ruby--ruby/thread_tools.c

1336 lines
30 KiB
C
Raw Normal View History

/* included by thraed.c */
VALUE rb_cMutex, rb_cQueue, rb_cSizedQueue, rb_cConditionVariable;
VALUE rb_eClosedQueueError;
/* Mutex */
typedef struct rb_mutex_struct {
rb_nativethread_lock_t lock;
rb_nativethread_cond_t cond;
struct rb_thread_struct volatile *th;
struct rb_mutex_struct *next_mutex;
int cond_waiting;
int allow_trap;
} rb_mutex_t;
static void rb_mutex_abandon_all(rb_mutex_t *mutexes);
static void rb_mutex_abandon_keeping_mutexes(rb_thread_t *th);
static void rb_mutex_abandon_locking_mutex(rb_thread_t *th);
static const char* rb_mutex_unlock_th(rb_mutex_t *mutex, rb_thread_t volatile *th);
/*
* Document-class: Mutex
*
* Mutex implements a simple semaphore that can be used to coordinate access to
* shared data from multiple concurrent threads.
*
* Example:
*
* require 'thread'
* semaphore = Mutex.new
*
* a = Thread.new {
* semaphore.synchronize {
* # access shared resource
* }
* }
*
* b = Thread.new {
* semaphore.synchronize {
* # access shared resource
* }
* }
*
*/
#define GetMutexPtr(obj, tobj) \
TypedData_Get_Struct((obj), rb_mutex_t, &mutex_data_type, (tobj))
#define mutex_mark NULL
static void
mutex_free(void *ptr)
{
if (ptr) {
rb_mutex_t *mutex = ptr;
if (mutex->th) {
/* rb_warn("free locked mutex"); */
const char *err = rb_mutex_unlock_th(mutex, mutex->th);
if (err) rb_bug("%s", err);
}
native_mutex_destroy(&mutex->lock);
native_cond_destroy(&mutex->cond);
}
ruby_xfree(ptr);
}
static size_t
mutex_memsize(const void *ptr)
{
return ptr ? sizeof(rb_mutex_t) : 0;
}
static const rb_data_type_t mutex_data_type = {
"mutex",
{mutex_mark, mutex_free, mutex_memsize,},
0, 0, RUBY_TYPED_FREE_IMMEDIATELY
};
VALUE
rb_obj_is_mutex(VALUE obj)
{
if (rb_typeddata_is_kind_of(obj, &mutex_data_type)) {
return Qtrue;
}
else {
return Qfalse;
}
}
static VALUE
mutex_alloc(VALUE klass)
{
VALUE obj;
rb_mutex_t *mutex;
obj = TypedData_Make_Struct(klass, rb_mutex_t, &mutex_data_type, mutex);
native_mutex_initialize(&mutex->lock);
native_cond_initialize(&mutex->cond, RB_CONDATTR_CLOCK_MONOTONIC);
return obj;
}
/*
* call-seq:
* Mutex.new -> mutex
*
* Creates a new Mutex
*/
static VALUE
mutex_initialize(VALUE self)
{
return self;
}
VALUE
rb_mutex_new(void)
{
return mutex_alloc(rb_cMutex);
}
/*
* call-seq:
* mutex.locked? -> true or false
*
* Returns +true+ if this lock is currently held by some thread.
*/
VALUE
rb_mutex_locked_p(VALUE self)
{
rb_mutex_t *mutex;
GetMutexPtr(self, mutex);
return mutex->th ? Qtrue : Qfalse;
}
static void
mutex_locked(rb_thread_t *th, VALUE self)
{
rb_mutex_t *mutex;
GetMutexPtr(self, mutex);
if (th->keeping_mutexes) {
mutex->next_mutex = th->keeping_mutexes;
}
th->keeping_mutexes = mutex;
}
/*
* call-seq:
* mutex.try_lock -> true or false
*
* Attempts to obtain the lock and returns immediately. Returns +true+ if the
* lock was granted.
