manager # foreign key - manager_id
|
|
# end
|
|
#
|
|
# === Many-to-many
|
|
#
|
|
# There are two ways to build a many-to-many relationship.
|
|
#
|
|
# The first way uses a +has_many+ association with the <tt>:through</tt> option and a join model, so
|
|
# there are two stages of associations.
|
|
#
|
|
# class Assignment < ActiveRecord::Base
|
|
# belongs_to :programmer # foreign key - programmer_id
|
|
# belongs_to :project # foreign key - project_id
|
|
# end
|
|
# class Programmer < ActiveRecord::Base
|
|
# has_many :assignments
|
|
# has_many :projects, through: :assignments
|
|
# end
|
|
# class Project < ActiveRecord::Base
|
|
# has_many :assignments
|
|
# has_many :programmers, through: :assignments
|
|
# end
|
|
#
|
|
# For the second way, use +has_and_belongs_to_many+ in both models. This requires a join table
|
|
# that has no corresponding model or primary key.
|
|
#
|
|
# class Programmer < ActiveRecord::Base
|
|
# has_and_belongs_to_many :projects # foreign keys in the join table
|
|
# end
|
|
# class Project < ActiveRecord::Base
|
|
# has_and_belongs_to_many :programmers # foreign keys in the join table
|
|
# end
|
|
#
|
|
# Choosing which way to build a many-to-many relationship is not always simple.
|
|
# If you need to work with the relationship model as its own entity,
|
|
# use <tt>has_many :through</tt>. Use +has_and_belongs_to_many+ when working with legacy schemas or when
|
|
# you never work directly with the relationship itself.
|
|
#
|
|
# == Is it a +belongs_to+ or +has_one+ association?
|
|
#
|
|
# Both express a 1-1 relationship. The difference is mostly where to place the foreign
|
|
# key, which goes on the table for the class declaring the +belongs_to+ relationship.
|
|
#
|
|
# class User < ActiveRecord::Base
|
|
# # I reference an account.
|
|
# belongs_to :account
|
|
# end
|
|
#
|
|
# class Account < ActiveRecord::Base
|
|
# # One user references me.
|
|
# has_one :user
|
|
# end
|
|
#
|
|
# The tables for these classes could look something like:
|
|
#
|
|
# CREATE TABLE users (
|
|
# id int(11) NOT NULL auto_increment,
|
|
# account_id int(11) default NULL,
|
|
# name varchar default NULL,
|
|
# PRIMARY KEY (id)
|
|
# )
|
|
#
|
|
# CREATE TABLE accounts (
|
|
# id int(11) NOT NULL auto_increment,
|
|
# name varchar default NULL,
|
|
# PRIMARY KEY (id)
|
|
# )
|
|
#
|
|
# == Unsaved objects and associations
|
|
#
|
|
# You can manipulate objects and associations before they are saved to the database, but
|
|
# there is some special behavior you should be aware of, mostly involving the saving of
|
|
# associated objects.
|
|
#
|
|
# You can set the <tt>:autosave</tt> option on a <tt>has_one</tt>, <tt>belongs_to</tt>,
|
|
# <tt>has_many</tt>, or <tt>has_and_belongs_to_many</tt> association. Setting it
|
|
# to +true+ will _always_ save the members, whereas setting it to +false+ will
|
|
# _never_ save the members. More details about <tt>:autosave</tt> option is available at
|
|
# AutosaveAssociation.
|
|
#
|
|
# === One-to-one associations
|
|
#
|
|
# * Assigning an object to a +has_one+ association automatically saves that object and
|
|
# the object being replaced (if there is one), in order to update their foreign
|
|
# keys - except if the parent object is unsaved (<tt>new_record? == true</tt>).
|
|
# * If either of these saves fail (due to one of the objects being invalid), an
|
|
# <tt>ActiveRecord::RecordNotSaved</tt> exception is raised and the assignment is
|
|
# cancelled.
|
|
# * If you wish to assign an object to a +has_one+ association without saving it,
|
|
# use the <tt>build_association</tt> method (documented below). The object being
|
|
# replaced will still be saved to update its foreign key.
|
|
# * Assigning an object to a +belongs_to+ association does not save the object, since
|
|
# the foreign key field belongs on the parent. It does not save the parent either.
|
|
#
|
|
# === Collections
|
|
#
|
|
# * Adding an object to a collection (+has_many+ or +has_and_belongs_to_many+) automatically
|
|
# saves that object, except if the parent object (the owner of the collection) is not yet
|
|
# stored in the database.
|
|
# * If saving any of the objects being added to a collection (via <tt>push</tt> or similar)
|
|
# fails, then <tt>push</tt> returns +false+.
|
|
# * If saving fails while replacing the collection (via <tt>association=</tt>), an
|
|
# <tt>ActiveRecord::RecordNotSaved</tt> exception is raised and the assignment is
|
|
# cancelled.
|
|
# * You can add an object to a collection without automatically saving it by using the
|
|
# <tt>collection.build</tt> method (documented below).
|
|
# * All unsaved (<tt>new_record? == true</tt>) members of the collection are automatically
|
|
# saved when the parent is saved.
|
|
#
|
|
# == Customizing the query
|
|
#
|
|
# \Associations are built from <tt>Relation</tt>s, and you can use the <tt>Relation</tt> syntax
|
|
# to customize them. For example, to add a condition:
|
|
#
|
|
# class Blog < ActiveRecord::Base
|
|
# has_many :published_posts, -> { where published: true }, class_name: 'Post'
|
|
# end
|
|
#
|
|
# Inside the <tt>-> { ... }</tt> block you can use all of the usual <tt>Relation</tt> methods.
|
|
#
|
|
# === Accessing the owner object
|
|
#
|
|
# Sometimes it is useful to have access to the owner object when building the query. The owner
|
|
# is passed as a parameter to the block. For example, the following association would find all
|
|
# events that occur on the user's birthday:
|
|
#
|
|
# class User < ActiveRecord::Base
|
|
# has_many :birthday_events, ->(user) { where starts_on: user.birthday }, class_name: 'Event'
|
|
# end
|
|
#
|
|
# Note: Joining, eager loading and preloading of these associations is not fully possible.
|
|
# These operations happen before instance creation and the scope will be called with a +nil+ argument.
|
|
# This can lead to unexpected behavior and is deprecated.
|
|
#
|
|
# == Association callbacks
|
|
#
|
|
# Similar to the normal callbacks that hook into the life cycle of an Active Record object,
|
|
# you can also define callbacks that get triggered when you add an object to or remove an
|
|
# object from an association collection.
|
|
#
|
|
# class Project
|
|
# has_and_belongs_to_many :developers, after_add: :evaluate_velocity
|
|
#
|
|
# def evaluate_velocity(developer)
|
|
# ...
|
|
# end
|
|
# end
|
|
#
|
|
# It's possible to stack callbacks by passing them as an array. Example:
|
|
#
|
|
# class Project
|
|
# has_and_belongs_to_many :developers,
|
|
# after_add: [:evaluate_velocity, Proc.new { |p, d| p.shipping_date = Time.now}]
|
|
# end
|
|
#
|
|
# Possible callbacks are: +before_add+, +after_add+, +before_remove+ and +after_remove+.
|
|
#
|
|
# Should any of the +before_add+ callbacks throw an exception, the object does not get
|
|
# added to the collection. Same with the +before_remove+ callbacks; if an exception is
|
|
# thrown the object doesn't get removed.
|
|
#
|
|
# == Association extensions
|
|
#
|
|
# The proxy objects that control the access to associations can be extended through anonymous
|
|
# modules. This is especially beneficial for adding new finders, creators, and other
|
|
# factory-type methods that are only used as part of this association.
|
|
#
|
|
# class Account < ActiveRecord::Base
|
|
# has_many :people do
|
|
# def find_or_create_by_name(name)
|
|
# first_name, last_name = name.split(" ", 2)
|
|
# find_or_create_by(first_name: first_name, last_name: last_name)
|
|
# end
|
|
# end
|
|
# end
|
|
#
|
|
# person = Account.first.people.find_or_create_by_name("David Heinemeier Hansson")
|
|
# person.first_name # => "David"
|
|
# person.last_name # => "Heinemeier Hansson"
|
|
#
|
|
# If you need to share the same extensions between many associations, you can use a named
|
|
# extension module.
|
|
#
|
|
# module FindOrCreateByNameExtension
|
|
# def find_or_create_by_name(name)
|
|
# first_name, last_name = name.split(" ", 2)
|
|
# find_or_create_by(first_name: first_name, last_name: last_name)
|
|
# end
|
|
# end
|
|
#
|
|
# class Account < ActiveRecord::Base
|
|
# has_many :people, -> { extending FindOrCreateByNameExtension }
|
|
# end
|
|
#
|
|
# class Company < ActiveRecord::Base
|
|
# has_many :people, -> { extending FindOrCreateByNameExtension }
|
|
# end
|
|
#
|
|
# Some extensions can only be made to work with knowledge of the association's internals.
|
|
# Extensions can access relevant state using the following methods (where +items+ is the
|
|
# name of the association):
|
|
#
|
|
# * <tt>record.association(:items).owner</tt> - Returns the object the association is part of.
|
|
# * <tt>record.association(:items).reflection</tt> - Returns the reflection object that describes the association.
|
|
# * <tt>record.association(:items).target</tt> - Returns the associated object for +belongs_to+ and +has_one+, or
|
|
# the collection of associated objects for +has_many+ and +has_and_belongs_to_many+.
|
|
#
|
|
# However, inside the actual extension code, you will not have access to the <tt>record</tt> as
|
|
# above. In this case, you can access <tt>proxy_association</tt>. For example,
|
|
# <tt>record.association(:items)</tt> and <tt>record.items.proxy_association</tt> will return
|
|
# the same object, allowing you to make calls like <tt>proxy_association.owner</tt> inside
|
|
# association extensions.
|
|
#
|
|
# == Association Join Models
|
|
#
|
|
# Has Many associations can be configured with the <tt>:through</tt> option to use an
|
|
# explicit join model to retrieve the data. This operates similarly to a
|
|
# +has_and_belongs_to_many+ association. The advantage is that you're able to add validations,
|
|
# callbacks, and extra attributes on the join model. Consider the following schema:
|
|
#
|
|
# class Author < ActiveRecord::Base
|
|
# has_many :authorships
|
|
# has_many :books, through: :authorships
|
|
# end
|
|
#
|
|
# class Authorship < ActiveRecord::Base
|
|
# belongs_to :author
|
|
# belongs_to :book
|
|
# end
|
|
#
|
|
# @author = Author.first
|
|
# @author.authorships.collect { |a| a.book } # selects all books that the author's authorships belong to
|
|
# @author.books # selects all books by using the Authorship join model
|
|
#
|
|
# You can also go through a +has_many+ association on the join model:
|
|
#
|
|
# class Firm < ActiveRecord::Base
|
|
# has_many :clients
|
|
# has_many :invoices, through: :clients
|
|
# end
|
|
#
|
|
# class Client < ActiveRecord::Base
|
|
# belongs_to :firm
|
|
# has_many :invoices
|
|
# end
|
|
#
|
|
# class Invoice < ActiveRecord::Base
|
|
# belongs_to :client
|
|
# end
|
|
#
|
|
# @firm = Firm.first
|
|
# @firm.clients.flat_map { |c| c.invoices } # select all invoices for all clients of the firm
|
|
# @firm.invoices # selects all invoices by going through the Client join model
|
|
#
|
|
# Similarly you can go through a +has_one+ association on the join model:
|
|
#
|
|
# class Group < ActiveRecord::Base
|
|
# has_many :users
|
|
# has_many :avatars, through: :users
|
|
# end
|
|
#
|
|
# class User < ActiveRecord::Base
|
|
# belongs_to :group
|
|
# has_one :avatar
|
|
# end
|
|
#
|
|
# class Avatar < ActiveRecord::Base
|
|
# belongs_to :user
|
|
# end
|
|
#
|
|
# @group = Group.first
|
|
# @group.users.collect { |u| u.avatar }.compact # select all avatars for all users in the group
|
|
# @group.avatars # selects all avatars by going through the User join model.
|
|
#
|
|
# An important caveat with going through +has_one+ or +has_many+ associations on the
|
|
# join model is that these associations are *read-only*. For example, the following
|
|
# would not work following the previous example:
|
|
#
|
|
# @group.avatars << Avatar.new # this would work if User belonged_to Avatar rather than the other way around
|
|
# @group.avatars.delete(@group.avatars.last) # so would this
|
|
#
|
|
# == Setting Inverses
|
|
#
|
|
# If you are using a +belongs_to+ on the join model, it is a good idea to set the
|
|
# <tt>:inverse_of</tt> option on the +belongs_to+, which will mean that the following example
|
|
# works correctly (where <tt>tags</tt> is a +has_many+ <tt>:through</tt> association):
|
|
#
|
|
# @post = Post.first
|
|
# @tag = @post.tags.build name: "ruby"
|
|
# @tag.save
|
|
#
|
|
# The last line ought to save the through record (a <tt>Taggable</tt>). This will only work if the
|
|
# <tt>:inverse_of</tt> is set:
|
|
#
|
|
# class Taggable < ActiveRecord::Base
|
|
# belongs_to :post
|
|
# belongs_to :tag, inverse_of: :taggings
|
|
# end
|
|
#
|
|
# If you do not set the <tt>:inverse_of</tt> record, the association will
|
|
# do its best to match itself up with the correct inverse. Automatic
|
|
# inverse detection only works on <tt>has_many</tt>, <tt>has_one</tt>, and
|
|
# <tt>belongs_to</tt> associations.
|
|
#
|
|
# Extra options on the associations, as defined in the
|
|
# <tt>AssociationReflection::INVALID_AUTOMATIC_INVERSE_OPTIONS</tt> constant, will
|
|
# also prevent the association's inverse from being found automatically.
|
|
#
|
|
# The automatic guessing of the inverse association uses a heuristic based
|
|
# on the name of the class, so it may not work for all associations,
|
|
# especially the ones with non-standard names.
|
|
#
|
|
# You can turn off the automatic detection of inverse associations by setting
|
|
# the <tt>:inverse_of</tt> option to <tt>false</tt> like so:
|
|
#
|
|
# class Taggable < ActiveRecord::Base
|
|
# belongs_to :tag, inverse_of: false
|
|
# end
|
|
#
|
|
# == Nested \Associations
|
|
#
|
|
# You can actually specify *any* association with the <tt>:through</tt> option, including an
|
|
# association which has a <tt>:through</tt> option itself. For example:
|
|
#
|
|
# class Author < ActiveRecord::Base
|
|
# has_many :posts
|
|
# has_many :comments, through: :posts
|
|
# has_many :commenters, through: :comments
|
|
# end
|
|
#
|
|
# class Post < ActiveRecord::Base
|
|
# has_many :comments
|
|
# end
|
|
#
|
|
# class Comment < ActiveRecord::Base
|
|
# belongs_to :commenter
|
|
# end
|
|
#
|
|
# @author = Author.first
|
|
# @author.commenters # => People who commented on posts written by the author
|
|
#
|
|
# An equivalent way of setting up this association this would be:
|
|
#
|
|
# class Author < ActiveRecord::Base
|
|
# has_many :posts
|
|
# has_many :commenters, through: :posts
|
|
# end
|
|
#
|
|
# class Post < ActiveRecord::Base
|
|
# has_many :comments
|
|
# has_many :commenters, through: :comments
|
|
# end
|
|
#
|
|
# class Comment < ActiveRecord::Base
|
|
# belongs_to :commenter
|
|
# end
|
|
#
|
|
# When using nested association, you will not be able to modify the association because there
|
|
# is not enough information to know what modification to make. For example, if you tried to
|
|
# add a <tt>Commenter</tt> in the example above, there would be no way to tell how to set up the
|
|
# intermediate <tt>Post</tt> and <tt>Comment</tt> objects.
|
|
#
|
|
# == Polymorphic \Associations
|
|
#
|
|
# Polymorphic associations on models are not restricted on what types of models they
|
|
# can be associated with. Rather, they specify an interface that a +has_many+ association
|
|
# must adhere to.
|
|
#
|
|
# class Asset < ActiveRecord::Base
|
|
# belongs_to :attachable, polymorphic: true
|
|
# end
|
|
#
|
|
# class Post < ActiveRecord::Base
|
|
# has_many :assets, as: :attachable # The :as option specifies the polymorphic interface to use.
|
|
# end
|
|
#
|
|
# @asset.attachable = @post
|
|
#
|
|
# This works by using a type column in addition to a foreign key to specify the associated
|
|
# record. In the Asset example, you'd need an +attachable_id+ integer column and an
|
|
# +attachable_type+ string column.
|
|
#
|
|
# Using polymorphic associations in combination with single table inheritance (STI) is
|
|
# a little tricky. In order for the associations to work as expected, ensure that you
|
|
# store the base model for the STI models in the type column of the polymorphic
|
|
# association. To continue with the asset example above, suppose there are guest posts
|
|
# and member posts that use the posts table for STI. In this case, there must be a +type+
|
|