*/
VALUE
rb_mutex_trylock(VALUE self)
{
rb_mutex_t *mutex;
VALUE locked = Qfalse;
GetMutexPtr(self, mutex);
native_mutex_lock(&mutex->lock);
if (mutex->th == 0) {
rb_thread_t *th = GET_THREAD();
mutex->th = th;
locked = Qtrue;
mutex_locked(th, self);
}
native_mutex_unlock(&mutex->lock);
return locked;
}
static int
lock_func(rb_thread_t *th, rb_mutex_t *mutex, int timeout_ms)
{
int interrupted = 0;
int err = 0;
mutex->cond_waiting++;
for (;;) {
if (!mutex->th) {
mutex->th = th;
break;
}
if (RUBY_VM_INTERRUPTED(th)) {
interrupted = 1;
break;
}
if (err == ETIMEDOUT) {
interrupted = 2;
break;
}
if (timeout_ms) {
struct timespec timeout_rel;
struct timespec timeout;
timeout_rel.tv_sec = 0;
timeout_rel.tv_nsec = timeout_ms * 1000 * 1000;
timeout = native_cond_timeout(&mutex->cond, timeout_rel);
err = native_cond_timedwait(&mutex->cond, &mutex->lock, &timeout);
}
else {
native_cond_wait(&mutex->cond, &mutex->lock);
err = 0;
}
}
mutex->cond_waiting--;
return interrupted;
}
static void
lock_interrupt(void *ptr)
{
rb_mutex_t *mutex = (rb_mutex_t *)ptr;
native_mutex_lock(&mutex->lock);
if (mutex->cond_waiting > 0)
native_cond_broadcast(&mutex->cond);
native_mutex_unlock(&mutex->lock);
}
/*
* At maximum, only one thread can use cond_timedwait and watch deadlock
* periodically. Multiple polling thread (i.e. concurrent deadlock check)
* introduces new race conditions. [Bug #6278] [ruby-core:44275]
*/
static const rb_thread_t *patrol_thread = NULL;
/*
* call-seq:
* mutex.lock -> self
*
* Attempts to grab the lock and waits if it isn't available.
* Raises +ThreadError+ if +mutex+ was locked by the current thread.
*/
VALUE
rb_mutex_lock(VALUE self)
{
rb_thread_t *th = GET_THREAD();
rb_mutex_t *mutex;
GetMutexPtr(self, mutex);
/* When running trap handler */
if (!mutex->allow_trap && th->interrupt_mask & TRAP_INTERRUPT_MASK) {
rb_raise(rb_eThreadError, "can't be called from trap context");
}
if (rb_mutex_trylock(self) == Qfalse) {
if (mutex->th == th) {
rb_raise(rb_eThreadError, "deadlock; recursive locking");
}
while (mutex->th != th) {
int interrupted;
enum rb_thread_status prev_status = th->status;
volatile int timeout_ms = 0;
struct rb_unblock_callback oldubf;
set_unblock_function(th, lock_interrupt, mutex, &oldubf, FALSE);
th->status = THREAD_STOPPED_FOREVER;
th->locking_mutex = self;
native_mutex_lock(&mutex->lock);
th->vm->sleeper++;
/*
* Carefully! while some contended threads are in lock_func(),
* vm->sleepr is unstable value. we have to avoid both deadlock
* and busy loop.
*/
if ((vm_living_thread_num(th->vm) == th->vm->sleeper) &&
!patrol_thread) {
timeout_ms = 100;
patrol_thread = th;
}
GVL_UNLOCK_BEGIN();
interrupted = lock_func(th, mutex, (int)timeout_ms);
native_mutex_unlock(&mutex->lock);
GVL_UNLOCK_END();
if (patrol_thread == th)
patrol_thread = NULL;
reset_unblock_function(th, &oldubf);
th->locking_mutex = Qfalse;
if (mutex->th && interrupted == 2) {
rb_check_deadlock(th->vm);
}
if (th->status == THREAD_STOPPED_FOREVER) {
th->status = prev_status;
}
th->vm->sleeper--;
if (mutex->th == th) mutex_locked(th, self);
if (interrupted) {
RUBY_VM_CHECK_INTS_BLOCKING(th);
}
}
}
return self;
}
/*
* call-seq:
* mutex.owned? -> true or false
*
* Returns +true+ if this lock is currently held by current thread.