# column in the posts table.
|
|
#
|
|
# Note: The <tt>attachable_type=</tt> method is being called when assigning an +attachable+.
|
|
# The +class_name+ of the +attachable+ is passed as a String.
|
|
#
|
|
# class Asset < ActiveRecord::Base
|
|
# belongs_to :attachable, polymorphic: true
|
|
#
|
|
# def attachable_type=(class_name)
|
|
# super(class_name.constantize.base_class.to_s)
|
|
# end
|
|
# end
|
|
#
|
|
# class Post < ActiveRecord::Base
|
|
# # because we store "Post" in attachable_type now dependent: :destroy will work
|
|
# has_many :assets, as: :attachable, dependent: :destroy
|
|
# end
|
|
#
|
|
# class GuestPost < Post
|
|
# end
|
|
#
|
|
# class MemberPost < Post
|
|
# end
|
|
#
|
|
# == Caching
|
|
#
|
|
# All of the methods are built on a simple caching principle that will keep the result
|
|
# of the last query around unless specifically instructed not to. The cache is even
|
|
# shared across methods to make it even cheaper to use the macro-added methods without
|
|
# worrying too much about performance at the first go.
|
|
#
|
|
# project.milestones # fetches milestones from the database
|
|
# project.milestones.size # uses the milestone cache
|
|
# project.milestones.empty? # uses the milestone cache
|
|
# project.milestones(true).size # fetches milestones from the database
|
|
# project.milestones # uses the milestone cache
|
|
#
|
|
# == Eager loading of associations
|
|
#
|
|
# Eager loading is a way to find objects of a certain class and a number of named associations.
|
|
# This is one of the easiest ways of to prevent the dreaded 1+N problem in which fetching 100
|
|
# posts that each need to display their author triggers 101 database queries. Through the
|
|
# use of eager loading, the 101 queries can be reduced to 2.
|
|
#
|
|
# class Post < ActiveRecord::Base
|
|
# belongs_to :author
|
|
# has_many :comments
|
|
# end
|
|
#
|
|
# Consider the following loop using the class above:
|
|
#
|
|
# Post.all.each do |post|
|
|
# puts "Post: " + post.title
|
|
# puts "Written by: " + post.author.name
|
|
# puts "Last comment on: " + post.comments.first.created_on
|
|
# end
|
|
#
|
|
# To iterate over these one hundred posts, we'll generate 201 database queries. Let's
|
|
# first just optimize it for retrieving the author:
|
|
#
|
|
# Post.includes(:author).each do |post|
|
|
#
|
|
# This references the name of the +belongs_to+ association that also used the <tt>:author</tt>
|
|
# symbol. After loading the posts, find will collect the +author_id+ from each one and load
|
|
# all the referenced authors with one query. Doing so will cut down the number of queries
|
|
# from 201 to 102.
|
|
#
|
|
# We can improve upon the situation further by referencing both associations in the finder with:
|
|
#
|
|
# Post.includes(:author, :comments).each do |post|
|
|
#
|
|
# This will load all comments with a single query. This reduces the total number of queries
|
|
# to 3. More generally the number of queries will be 1 plus the number of associations
|
|
# named (except if some of the associations are polymorphic +belongs_to+ - see below).
|
|
#
|
|
# To include a deep hierarchy of associations, use a hash:
|
|
#
|
|
# Post.includes(:author, {comments: {author: :gravatar}}).each do |post|
|
|
#
|
|
# That'll grab not only all the comments but all their authors and gravatar pictures.
|
|
# You can mix and match symbols, arrays and hashes in any combination to describe the
|
|
# associations you want to load.
|
|
#
|
|
# All of this power shouldn't fool you into thinking that you can pull out huge amounts
|
|
# of data with no performance penalty just because you've reduced the number of queries.
|
|
# The database still needs to send all the data to Active Record and it still needs to
|
|
# be processed. So it's no catch-all for performance problems, but it's a great way to
|
|
# cut down on the number of queries in a situation as the one described above.
|
|
#
|
|
# Since only one table is loaded at a time, conditions or orders cannot reference tables
|
|
# other than the main one. If this is the case Active Record falls back to the previously
|
|
# used LEFT OUTER JOIN based strategy. For example
|
|
#
|
|
# Post.includes([:author, :comments]).where(['comments.approved = ?', true])
|
|
#
|
|
# This will result in a single SQL query with joins along the lines of:
|
|
# <tt>LEFT OUTER JOIN comments ON comments.post_id = posts.id</tt> and
|
|
# <tt>LEFT OUTER JOIN authors ON authors.id = posts.author_id</tt>. Note that using conditions
|
|
# like this can have unintended consequences.
|
|
# In the above example posts with no approved comments are not returned at all, because
|
|
# the conditions apply to the SQL statement as a whole and not just to the association.
|
|
#
|
|
# You must disambiguate column references for this fallback to happen, for example
|
|
# <tt>order: "author.name DESC"</tt> will work but <tt>order: "name DESC"</tt> will not.
|
|
#
|
|
# If you want to load all posts (including posts with no approved comments) then write
|
|
# your own LEFT OUTER JOIN query using ON
|
|
#
|
|
# Post.joins("LEFT OUTER JOIN comments ON comments.post_id = posts.id AND comments.approved = '1'")
|
|
#
|
|
# In this case it is usually more natural to include an association which has conditions defined on it:
|
|
#
|
|
# class Post < ActiveRecord::Base
|
|
# has_many :approved_comments, -> { where approved: true }, class_name: 'Comment'
|
|
# end
|
|
#
|
|
# Post.includes(:approved_comments)
|
|
#
|
|
# This will load posts and eager load the +approved_comments+ association, which contains
|
|
# only those comments that have been approved.
|
|
#
|
|
# If you eager load an association with a specified <tt>:limit</tt> option, it will be ignored,
|
|
# returning all the associated objects:
|
|
#
|
|
# class Picture < ActiveRecord::Base
|
|
# has_many :most_recent_comments, -> { order('id DESC').limit(10) }, class_name: 'Comment'
|
|
# end
|
|
#
|
|
# Picture.includes(:most_recent_comments).first.most_recent_comments # => returns all associated comments.
|
|
#
|
|
# Eager loading is supported with polymorphic associations.
|
|
#
|
|
# class Address < ActiveRecord::Base
|
|
# belongs_to :addressable, polymorphic: true
|
|
# end
|
|
#
|
|
# A call that tries to eager load the addressable model
|
|
#
|
|
# Address.includes(:addressable)
|
|
#
|
|
# This will execute one query to load the addresses and load the addressables with one
|
|
# query per addressable type.
|
|
# For example if all the addressables are either of class Person or Company then a total
|
|
# of 3 queries will be executed. The list of addressable types to load is determined on
|
|
# the back of the addresses loaded. This is not supported if Active Record has to fallback
|
|
# to the previous implementation of eager loading and will raise <tt>ActiveRecord::EagerLoadPolymorphicError</tt>.
|
|
# The reason is that the parent model's type is a column value so its corresponding table
|
|
# name cannot be put in the +FROM+/+JOIN+ clauses of that query.
|
|
#
|
|
# == Table Aliasing
|
|
#
|
|
# Active Record uses table aliasing in the case that a table is referenced multiple times
|
|
# in a join. If a table is referenced only once, the standard table name is used. The
|
|
# second time, the table is aliased as <tt>#{reflection_name}_#{parent_table_name}</tt>.
|
|
# Indexes are appended for any more successive uses of the table name.
|
|
#
|
|
# Post.joins(:comments)
|
|
# # => SELECT ... FROM posts INNER JOIN comments ON ...
|
|
# Post.joins(:special_comments) # STI
|
|
# # => SELECT ... FROM posts INNER JOIN comments ON ... AND comments.type = 'SpecialComment'
|
|
# Post.joins(:comments, :special_comments) # special_comments is the reflection name, posts is the parent table name
|
|
# # => SELECT ... FROM posts INNER JOIN comments ON ... INNER JOIN comments special_comments_posts
|
|
#
|
|
# Acts as tree example:
|
|
#
|
|
# TreeMixin.joins(:children)
|
|
# # => SELECT ... FROM mixins INNER JOIN mixins childrens_mixins ...
|
|
# TreeMixin.joins(children: :parent)
|