*/
VALUE
rb_mutex_owned_p(VALUE self)
{
VALUE owned = Qfalse;
rb_thread_t *th = GET_THREAD();
rb_mutex_t *mutex;
GetMutexPtr(self, mutex);
if (mutex->th == th)
owned = Qtrue;
return owned;
}
static const char *
rb_mutex_unlock_th(rb_mutex_t *mutex, rb_thread_t volatile *th)
{
const char *err = NULL;
native_mutex_lock(&mutex->lock);
if (mutex->th == 0) {
err = "Attempt to unlock a mutex which is not locked";
}
else if (mutex->th != th) {
err = "Attempt to unlock a mutex which is locked by another thread";
}
else {
mutex->th = 0;
if (mutex->cond_waiting > 0)
native_cond_signal(&mutex->cond);
}
native_mutex_unlock(&mutex->lock);
if (!err) {
rb_mutex_t *volatile *th_mutex = &th->keeping_mutexes;
while (*th_mutex != mutex) {
th_mutex = &(*th_mutex)->next_mutex;
}
*th_mutex = mutex->next_mutex;
mutex->next_mutex = NULL;
}
return err;
}
/*
* call-seq:
* mutex.unlock -> self
*
* Releases the lock.
* Raises +ThreadError+ if +mutex+ wasn't locked by the current thread.
*/
VALUE
rb_mutex_unlock(VALUE self)
{
const char *err;
rb_mutex_t *mutex;
GetMutexPtr(self, mutex);
err = rb_mutex_unlock_th(mutex, GET_THREAD());
if (err) rb_raise(rb_eThreadError, "%s", err);
return self;
}
static void
rb_mutex_abandon_keeping_mutexes(rb_thread_t *th)
{
if (th->keeping_mutexes) {
rb_mutex_abandon_all(th->keeping_mutexes);
}
th->keeping_mutexes = NULL;
}
static void
rb_mutex_abandon_locking_mutex(rb_thread_t *th)
{
rb_mutex_t *mutex;
if (!th->locking_mutex) return;
GetMutexPtr(th->locking_mutex, mutex);
if (mutex->th == th)
rb_mutex_abandon_all(mutex);
th->locking_mutex = Qfalse;
}
static void
rb_mutex_abandon_all(rb_mutex_t *mutexes)
{
rb_mutex_t *mutex;
while (mutexes) {
mutex = mutexes;
mutexes = mutex->next_mutex;
mutex->th = 0;
mutex->next_mutex = 0;
}
}
static VALUE
rb_mutex_sleep_forever(VALUE time)
{
sleep_forever(GET_THREAD(), 1, 0); /* permit spurious check */
return Qnil;
}
static VALUE
rb_mutex_wait_for(VALUE time)
{
struct timeval *t = (struct timeval *)time;
sleep_timeval(GET_THREAD(), *t, 0); /* permit spurious check */
return Qnil;
}
VALUE
rb_mutex_sleep(VALUE self, VALUE timeout)
{
time_t beg, end;
struct timeval t;
if (!NIL_P(timeout)) {
t = rb_time_interval(timeout);
}
rb_mutex_unlock(self);
beg = time(0);
if (NIL_P(timeout)) {
rb_ensure(rb_mutex_sleep_forever, Qnil, rb_mutex_lock, self);
}
else {
rb_ensure(rb_mutex_wait_for, (VALUE)&t, rb_mutex_lock, self);
}
end = time(0) - beg;
return INT2FIX(end);
}
/*
* call-seq:
* mutex.sleep(timeout = nil) -> number
*
* Releases the lock and sleeps +timeout+ seconds if it is given and
* non-nil or forever. Raises +ThreadError+ if +mutex+ wasn't locked by
* the current thread.