|
# # => SELECT ... FROM mixins INNER JOIN mixins childrens_mixins ...
|
|
# INNER JOIN parents_mixins ...
|
|
# TreeMixin.joins(children: {parent: :children})
|
|
# # => SELECT ... FROM mixins INNER JOIN mixins childrens_mixins ...
|
|
# INNER JOIN parents_mixins ...
|
|
# INNER JOIN mixins childrens_mixins_2
|
|
#
|
|
# Has and Belongs to Many join tables use the same idea, but add a <tt>_join</tt> suffix:
|
|
#
|
|
# Post.joins(:categories)
|
|
# # => SELECT ... FROM posts INNER JOIN categories_posts ... INNER JOIN categories ...
|
|
# Post.joins(categories: :posts)
|
|
# # => SELECT ... FROM posts INNER JOIN categories_posts ... INNER JOIN categories ...
|
|
# INNER JOIN categories_posts posts_categories_join INNER JOIN posts posts_categories
|
|
# Post.joins(categories: {posts: :categories})
|
|
# # => SELECT ... FROM posts INNER JOIN categories_posts ... INNER JOIN categories ...
|
|
# INNER JOIN categories_posts posts_categories_join INNER JOIN posts posts_categories
|
|
# INNER JOIN categories_posts categories_posts_join INNER JOIN categories categories_posts_2
|
|
#
|
|
# If you wish to specify your own custom joins using <tt>joins</tt> method, those table
|
|
# names will take precedence over the eager associations:
|
|
#
|
|
# Post.joins(:comments).joins("inner join comments ...")
|
|
# # => SELECT ... FROM posts INNER JOIN comments_posts ON ... INNER JOIN comments ...
|
|
# Post.joins(:comments, :special_comments).joins("inner join comments ...")
|
|
# # => SELECT ... FROM posts INNER JOIN comments comments_posts ON ...
|
|
# INNER JOIN comments special_comments_posts ...
|
|
# INNER JOIN comments ...
|
|
#
|
|
# Table aliases are automatically truncated according to the maximum length of table identifiers
|
|
# according to the specific database.
|
|
#
|
|
# == Modules
|
|
#
|
|
# By default, associations will look for objects within the current module scope. Consider:
|
|
#
|
|
# module MyApplication
|
|
# module Business
|
|
# class Firm < ActiveRecord::Base
|
|
# has_many :clients
|
|
# end
|
|
#
|
|
# class Client < ActiveRecord::Base; end
|
|
# end
|
|
# end
|
|
#
|
|
# When <tt>Firm#clients</tt> is called, it will in turn call
|
|
# <tt>MyApplication::Business::Client.find_all_by_firm_id(firm.id)</tt>.
|
|
# If you want to associate with a class in another module scope, this can be done by
|
|
# specifying the complete class name.
|
|
#
|
|
# module MyApplication
|
|
# module Business
|
|
# class Firm < ActiveRecord::Base; end
|
|
# end
|
|
#
|
|
# module Billing
|
|
# class Account < ActiveRecord::Base
|
|
# belongs_to :firm, class_name: "MyApplication::Business::Firm"
|
|
# end
|
|
# end
|
|
# end
|
|
#
|
|
# == Bi-directional associations
|
|
#
|
|
# When you specify an association there is usually an association on the associated model
|
|
# that specifies the same relationship in reverse. For example, with the following models:
|
|
#
|
|
# class Dungeon < ActiveRecord::Base
|
|
# has_many :traps
|
|
# has_one :evil_wizard
|
|
# end
|
|
#
|
|
# class Trap < ActiveRecord::Base
|
|
# belongs_to :dungeon
|
|
# end
|
|
#
|
|
# class EvilWizard < ActiveRecord::Base
|
|
# belongs_to :dungeon
|
|
# end
|
|
#
|
|
# The +traps+ association on +Dungeon+ and the +dungeon+ association on +Trap+ are
|
|
# the inverse of each other and the inverse of the +dungeon+ association on +EvilWizard+
|
|
# is the +evil_wizard+ association on +Dungeon+ (and vice-versa). By default,
|
|
# Active Record doesn't know anything about these inverse relationships and so no object
|
|
# loading optimization is possible. For example:
|
|
#
|
|
# d = Dungeon.first
|
|
# t = d.traps.first
|
|
# d.level == t.dungeon.level # => true
|
|
# d.level = 10
|
|
# d.level == t.dungeon.level # => false
|
|
#
|
|
# The +Dungeon+ instances +d+ and <tt>t.dungeon</tt> in the above example refer to
|
|
# the same object data from the database, but are actually different in-memory copies
|
|
# of that data. Specifying the <tt>:inverse_of</tt> option on associations lets you tell
|
|
# Active Record about inverse relationships and it will optimise object loading. For
|
|
# example, if we changed our model definitions to:
|
|
#
|
|
# class Dungeon < ActiveRecord::Base
|
|
# has_many :traps, inverse_of: :dungeon
|
|
# has_one :evil_wizard, inverse_of: :dungeon
|
|
# end
|
|
#
|
|
# class Trap < ActiveRecord::Base
|
|
# belongs_to :dungeon, inverse_of: :traps
|
|
# end
|
|
#
|
|
# class EvilWizard < ActiveRecord::Base
|
|
# belongs_to :dungeon, inverse_of: :evil_wizard
|
|
# end
|
|
#
|
|
# Then, from our code snippet above, +d+ and <tt>t.dungeon</tt> are actually the same
|
|
# in-memory instance and our final <tt>d.level == t.dungeon.level</tt> will return +true+.
|
|
#
|
|
# There are limitations to <tt>:inverse_of</tt> support:
|
|
#
|
|
# * does not work with <tt>:through</tt> associations.
|
|
# * does not work with <tt>:polymorphic</tt> associations.
|
|
# * for +belongs_to+ associations +has_many+ inverse associations are ignored.
|
|
#
|
|
# == Deleting from associations
|
|
#
|
|
# === Dependent associations
|
|
#
|
|
# +has_many+, +has_one+ and +belongs_to+ associations support the <tt>:dependent</tt> option.
|
|
# This allows you to specify that associated records should be deleted when the owner is
|
|
# deleted.
|
|
#
|
|
# For example:
|
|
#
|
|
# class Author
|
|
# has_many :posts, dependent: :destroy
|
|
# end
|
|
# Author.find(1).destroy # => Will destroy all of the author's posts, too
|
|
#
|
|
# The <tt>:dependent</tt> option can have different values which specify how the deletion
|
|
# is done. For more information, see the documentation for this option on the different
|
|
# specific association types. When no option is given, the behavior is to do nothing
|
|
# with the associated records when destroying a record.
|
|
#
|
|
# Note that <tt>:dependent</tt> is implemented using Rails' callback
|
|
# system, which works by processing callbacks in order. Therefore, other
|
|
# callbacks declared either before or after the <tt>:dependent</tt> option
|
|
# can affect what it does.
|
|
#
|
|
# === Delete or destroy?
|
|
#
|
|
# +has_many+ and +has_and_belongs_to_many+ associations have the methods <tt>destroy</tt>,
|
|
# <tt>delete</tt>, <tt>destroy_all</tt> and <tt>delete_all</tt>.
|
|
#
|
|
# For +has_and_belongs_to_many+, <tt>delete</tt> and <tt>destroy</tt> are the same: they
|
|
# cause the records in the join table to be removed.
|
|
#
|
|
# For +has_many+, <tt>destroy</tt> and <tt>destroy_all</tt> will always call the <tt>destroy</tt> method of the
|
|
# record(s) being removed so that callbacks are run. However <tt>delete</tt> and <tt>delete_all</tt> will either
|
|
# do the deletion according to the strategy specified by the <tt>:dependent</tt> option, or
|
|
# if no <tt>:dependent</tt> option is given, then it will follow the default strategy.
|
|
# The default strategy is <tt>:nullify</tt> (set the foreign keys to <tt>nil</tt>), except for
|
|
# +has_many+ <tt>:through</tt>, where the default strategy is <tt>delete_all</tt> (delete
|
|
# the join records, without running their callbacks).
|
|
#
|
|
# There is also a <tt>clear</tt> method which is the same as <tt>delete_all</tt>, except that
|
|
# it returns the association rather than the records which have been deleted.
|
|
#
|
|
# === What gets deleted?
|
|
#
|
|
# There is a potential pitfall here: +has_and_belongs_to_many+ and +has_many+ <tt>:through</tt>
|
|
# associations have records in join tables, as well as the associated records. So when we
|
|
# call one of these deletion methods, what exactly should be deleted?
|
|
#
|
|
# The answer is that it is assumed that deletion on an association is about removing the
|
|
# <i>link</i> between the owner and the associated object(s), rather than necessarily the
|
|
# associated objects themselves. So with +has_and_belongs_to_many+ and +has_many+
|
|
# <tt>:through</tt>, the join records will be deleted, but the associated records won't.
|
|
#
|
|
# This makes sense if you think about it: if you were to call <tt>post.tags.delete(Tag.find_by(name: 'food'))</tt>
|