*
* When the thread is next woken up, it will attempt to reacquire
* the lock.
*
* Note that this method can wakeup without explicit Thread#wakeup call.
* For example, receiving signal and so on.
*/
static VALUE
mutex_sleep(int argc, VALUE *argv, VALUE self)
{
VALUE timeout;
rb_scan_args(argc, argv, "01", &timeout);
return rb_mutex_sleep(self, timeout);
}
/*
* call-seq:
* mutex.synchronize { ... } -> result of the block
*
* Obtains a lock, runs the block, and releases the lock when the block
* completes. See the example under +Mutex+.
*/
VALUE
rb_mutex_synchronize(VALUE mutex, VALUE (*func)(VALUE arg), VALUE arg)
{
rb_mutex_lock(mutex);
return rb_ensure(func, arg, rb_mutex_unlock, mutex);
}
/*
* call-seq:
* mutex.synchronize { ... } -> result of the block
*
* Obtains a lock, runs the block, and releases the lock when the block
* completes. See the example under +Mutex+.
*/
static VALUE
rb_mutex_synchronize_m(VALUE self, VALUE args)
{
if (!rb_block_given_p()) {
rb_raise(rb_eThreadError, "must be called with a block");
}
return rb_mutex_synchronize(self, rb_yield, Qundef);
}
void rb_mutex_allow_trap(VALUE self, int val)
{
rb_mutex_t *m;
GetMutexPtr(self, m);
m->allow_trap = val;
}
/* Queue */
enum {
QUEUE_QUE,
QUEUE_WAITERS,
SZQUEUE_WAITERS,
SZQUEUE_MAX,
END_QUEUE
};
#define QUEUE_CLOSED FL_USER5
#define QUEUE_CLOSE_EXCEPTION FL_USER6
#define GET_QUEUE_QUE(q) get_array((q), QUEUE_QUE)
#define GET_QUEUE_WAITERS(q) get_array((q), QUEUE_WAITERS)
#define GET_SZQUEUE_WAITERS(q) get_array((q), SZQUEUE_WAITERS)
#define GET_SZQUEUE_MAX(q) RSTRUCT_GET((q), SZQUEUE_MAX)
#define GET_SZQUEUE_ULONGMAX(q) NUM2ULONG(GET_SZQUEUE_MAX(q))
static VALUE
ary_buf_new(void)
{
return rb_ary_tmp_new(1);
}
static VALUE
get_array(VALUE obj, int idx)
{
VALUE ary = RSTRUCT_GET(obj, idx);
if (!RB_TYPE_P(ary, T_ARRAY)) {
rb_raise(rb_eTypeError, "%+"PRIsVALUE" not initialized", obj);
}
return ary;
}
static void
wakeup_first_thread(VALUE list)
{
VALUE thread;
while (!NIL_P(thread = rb_ary_shift(list))) {
if (RTEST(rb_thread_wakeup_alive(thread))) break;
}
}
static void
wakeup_all_threads(VALUE list)
{
VALUE thread;
long i;
for (i=0; i<RARRAY_LEN(list); i++) {
thread = RARRAY_AREF(list, i);
rb_thread_wakeup_alive(thread);
}
rb_ary_clear(list);
}
static unsigned long
queue_length(VALUE self)
{
VALUE que = GET_QUEUE_QUE(self);
return RARRAY_LEN(que);
}
static unsigned long
queue_num_waiting(VALUE self)
{
VALUE waiters = GET_QUEUE_WAITERS(self);
return RARRAY_LEN(waiters);
}
static unsigned long
szqueue_num_waiting_producer(VALUE self)
{
VALUE waiters = GET_SZQUEUE_WAITERS(self);
return RARRAY_LEN(waiters);
}
static int
queue_closed_p(VALUE self)
{
return FL_TEST_RAW(self, QUEUE_CLOSED) != 0;
}
static void
raise_closed_queue_error(VALUE self)
{
rb_raise(rb_eClosedQueueError, "queue closed");
}
static VALUE
queue_closed_result(VALUE self)
{
assert(queue_length(self) == 0);
if (FL_TEST(self, QUEUE_CLOSE_EXCEPTION)) {
raise_closed_queue_error(self);
}
return Qnil;
}
static VALUE
queue_do_close(VALUE self, int argc, VALUE *argv, int is_szq)
{
VALUE exception = Qfalse;
if (queue_closed_p(self)) raise_closed_queue_error(self);
rb_scan_args(argc, argv, "01", &exception);
FL_SET(self, QUEUE_CLOSED);
if (RTEST(exception)) {
FL_SET(self, QUEUE_CLOSE_EXCEPTION);
}
if (queue_num_waiting(self) > 0) {
VALUE waiters = GET_QUEUE_WAITERS(self);
wakeup_all_threads(waiters);
}
if (is_szq && szqueue_num_waiting_producer(self) > 0) {
VALUE waiters = GET_SZQUEUE_WAITERS(self);
wakeup_all_threads(waiters);
}
return self;
}
/*
* Document-class: Queue
*
* This class provides a way to synchronize communication between threads.