|
# you would want the 'food' tag to be unlinked from the post, rather than for the tag itself
|
|
# to be removed from the database.
|
|
#
|
|
# However, there are examples where this strategy doesn't make sense. For example, suppose
|
|
# a person has many projects, and each project has many tasks. If we deleted one of a person's
|
|
# tasks, we would probably not want the project to be deleted. In this scenario, the delete method
|
|
# won't actually work: it can only be used if the association on the join model is a
|
|
# +belongs_to+. In other situations you are expected to perform operations directly on
|
|
# either the associated records or the <tt>:through</tt> association.
|
|
#
|
|
# With a regular +has_many+ there is no distinction between the "associated records"
|
|
# and the "link", so there is only one choice for what gets deleted.
|
|
#
|
|
# With +has_and_belongs_to_many+ and +has_many+ <tt>:through</tt>, if you want to delete the
|
|
# associated records themselves, you can always do something along the lines of
|
|
# <tt>person.tasks.each(&:destroy)</tt>.
|
|
#
|
|
# == Type safety with <tt>ActiveRecord::AssociationTypeMismatch</tt>
|
|
#
|
|
# If you attempt to assign an object to an association that doesn't match the inferred
|
|
# or specified <tt>:class_name</tt>, you'll get an <tt>ActiveRecord::AssociationTypeMismatch</tt>.
|
|
#
|
|
# == Options
|
|
#
|
|
# All of the association macros can be specialized through options. This makes cases
|
|
# more complex than the simple and guessable ones possible.
|
|
module ClassMethods
|
|
# Specifies a one-to-many association. The following methods for retrieval and query of
|
|
# collections of associated objects will be added:
|
|
#
|
|
# +collection+ is a placeholder for the symbol passed as the first argument, so
|
|
# <tt>has_many :clients</tt> would add among others <tt>clients.empty?</tt>.
|
|
#
|
|
# [collection(force_reload = false)]
|
|
# Returns an array of all the associated objects.
|
|
# An empty array is returned if none are found.
|
|
# [collection<<(object, ...)]
|
|
# Adds one or more objects to the collection by setting their foreign keys to the collection's primary key.
|
|
# Note that this operation instantly fires update SQL without waiting for the save or update call on the
|
|
# parent object, unless the parent object is a new record.
|
|
# [collection.delete(object, ...)]
|
|
# Removes one or more objects from the collection by setting their foreign keys to +NULL+.
|
|
# Objects will be in addition destroyed if they're associated with <tt>dependent: :destroy</tt>,
|
|
# and deleted if they're associated with <tt>dependent: :delete_all</tt>.
|
|
#
|
|
# If the <tt>:through</tt> option is used, then the join records are deleted (rather than
|
|
# nullified) by default, but you can specify <tt>dependent: :destroy</tt> or
|
|
# <tt>dependent: :nullify</tt> to override this.
|
|
# [collection.destroy(object, ...)]
|
|
# Removes one or more objects from the collection by running <tt>destroy</tt> on
|
|
# each record, regardless of any dependent option, ensuring callbacks are run.
|
|
#
|
|
# If the <tt>:through</tt> option is used, then the join records are destroyed
|
|
# instead, not the objects themselves.
|
|
# [collection=objects]
|
|
# Replaces the collections content by deleting and adding objects as appropriate. If the <tt>:through</tt>
|
|
# option is true callbacks in the join models are triggered except destroy callbacks, since deletion is
|
|
# direct.
|
|
# [collection_singular_ids]
|
|
# Returns an array of the associated objects' ids
|
|
# [collection_singular_ids=ids]
|
|
# Replace the collection with the objects identified by the primary keys in +ids+. This
|
|
# method loads the models and calls <tt>collection=</tt>. See above.
|
|
# [collection.clear]
|
|
# Removes every object from the collection. This destroys the associated objects if they
|
|
# are associated with <tt>dependent: :destroy</tt>, deletes them directly from the
|
|
# database if <tt>dependent: :delete_all</tt>, otherwise sets their foreign keys to +NULL+.
|
|
# If the <tt>:through</tt> option is true no destroy callbacks are invoked on the join models.
|
|
# Join models are directly deleted.
|
|
# [collection.empty?]
|
|
# Returns +true+ if there are no associated objects.
|
|
# [collection.size]
|
|
# Returns the number of associated objects.
|
|
# [collection.find(...)]
|
|
# Finds an associated object according to the same rules as <tt>ActiveRecord::Base.find</tt>.
|
|
# [collection.exists?(...)]
|
|
# Checks whether an associated object with the given conditions exists.
|
|
# Uses the same rules as <tt>ActiveRecord::Base.exists?</tt>.
|
|
# [collection.build(attributes = {}, ...)]
|
|
# Returns one or more new objects of the collection type that have been instantiated
|
|
# with +attributes+ and linked to this object through a foreign key, but have not yet
|
|
# been saved.
|
|
# [collection.create(attributes = {})]
|
|
# Returns a new object of the collection type that has been instantiated
|
|
# with +attributes+, linked to this object through a foreign key, and that has already
|
|
# been saved (if it passed the validation). *Note*: This only works if the base model
|
|
# already exists in the DB, not if it is a new (unsaved) record!
|
|
# [collection.create!(attributes = {})]
|
|
# Does the same as <tt>collection.create</tt>, but raises <tt>ActiveRecord::RecordInvalid</tt>
|
|
# if the record is invalid.
|
|
#
|
|
# === Example
|
|
#
|
|
# A <tt>Firm</tt> class declares <tt>has_many :clients</tt>, which will add:
|
|
# * <tt>Firm#clients</tt> (similar to <tt>Client.where(firm_id: id)</tt>)
|
|
# * <tt>Firm#clients<<</tt>
|
|
# * <tt>Firm#clients.delete</tt>
|
|
# * <tt>Firm#clients.destroy</tt>
|
|
# * <tt>Firm#clients=</tt>
|
|
# * <tt>Firm#client_ids</tt>
|
|
# * <tt>Firm#client_ids=</tt>
|
|
# * <tt>Firm#clients.clear</tt>
|
|
# * <tt>Firm#clients.empty?</tt> (similar to <tt>firm.clients.size == 0</tt>)
|
|
# * <tt>Firm#clients.size</tt> (similar to <tt>Client.count "firm_id = #{id}"</tt>)
|
|
# * <tt>Firm#clients.find</tt> (similar to <tt>Client.where(firm_id: id).find(id)</tt>)
|
|
# * <tt>Firm#clients.exists?(name: 'ACME')</tt> (similar to <tt>Client.exists?(name: 'ACME', firm_id: firm.id)</tt>)
|
|
# * <tt>Firm#clients.build</tt> (similar to <tt>Client.new("firm_id" => id)</tt>)
|
|
# * <tt>Firm#clients.create</tt> (similar to <tt>c = Client.new("firm_id" => id); c.save; c</tt>)
|
|
# * <tt>Firm#clients.create!</tt> (similar to <tt>c = Client.new("firm_id" => id); c.save!</tt>)
|
|
# The declaration can also include an options hash to specialize the behavior of the association.
|
|
#
|
|
# === Options
|
|
# [:class_name]
|
|
# Specify the class name of the association. Use it only if that name can't be inferred
|
|
# from the association name. So <tt>has_many :products</tt> will by default be linked
|
|
# to the Product class, but if the real class name is SpecialProduct, you'll have to
|
|
# specify it with this option.
|
|
# [:foreign_key]
|
|
# Specify the foreign key used for the association. By default this is guessed to be the name
|
|
# of this class in lower-case and "_id" suffixed. So a Person class that makes a +has_many+
|
|
# association will use "person_id" as the default <tt>:foreign_key</tt>.
|
|
# [:primary_key]
|
|
# Specify the method that returns the primary key used for the association. By default this is +id+.
|
|
# [:dependent]
|
|
# Controls what happens to the associated objects when
|
|
# their owner is destroyed. Note that these are implemented as
|
|
# callbacks, and Rails executes callbacks in order. Therefore, other
|
|
# similar callbacks may affect the <tt>:dependent</tt> behavior, and the
|
|
# <tt>:dependent</tt> behavior may affect other callbacks.
|
|
#
|
|
# * <tt>:destroy</tt> causes all the associated objects to also be destroyed.
|
|
# * <tt>:delete_all</tt> causes all the associated objects to be deleted directly from the database (so callbacks will not be executed).
|
|
# * <tt>:nullify</tt> causes the foreign keys to be set to +NULL+. Callbacks are not executed.
|
|
# * <tt>:restrict_with_exception</tt> causes an exception to be raised if there are any associated records.
|
|
# * <tt>:restrict_with_error</tt> causes an error to be added to the owner if there are any associated objects.
|
|
#
|
|
# If using with the <tt>:through</tt> option, the association on the join model must be
|
|
# a +belongs_to+, and the records which get deleted are the join records, rather than
|
|
# the associated records.
|
|
# [:counter_cache]
|
|
# This option can be used to configure a custom named <tt>:counter_cache.</tt> You only need this option,
|
|
# when you customized the name of your <tt>:counter_cache</tt> on the <tt>belongs_to</tt> association.
|
|
# [:as]
|
|
# Specifies a polymorphic interface (See <tt>belongs_to</tt>).
|
|
# [:through]
|
|
# Specifies an association through which to perform the query. This can be any other type
|
|
# of association, including other <tt>:through</tt> associations. Options for <tt>:class_name</tt>,
|
|
# <tt>:primary_key</tt> and <tt>:foreign_key</tt> are ignored, as the association uses the
|
|
# source reflection.
|
|
#
|
|
# If the association on the join model is a +belongs_to+, the collection can be modified
|
|
# and the records on the <tt>:through</tt> model will be automatically created and removed
|
|
# as appropriate. Otherwise, the collection is read-only, so you should manipulate the
|
|
# <tt>:through</tt> association directly.
|
|
#
|
|
# If you are going to modify the association (rather than just read from it), then it is
|
|
# a good idea to set the <tt>:inverse_of</tt> option on the source association on the
|
|
# join model. This allows associated records to be built which will automatically create
|
|
# the appropriate join model records when they are saved. (See the 'Association Join Models'
|
|
# section above.)
|
|
# [:source]
|
|
# Specifies the source association name used by <tt>has_many :through</tt> queries.
|
|
# Only use it if the name cannot be inferred from the association.
|
|
# <tt>has_many :subscribers, through: :subscriptions</tt> will look for either <tt>:subscribers</tt> or
|
|
# <tt>:subscriber</tt> on Subscription, unless a <tt>:source</tt> is given.
|
|
# [:source_type]
|
|
# Specifies type of the source association used by <tt>has_many :through</tt> queries where the source
|
|
# association is a polymorphic +belongs_to+.
|
|
# [:validate]
|
|
# If +false+, don't validate the associated objects when saving the parent object. true by default.
|
|
# [:autosave]
|
|
# If true, always save the associated objects or destroy them if marked for destruction,
|
|
# when saving the parent object. If false, never save or destroy the associated objects.
|
|
# By default, only save associated objects that are new records. This option is implemented as a
|
|
# +before_save+ callback. Because callbacks are run in the order they are defined, associated objects
|
|
# may need to be explicitly saved in any user-defined +before_save+ callbacks.
|
|
#
|
|
# Note that <tt>accepts_nested_attributes_for</tt> sets <tt>:autosave</tt> to <tt>true</tt>.
|
|
# [:inverse_of]
|
|
# Specifies the name of the <tt>belongs_to</tt> association on the associated object
|
|
# that is the inverse of this <tt>has_many</tt> association. Does not work in combination
|
|
# with <tt>:through</tt> or <tt>:as</tt> options.
|
|
# See ActiveRecord::Associations::ClassMethods's overview on Bi-directional associations for more detail.
|
|
#
|
|
# Option examples:
|
|
# has_many :comments, -> { order "posted_on" }
|
|
# has_many :comments, -> { includes :author }
|
|
# has_many :people, -> { where("deleted = 0").order("name") }, class_name: "Person"
|
|
# has_many :tracks, -> { order "position" }, dependent: :destroy
|
|
# has_many :comments, dependent: :nullify
|
|
# has_many :tags, as: :taggable
|
|
# has_many :reports, -> { readonly }
|
|
# has_many :subscribers, through: :subscriptions, source: :user
|
|
def has_many(name, scope = nil, options = {}, &extension)
|
|
reflection = Builder::HasMany.build(self, name, scope, options, &extension)
|
|
Reflection.add_reflection self, name, reflection
|
|
end
|
|
|
|
# Specifies a one-to-one association with another class. This method should only be used
|
|
# if the other class contains the foreign key. If the current class contains the foreign key,
|
|
# then you should use +belongs_to+ instead. See also ActiveRecord::Associations::ClassMethods's overview
|
|
# on when to use +has_one+ and when to use +belongs_to+.
|
|
#
|
|
# The following methods for retrieval and query of a single associated object will be added:
|
|
#
|
|
# +association+ is a placeholder for the symbol passed as the first argument, so
|
|
# <tt>has_one :manager</tt> would add among others <tt>manager.nil?</tt>.
|
|
#
|
|
# [association(force_reload = false)]
|
|
# Returns the associated object. +nil+ is returned if none is found.
|
|
# [association=(associate)]
|
|
# Assigns the associate object, extracts the primary key, sets it as the foreign key,
|
|
# and saves the associate object. To avoid database inconsistencies, permanently deletes an existing
|
|
# associated object when assigning a new one, even if the new one isn't saved to database.
|
|
# [build_association(attributes = {})]
|
|
# Returns a new object of the associated type that has been instantiated
|
|
# with +attributes+ and linked to this object through a foreign key, but has not
|
|
# yet been saved.
|
|
# [create_association(attributes = {})]
|
|
# Returns a new object of the associated type that has been instantiated
|
|
# with +attributes+, linked to this object through a foreign key, and that
|
|
# has already been saved (if it passed the validation).
|
|
# [create_association!(attributes = {})]
|
|
# Does the same as <tt>create_association</tt>, but raises <tt>ActiveRecord::RecordInvalid</tt>
|
|
# if the record is invalid.
|
|
#
|
|
# === Example
|
|
#
|
|
# An Account class declares <tt>has_one :beneficiary</tt>, which will add:
|
|
# * <tt>Account#beneficiary</tt> (similar to <tt>Beneficiary.where(account_id: id).first</tt>)
|
|
# * <tt>Account#beneficiary=(beneficiary)</tt> (similar to <tt>beneficiary.account_id = account.id; beneficiary.save</tt>)
|
|
# * <tt>Account#build_beneficiary</tt> (similar to <tt>Beneficiary.new("account_id" => id)</tt>)
|
|
# * <tt>Account#create_beneficiary</tt> (similar to <tt>b = Beneficiary.new("account_id" => id); b.save; b</tt>)
|
|
# * <tt>Account#create_beneficiary!</tt> (similar to <tt>b = Beneficiary.new("account_id" => id); b.save!; b</tt>)
|
|
#
|
|
# === Options
|
|
#
|
|
# The declaration can also include an options hash to specialize the behavior of the association.
|
|
#
|
|
# Options are:
|
|
# [:class_name]
|
|
# Specify the class name of the association. Use it only if that name can't be inferred
|
|
# from the association name. So <tt>has_one :manager</tt> will by default be linked to the Manager class, but
|
|
# if the real class name is Person, you'll have to specify it with this option.
|
|
# [:dependent]
|
|
# Controls what happens to the associated object when
|
|
# its owner is destroyed:
|
|
#
|
|
# * <tt>:destroy</tt> causes the associated object to also be destroyed
|
|
# * <tt>:delete</tt> causes the associated object to be deleted directly from the database (so callbacks will not execute)