*
* Example:
*
* require 'thread'
* queue = Queue.new
*
* producer = Thread.new do
* 5.times do |i|
* sleep rand(i) # simulate expense
* queue << i
* puts "#{i} produced"
* end
* end
*
* consumer = Thread.new do
* 5.times do |i|
* value = queue.pop
* sleep rand(i/2) # simulate expense
* puts "consumed #{value}"
* end
* end
*
*/
/*
* Document-method: Queue::new
*
* Creates a new queue instance.
*/
static VALUE
rb_queue_initialize(VALUE self)
{
RSTRUCT_SET(self, QUEUE_QUE, ary_buf_new());
RSTRUCT_SET(self, QUEUE_WAITERS, ary_buf_new());
return self;
}
static VALUE
queue_do_push(VALUE self, VALUE obj)
{
if (queue_closed_p(self)) {
raise_closed_queue_error(self);
}
rb_ary_push(GET_QUEUE_QUE(self), obj);
wakeup_first_thread(GET_QUEUE_WAITERS(self));
return self;
}
/*
* Document-method: Queue#close
* call-seq:
* close(exception=false)
*
* Closes the queue. A closed queue cannot be re-opened.
*
* After the call to close completes, the following are true:
*
* - +closed?+ will return true
*
* - calling enq/push/<< will raise ClosedQueueError('queue closed')
*
* - when +empty?+ is false, calling deq/pop/shift will return an object
* from the queue as usual.
*
* - when +empty?+ is true, deq(non_block=false) will not suspend and
* will either return nil. If +exception+ parameter is true, raise ClosedQueueError error.
* deq(non_block=true) will ignore the parameter and raise a ThreadError('queue empty').
*
* ClosedQueueError is inherited from StopIteration, so that you can break loop block.
*
* Example:
*
* q = Queue.new
* Thread.new{
* while e = q.deq # wait for nil to break loop
* # ...
* end
* }
* q.close # equals to q.close(false)
*
* q = Queue.new
* Thread.new{
* loop{
* e = q.deq; ... # braek with ClosedQueueError
* }
* }
* q.close(true)
*/
static VALUE
rb_queue_close(int argc, VALUE *argv, VALUE self)
{
return queue_do_close(self, argc, argv, FALSE);
}
/*
* Document-method: Queue#closed?
* call-seq: closed?
*
* Returns +true+ if the queue is closed.
*/
static VALUE
rb_queue_closed_p(VALUE self)
{
return queue_closed_p(self) ? Qtrue : Qfalse;
}
/*
* Document-method: Queue#push
* call-seq:
* push(object)
* enq(object)
* <<(object)
*
* Pushes the given +object+ to the queue.