|
|
# * <tt>:nullify</tt> causes the foreign key to be set to +NULL+. Callbacks are not executed.
|
|
# * <tt>:restrict_with_exception</tt> causes an exception to be raised if there is an associated record
|
|
# * <tt>:restrict_with_error</tt> causes an error to be added to the owner if there is an associated object
|
|
# [:foreign_key]
|
|
# Specify the foreign key used for the association. By default this is guessed to be the name
|
|
# of this class in lower-case and "_id" suffixed. So a Person class that makes a +has_one+ association
|
|
# will use "person_id" as the default <tt>:foreign_key</tt>.
|
|
# [:primary_key]
|
|
# Specify the method that returns the primary key used for the association. By default this is +id+.
|
|
# [:as]
|
|
# Specifies a polymorphic interface (See <tt>belongs_to</tt>).
|
|
# [:through]
|
|
# Specifies a Join Model through which to perform the query. Options for <tt>:class_name</tt>,
|
|
# <tt>:primary_key</tt>, and <tt>:foreign_key</tt> are ignored, as the association uses the
|
|
# source reflection. You can only use a <tt>:through</tt> query through a <tt>has_one</tt>
|
|
# or <tt>belongs_to</tt> association on the join model.
|
|
# [:source]
|
|
# Specifies the source association name used by <tt>has_one :through</tt> queries.
|
|
# Only use it if the name cannot be inferred from the association.
|
|
# <tt>has_one :favorite, through: :favorites</tt> will look for a
|
|
# <tt>:favorite</tt> on Favorite, unless a <tt>:source</tt> is given.
|
|
# [:source_type]
|
|
# Specifies type of the source association used by <tt>has_one :through</tt> queries where the source
|
|
# association is a polymorphic +belongs_to+.
|
|
# [:validate]
|
|
# If +false+, don't validate the associated object when saving the parent object. +false+ by default.
|
|
# [:autosave]
|
|
# If true, always save the associated object or destroy it if marked for destruction,
|
|
# when saving the parent object. If false, never save or destroy the associated object.
|
|
# By default, only save the associated object if it's a new record.
|
|
#
|
|
# Note that <tt>accepts_nested_attributes_for</tt> sets <tt>:autosave</tt> to <tt>true</tt>.
|
|
# [:inverse_of]
|
|
# Specifies the name of the <tt>belongs_to</tt> association on the associated object
|
|
# that is the inverse of this <tt>has_one</tt> association. Does not work in combination
|
|
# with <tt>:through</tt> or <tt>:as</tt> options.
|
|
# See ActiveRecord::Associations::ClassMethods's overview on Bi-directional associations for more detail.
|
|
# [:required]
|
|
# When set to +true+, the association will also have its presence validated.
|
|
# This will validate the association itself, not the id. You can use
|
|
# +:inverse_of+ to avoid an extra query during validation.
|
|
#
|
|
# Option examples:
|
|
# has_one :credit_card, dependent: :destroy # destroys the associated credit card
|
|
# has_one :credit_card, dependent: :nullify # updates the associated records foreign
|
|
# # key value to NULL rather than destroying it
|
|
# has_one :last_comment, -> { order 'posted_on' }, class_name: "Comment"
|
|
# has_one :project_manager, -> { where role: 'project_manager' }, class_name: "Person"
|
|
# has_one :attachment, as: :attachable
|
|
# has_one :boss, readonly: :true
|
|
# has_one :club, through: :membership
|
|
# has_one :primary_address, -> { where primary: true }, through: :addressables, source: :addressable
|
|
# has_one :credit_card, required: true
|
|
def has_one(name, scope = nil, options = {})
|
|
reflection = Builder::HasOne.build(self, name, scope, options)
|
|
Reflection.add_reflection self, name, reflection
|
|
end
|
|
|
|
# Specifies a one-to-one association with another class. This method should only be used
|
|
# if this class contains the foreign key. If the other class contains the foreign key,
|
|
# then you should use +has_one+ instead. See also ActiveRecord::Associations::ClassMethods's overview
|
|
# on when to use +has_one+ and when to use +belongs_to+.
|
|
#
|
|
# Methods will be added for retrieval and query for a single associated object, for which
|
|
# this object holds an id:
|
|
#
|
|
# +association+ is a placeholder for the symbol passed as the first argument, so
|
|
# <tt>belongs_to :author</tt> would add among others <tt>author.nil?</tt>.
|
|
#
|
|
# [association(force_reload = false)]
|
|
# Returns the associated object. +nil+ is returned if none is found.
|
|
# [association=(associate)]
|
|
# Assigns the associate object, extracts the primary key, and sets it as the foreign key.
|
|
# [build_association(attributes = {})]
|
|
# Returns a new object of the associated type that has been instantiated
|
|
# with +attributes+ and linked to this object through a foreign key, but has not yet been saved.
|
|
# [create_association(attributes = {})]
|
|
# Returns a new object of the associated type that has been instantiated
|
|
# with +attributes+, linked to this object through a foreign key, and that
|
|
# has already been saved (if it passed the validation).
|
|
# [create_association!(attributes = {})]
|
|
# Does the same as <tt>create_association</tt>, but raises <tt>ActiveRecord::RecordInvalid</tt>
|
|
# if the record is invalid.
|
|
#
|
|
# === Example
|
|
#
|
|
# A Post class declares <tt>belongs_to :author</tt>, which will add:
|
|
# * <tt>Post#author</tt> (similar to <tt>Author.find(author_id)</tt>)
|
|
# * <tt>Post#author=(author)</tt> (similar to <tt>post.author_id = author.id</tt>)
|
|
# * <tt>Post#build_author</tt> (similar to <tt>post.author = Author.new</tt>)
|
|
# * <tt>Post#create_author</tt> (similar to <tt>post.author = Author.new; post.author.save; post.author</tt>)
|
|
# * <tt>Post#create_author!</tt> (similar to <tt>post.author = Author.new; post.author.save!; post.author</tt>)
|
|
# The declaration can also include an options hash to specialize the behavior of the association.
|
|
#
|
|
# === Options
|
|
#
|
|
# [:class_name]
|
|
# Specify the class name of the association. Use it only if that name can't be inferred
|
|
# from the association name. So <tt>belongs_to :author</tt> will by default be linked to the Author class, but
|
|
# if the real class name is Person, you'll have to specify it with this option.
|
|
# [:foreign_key]
|
|
# Specify the foreign key used for the association. By default this is guessed to be the name
|
|
# of the association with an "_id" suffix. So a class that defines a <tt>belongs_to :person</tt>
|
|
# association will use "person_id" as the default <tt>:foreign_key</tt>. Similarly,
|
|
# <tt>belongs_to :favorite_person, class_name: "Person"</tt> will use a foreign key
|
|
# of "favorite_person_id".
|
|
# [:foreign_type]
|
|
# Specify the column used to store the associated object's type, if this is a polymorphic
|
|
# association. By default this is guessed to be the name of the association with a "_type"
|
|
# suffix. So a class that defines a <tt>belongs_to :taggable, polymorphic: true</tt>
|
|
# association will use "taggable_type" as the default <tt>:foreign_type</tt>.
|
|
# [:primary_key]
|
|
# Specify the method that returns the primary key of associated object used for the association.
|
|
# By default this is id.
|
|
# [:dependent]
|
|
# If set to <tt>:destroy</tt>, the associated object is destroyed when this object is. If set to
|
|
# <tt>:delete</tt>, the associated object is deleted *without* calling its destroy method.
|
|
# This option should not be specified when <tt>belongs_to</tt> is used in conjunction with
|
|
# a <tt>has_many</tt> relationship on another class because of the potential to leave
|
|
# orphaned records behind.
|
|
# [:counter_cache]
|
|
# Caches the number of belonging objects on the associate class through the use of +increment_counter+
|
|
# and +decrement_counter+. The counter cache is incremented when an object of this
|
|
# class is created and decremented when it's destroyed. This requires that a column
|
|
# named <tt>#{table_name}_count</tt> (such as +comments_count+ for a belonging Comment class)
|
|
# is used on the associate class (such as a Post class) - that is the migration for
|
|
# <tt>#{table_name}_count</tt> is created on the associate class (such that <tt>Post.comments_count</tt> will
|
|
# return the count cached, see note below). You can also specify a custom counter
|
|
# cache column by providing a column name instead of a +true+/+false+ value to this
|
|
# option (e.g., <tt>counter_cache: :my_custom_counter</tt>.)
|
|
# Note: Specifying a counter cache will add it to that model's list of readonly attributes
|
|
# using +attr_readonly+.
|
|
# [:polymorphic]
|
|
# Specify this association is a polymorphic association by passing +true+.
|
|
# Note: If you've enabled the counter cache, then you may want to add the counter cache attribute
|
|
# to the +attr_readonly+ list in the associated classes (e.g. <tt>class Post; attr_readonly :comments_count; end</tt>).
|
|
# [:validate]
|
|
# If +false+, don't validate the associated objects when saving the parent object. +false+ by default.
|
|
# [:autosave]
|
|
# If true, always save the associated object or destroy it if marked for destruction, when
|
|
# saving the parent object.
|
|
# If false, never save or destroy the associated object.
|
|
# By default, only save the associated object if it's a new record.
|
|
#
|
|
# Note that <tt>accepts_nested_attributes_for</tt> sets <tt>:autosave</tt> to <tt>true</tt>.
|
|
# [:touch]
|
|
# If true, the associated object will be touched (the updated_at/on attributes set to now)
|
|
# when this record is either saved or destroyed. If you specify a symbol, that attribute
|
|
# will be updated with the current time in addition to the updated_at/on attribute.
|
|
# [:inverse_of]
|
|
# Specifies the name of the <tt>has_one</tt> or <tt>has_many</tt> association on the associated
|
|
# object that is the inverse of this <tt>belongs_to</tt> association. Does not work in
|
|
# combination with the <tt>:polymorphic</tt> options.
|
|
# See ActiveRecord::Associations::ClassMethods's overview on Bi-directional associations for more detail.
|
|
# [:required]
|
|
# When set to +true+, the association will also have its presence validated.
|
|
# This will validate the association itself, not the id. You can use
|
|
# +:inverse_of+ to avoid an extra query during validation.
|
|
#
|
|
# Option examples:
|
|
# belongs_to :firm, foreign_key: "client_of"
|
|
# belongs_to :person, primary_key: "name", foreign_key: "person_name"
|
|
# belongs_to :author, class_name: "Person", foreign_key: "author_id"
|
|
# belongs_to :valid_coupon, ->(o) { where "discounts > #{o.payments_count}" },
|
|
# class_name: "Coupon", foreign_key: "coupon_id"
|
|
# belongs_to :attachable, polymorphic: true
|
|
# belongs_to :project, readonly: true
|
|
# belongs_to :post, counter_cache: true
|
|
# belongs_to :company, touch: true
|
|
# belongs_to :company, touch: :employees_last_updated_at
|
|
# belongs_to :company, required: true
|
|
def belongs_to(name, scope = nil, options = {})
|
|
reflection = Builder::BelongsTo.build(self, name, scope, options)
|
|
Reflection.add_reflection self, name, reflection
|
|
end
|
|
|
|
# Specifies a many-to-many relationship with another class. This associates two classes via an
|
|
# intermediate join table. Unless the join table is explicitly specified as an option, it is
|
|
# guessed using the lexical order of the class names. So a join between Developer and Project
|
|
# will give the default join table name of "developers_projects" because "D" precedes "P" alphabetically.
|
|
# Note that this precedence is calculated using the <tt><</tt> operator for String. This
|
|
# means that if the strings are of different lengths, and the strings are equal when compared
|
|
# up to the shortest length, then the longer string is considered of higher
|
|
# lexical precedence than the shorter one. For example, one would expect the tables "paper_boxes" and "papers"
|
|
# to generate a join table name of "papers_paper_boxes" because of the length of the name "paper_boxes",
|
|
# but it in fact generates a join table name of "paper_boxes_papers". Be aware of this caveat, and use the
|
|
# custom <tt>:join_table</tt> option if you need to.
|
|
# If your tables share a common prefix, it will only appear once at the beginning. For example,
|
|
# the tables "catalog_categories" and "catalog_products" generate a join table name of "catalog_categories_products".
|
|
#
|
|
# The join table should not have a primary key or a model associated with it. You must manually generate the
|
|
# join table with a migration such as this:
|
|
#
|
|
# class CreateDevelopersProjectsJoinTable < ActiveRecord::Migration
|
|
# def change
|
|
# create_table :developers_projects, id: false do |t|
|
|
# t.integer :developer_id
|
|
# t.integer :project_id
|
|
# end
|
|
# end
|
|
# end
|
|
#
|
|
# It's also a good idea to add indexes to each of those columns to speed up the joins process.
|
|
# However, in MySQL it is advised to add a compound index for both of the columns as MySQL only
|
|
# uses one index per table during the lookup.
|
|
#
|
|
# Adds the following methods for retrieval and query:
|
|
#
|
|
# +collection+ is a placeholder for the symbol passed as the first argument, so
|
|
# <tt>has_and_belongs_to_many :categories</tt> would add among others <tt>categories.empty?</tt>.
|
|
#
|
|
# [collection(force_reload = false)]
|
|
# Returns an array of all the associated objects.
|
|
# An empty array is returned if none are found.
|
|
# [collection<<(object, ...)]
|
|
# Adds one or more objects to the collection by creating associations in the join table
|
|
# (<tt>collection.push</tt> and <tt>collection.concat</tt> are aliases to this method).
|
|
# Note that this operation instantly fires update SQL without waiting for the save or update call on the
|
|
# parent object, unless the parent object is a new record.
|
|
# [collection.delete(object, ...)]
|
|
# Removes one or more objects from the collection by removing their associations from the join table.
|
|
# This does not destroy the objects.
|
|
# [collection.destroy(object, ...)]
|
|
# Removes one or more objects from the collection by running destroy on each association in the join table, overriding any dependent option.
|
|
# This does not destroy the objects.
|
|
# [collection=objects]
|
|
# Replaces the collection's content by deleting and adding objects as appropriate.
|
|
# [collection_singular_ids]
|
|
# Returns an array of the associated objects' ids.
|
|
# [collection_singular_ids=ids]
|
|
# Replace the collection by the objects identified by the primary keys in +ids+.
|
|
# [collection.clear]
|
|
# Removes every object from the collection. This does not destroy the objects.
|
|
# [collection.empty?]
|
|
# Returns +true+ if there are no associated objects.
|
|
# [collection.size]
|
|
# Returns the number of associated objects.
|
|
# [collection.find(id)]
|
|
# Finds an associated object responding to the +id+ and that
|
|
# meets the condition that it has to be associated with this object.
|
|
# Uses the same rules as <tt>ActiveRecord::Base.find</tt>.
|
|
# [collection.exists?(...)]
|
|
# Checks whether an associated object with the given conditions exists.
|
|
# Uses the same rules as <tt>ActiveRecord::Base.exists?</tt>.
|
|
# [collection.build(attributes = {})]
|
|
# Returns a new object of the collection type that has been instantiated
|
|
# with +attributes+ and linked to this object through the join table, but has not yet been saved.
|
|
# [collection.create(attributes = {})]
|
|
# Returns a new object of the collection type that has been instantiated
|
|
# with +attributes+, linked to this object through the join table, and that has already been
|
|
# saved (if it passed the validation).
|
|
#
|
|
# === Example
|
|
#
|
|
# A Developer class declares <tt>has_and_belongs_to_many :projects</tt>, which will add:
|
|
# * <tt>Developer#projects</tt>
|
|
# * <tt>Developer#projects<<</tt>
|
|
# * <tt>Developer#projects.delete</tt>
|
|
# * <tt>Developer#projects.destroy</tt>
|
|
# * <tt>Developer#projects=</tt>
|
|
# * <tt>Developer#project_ids</tt>
|
|
# * <tt>Developer#project_ids=</tt>
|
|
# * <tt>Developer#projects.clear</tt>
|
|
# * <tt>Developer#projects.empty?</tt>
|
|
# * <tt>Developer#projects.size</tt>
|
|
# * <tt>Developer#projects.find(id)</tt>
|
|
# * <tt>Developer#projects.exists?(...)</tt>
|
|
# * <tt>Developer#projects.build</tt> (similar to <tt>Project.new("developer_id" => id)</tt>)
|
|
# * <tt>Developer#projects.create</tt> (similar to <tt>c = Project.new("developer_id" => id); c.save; c</tt>)
|
|
# The declaration may include an options hash to specialize the behavior of the association.
|
|
#
|
|
# === Options
|
|
#
|
|
# [:class_name]
|
|
# Specify the class name of the association. Use it only if that name can't be inferred
|
|
# from the association name. So <tt>has_and_belongs_to_many :projects</tt> will by default be linked to the
|
|
# Project class, but if the real class name is SuperProject, you'll have to specify it with this option.
|
|
# [:join_table]
|
|
# Specify the name of the join table if the default based on lexical order isn't what you want.
|
|
# <b>WARNING:</b> If you're overwriting the table name of either class, the +table_name+ method
|
|
# MUST be declared underneath any +has_and_belongs_to_many+ declaration in order to work.
|
|
# [:foreign_key]
|
|
# Specify the foreign key used for the association. By default this is guessed to be the name
|
|
# of this class in lower-case and "_id" suffixed. So a Person class that makes
|
|
# a +has_and_belongs_to_many+ association to Project will use "person_id" as the
|
|
# default <tt>:foreign_key</tt>.
|
|
# [:association_foreign_key]
|
|
# Specify the foreign key used for the association on the receiving side of the association.
|
|
# By default this is guessed to be the name of the associated class in lower-case and "_id" suffixed.
|
|
# So if a Person class makes a +has_and_belongs_to_many+ association to Project,
|
|
# the association will use "project_id" as the default <tt>:association_foreign_key</tt>.
|
|
# [:readonly]
|
|
# If true, all the associated objects are readonly through the association.
|
|
# [:validate]
|
|
# If +false+, don't validate the associated objects when saving the parent object. +true+ by default.
|
|
# [:autosave]
|
|
# If true, always save the associated objects or destroy them if marked for destruction, when
|
|
# saving the parent object.
|
|
# If false, never save or destroy the associated objects.
|
|
# By default, only save associated objects that are new records.
|
|
#
|
|
# Note that <tt>accepts_nested_attributes_for</tt> sets <tt>:autosave</tt> to <tt>true</tt>.
|
|
#
|
|
# Option examples:
|
|
# has_and_belongs_to_many :projects
|
|
# has_and_belongs_to_many :projects, -> { includes :milestones, :manager }
|
|
# has_and_belongs_to_many :nations, class_name: "Country"
|
|
# has_and_belongs_to_many :categories, join_table: "prods_cats"
|
|
# has_and_belongs_to_many :categories, -> { readonly }
|
|
def has_and_belongs_to_many(name, scope = nil, options = {}, &extension)
|
|
if scope.is_a?(Hash)
|
|
options = scope
|
|
scope = nil
|
|
end
|
|
|
|
habtm_reflection = ActiveRecord::Reflection::HasAndBelongsToManyReflection.new(:has_and_belongs_to_many, name, scope, options, self)
|
|
|
|
builder = Builder::HasAndBelongsToMany.new name, self, options
|
|
|
|
join_model = builder.through_model
|
|
|
|
# FIXME: we should move this to the internal constants. Also people
|
|
# should never directly access this constant so I'm not happy about
|
|
# setting it.
|
|
const_set join_model.name, join_model
|
|
|
|
middle_reflection = builder.middle_reflection join_model
|
|
|
|
Builder::HasMany.define_callbacks self, middle_reflection
|
|
Reflection.add_reflection self, middle_reflection.name, middle_reflection
|
|
middle_reflection.parent_reflection = [name.to_s, habtm_reflection]
|
|
|
|
include Module.new {
|
|
class_eval <<-RUBY, __FILE__, __LINE__ + 1
|
|
def destroy_associations
|
|
association(:#{middle_reflection.name}).delete_all(:delete_all)
|
|
association(:#{name}).reset
|
|
super
|
|
end
|
|
RUBY
|
|
}
|
|
|
|
hm_options = {}
|
|
hm_options[:through] = middle_reflection.name
|
|
hm_options[:source] = join_model.right_reflection.name
|
|
|
|
[:before_add, :after_add, :before_remove, :after_remove, :autosave, :validate, :join_table].each do |k|
|
|
hm_options[k] = options[k] if options.key? k
|
|
end
|
|
|
|
has_many name, scope, hm_options, &extension
|
|
self._reflections[name.to_s].parent_reflection = [name.to_s, habtm_reflection]
|
|
end
|
|
end
|
|
end
|
|
end
|