*/
static VALUE
rb_queue_push(VALUE self, VALUE obj)
{
return queue_do_push(self, obj);
}
struct waiting_delete {
VALUE waiting;
VALUE th;
};
static VALUE
queue_delete_from_waiting(struct waiting_delete *p)
{
rb_ary_delete(p->waiting, p->th);
return Qnil;
}
static VALUE
queue_sleep(VALUE arg)
{
rb_thread_sleep_deadly();
return Qnil;
}
static VALUE
queue_do_pop(VALUE self, int should_block)
{
struct waiting_delete args;
args.waiting = GET_QUEUE_WAITERS(self);
args.th = rb_thread_current();
while (queue_length(self) == 0) {
if (!should_block) {
rb_raise(rb_eThreadError, "queue empty");
}
else if (queue_closed_p(self)) {
return queue_closed_result(self);
}
else {
assert(queue_length(self) == 0);
assert(queue_closed_p(self) == 0);
rb_ary_push(args.waiting, args.th);
rb_ensure(queue_sleep, (VALUE)0, queue_delete_from_waiting, (VALUE)&args);
}
}
return rb_ary_shift(GET_QUEUE_QUE(self));
}
static int
queue_pop_should_block(int argc, const VALUE *argv)
{
int should_block = 1;
rb_check_arity(argc, 0, 1);
if (argc > 0) {
should_block = !RTEST(argv[0]);
}
return should_block;
}
/*
* Document-method: Queue#pop
* call-seq:
* pop(non_block=false)
* deq(non_block=false)
* shift(non_block=false)
*
* Retrieves data from the queue.
*
* If the queue is empty, the calling thread is suspended until data is pushed
* onto the queue. If +non_block+ is true, the thread isn't suspended, and an
* exception is raised.
*/
static VALUE
rb_queue_pop(int argc, VALUE *argv, VALUE self)
{
int should_block = queue_pop_should_block(argc, argv);
return queue_do_pop(self, should_block);
}
/*
* Document-method: Queue#empty?
* call-seq: empty?
*
* Returns +true+ if the queue is empty.
*/
static VALUE
rb_queue_empty_p(VALUE self)
{
return queue_length(self) == 0 ? Qtrue : Qfalse;
}
/*
* Document-method: Queue#clear
*
* Removes all objects from the queue.
*/
static VALUE
rb_queue_clear(VALUE self)
{
rb_ary_clear(GET_QUEUE_QUE(self));
return self;
}
/*
* Document-method: Queue#length
* call-seq:
* length
* size
*
* Returns the length of the queue.
*/
static VALUE
rb_queue_length(VALUE self)
{
unsigned long len = queue_length(self);
return ULONG2NUM(len);
}
/*
* Document-method: Queue#num_waiting
*
* Returns the number of threads waiting on the queue.
*/
static VALUE
rb_queue_num_waiting(VALUE self)
{
unsigned long len = queue_num_waiting(self);
return ULONG2NUM(len);
}
/*
* Document-class: SizedQueue
*
* This class represents queues of specified size capacity. The push operation
* may be blocked if the capacity is full.
*
* See Queue for an example of how a SizedQueue works.
*/
/*
* Document-method: SizedQueue::new
* call-seq: new(max)
*
* Creates a fixed-length queue with a maximum size of +max+.
*/
static VALUE
rb_szqueue_initialize(VALUE self, VALUE vmax)
{
long max;
max = NUM2LONG(vmax);
if (max <= 0) {
rb_raise(rb_eArgError, "queue size must be positive");
}
RSTRUCT_SET(self, QUEUE_QUE, ary_buf_new());
RSTRUCT_SET(self, QUEUE_WAITERS, ary_buf_new());
RSTRUCT_SET(self, SZQUEUE_WAITERS, ary_buf_new());
RSTRUCT_SET(self, SZQUEUE_MAX, vmax);
return self;
}
/*
* Document-method: SizedQueue#close
* call-seq:
* close(exception=false)
*
* Similar to Queue#close.
*
* The difference is behavior with waiting enqueuing threads.
*
* If there are waiting enqueuing threads, they are interrupted by
* raising ClosedQueueError('queue closed').
*/
static VALUE
rb_szqueue_close(int argc, VALUE *argv, VALUE self)
{
return queue_do_close(self, argc, argv, TRUE);
}
/*
* Document-method: SizedQueue#max
*
* Returns the maximum size of the queue.
*/
static VALUE
rb_szqueue_max_get(VALUE self)
{
return GET_SZQUEUE_MAX(self);
}
/*
* Document-method: SizedQueue#max=
* call-seq: max=(number)
*
* Sets the maximum size of the queue to the given +number+.
*/
static VALUE
rb_szqueue_max_set(VALUE self, VALUE vmax)
{
long max = NUM2LONG(vmax), diff = 0;
VALUE t;
if (max <= 0) {
rb_raise(rb_eArgError, "queue size must be positive");
}
if ((unsigned long)max > GET_SZQUEUE_ULONGMAX(self)) {
diff = max - GET_SZQUEUE_ULONGMAX(self);
}
RSTRUCT_SET(self, SZQUEUE_MAX, vmax);
while (diff-- > 0 && !NIL_P(t = rb_ary_shift(GET_SZQUEUE_WAITERS(self)))) {
rb_thread_wakeup_alive(t);
}
return vmax;
}
static int
szqueue_push_should_block(int argc, const VALUE *argv)
{
int should_block = 1;
rb_check_arity(argc, 1, 2);
if (argc > 1) {
should_block = !RTEST(argv[1]);
}
return should_block;
}
/*
* Document-method: SizedQueue#push
* call-seq:
* push(object, non_block=false)
* enq(object, non_block=false)
* <<(object)
*
* Pushes +object+ to the queue.
*
* If there is no space left in the queue, waits until space becomes
* available, unless +non_block+ is true. If +non_block+ is true, the
* thread isn't suspended, and an exception is raised.
*/
static VALUE
rb_szqueue_push(int argc, VALUE *argv, VALUE self)
{
struct waiting_delete args;
int should_block = szqueue_push_should_block(argc, argv);
args.waiting = GET_SZQUEUE_WAITERS(self);
args.th = rb_thread_current();
while (queue_length(self) >= GET_SZQUEUE_ULONGMAX(self)) {
if (!should_block) {
rb_raise(rb_eThreadError, "queue full");
}
else if (queue_closed_p(self)) {
goto closed;
}
else {
rb_ary_push(args.waiting, args.th);
rb_ensure((VALUE (*)())rb_thread_sleep_deadly, (VALUE)0, queue_delete_from_waiting, (VALUE)&args);
}
}
if (queue_closed_p(self)) {
closed:
raise_closed_queue_error(self);
}
return queue_do_push(self, argv[0]);
}
static VALUE
szqueue_do_pop(VALUE self, int should_block)
{
VALUE retval = queue_do_pop(self, should_block);
if (queue_length(self) < GET_SZQUEUE_ULONGMAX(self)) {
wakeup_first_thread(GET_SZQUEUE_WAITERS(self));
}
return retval;
}
/*
* Document-method: SizedQueue#pop
* call-seq:
* pop(non_block=false)
* deq(non_block=false)
* shift(non_block=false)
*
* Retrieves data from the queue.
*
* If the queue is empty, the calling thread is suspended until data is pushed
* onto the queue. If +non_block+ is true, the thread isn't suspended, and an
* exception is raised.
*/
static VALUE
rb_szqueue_pop(int argc, VALUE *argv, VALUE self)
{
int should_block = queue_pop_should_block(argc, argv);
return szqueue_do_pop(self, should_block);
}
/*
* Document-method: Queue#clear
*
* Removes all objects from the queue.
*/
static VALUE
rb_szqueue_clear(VALUE self)
{
rb_ary_clear(GET_QUEUE_QUE(self));
wakeup_all_threads(GET_SZQUEUE_WAITERS(self));
return self;
}
/*
* Document-method: SizedQueue#num_waiting
*
* Returns the number of threads waiting on the queue.
*/
static VALUE
rb_szqueue_num_waiting(VALUE self)
{
long len = queue_num_waiting(self) + szqueue_num_waiting_producer(self);
return ULONG2NUM(len);
}
/* ConditionalVariable */
enum {
CONDVAR_WAITERS,
END_CONDVAR
};
#define GET_CONDVAR_WAITERS(cv) get_array((cv), CONDVAR_WAITERS)
/*
* Document-class: ConditionVariable
*
* ConditionVariable objects augment class Mutex. Using condition variables,
* it is possible to suspend while in the middle of a critical section until a
* resource becomes available.
*
* Example:
*
* require 'thread'
*
* mutex = Mutex.new
* resource = ConditionVariable.new
*
* a = Thread.new {
* mutex.synchronize {
* # Thread 'a' now needs the resource
* resource.wait(mutex)
* # 'a' can now have the resource
* }
* }
*
* b = Thread.new {
* mutex.synchronize {
* # Thread 'b' has finished using the resource
* resource.signal
* }
* }
*/
/*
* Document-method: ConditionVariable::new
*
* Creates a new condition variable instance.
*/
static VALUE
rb_condvar_initialize(VALUE self)
{
RSTRUCT_SET(self, CONDVAR_WAITERS, ary_buf_new());
return self;
}
struct sleep_call {
VALUE mutex;
VALUE timeout;
};
static ID id_sleep;
static VALUE
do_sleep(VALUE args)
{
struct sleep_call *p = (struct sleep_call *)args;
return rb_funcall2(p->mutex, id_sleep, 1, &p->timeout);
}
static VALUE
delete_current_thread(VALUE ary)
{
return rb_ary_delete(ary, rb_thread_current());
}
/*
* Document-method: ConditionVariable#wait
* call-seq: wait(mutex, timeout=nil)
*
* Releases the lock held in +mutex+ and waits; reacquires the lock on wakeup.
*
* If +timeout+ is given, this method returns after +timeout+ seconds passed,
* even if no other thread doesn't signal.
*/
static VALUE
rb_condvar_wait(int argc, VALUE *argv, VALUE self)
{
VALUE waiters = GET_CONDVAR_WAITERS(self);
VALUE mutex, timeout;
struct sleep_call args;
rb_scan_args(argc, argv, "11", &mutex, &timeout);
args.mutex = mutex;
args.timeout = timeout;
rb_ary_push(waiters, rb_thread_current());
rb_ensure(do_sleep, (VALUE)&args, delete_current_thread, waiters);
return self;
}
/*
* Document-method: ConditionVariable#signal
*
* Wakes up the first thread in line waiting for this lock.
*/
static VALUE
rb_condvar_signal(VALUE self)
{
wakeup_first_thread(GET_CONDVAR_WAITERS(self));
return self;
}
/*
* Document-method: ConditionVariable#broadcast
*
* Wakes up all threads waiting for this lock.
*/
static VALUE
rb_condvar_broadcast(VALUE self)
{
wakeup_all_threads(GET_CONDVAR_WAITERS(self));
return self;
}
/* :nodoc: */
static VALUE
undumpable(VALUE obj)
{
rb_raise(rb_eTypeError, "can't dump %"PRIsVALUE, rb_obj_class(obj));
UNREACHABLE;
}
static void
Init_thread_tools(void)
{
#if 0
rb_cConditionVariable = rb_define_class("ConditionVariable", rb_cObject); /* teach rdoc ConditionVariable */
rb_cQueue = rb_define_class("Queue", rb_cObject); /* teach rdoc Queue */
rb_cSizedQueue = rb_define_class("SizedQueue", rb_cObject); /* teach rdoc SizedQueue */
#endif
/* Mutex */
rb_cMutex = rb_define_class_under(rb_cThread, "Mutex", rb_cObject);
rb_define_alloc_func(rb_cMutex, mutex_alloc);
rb_define_method(rb_cMutex, "initialize", mutex_initialize, 0);
rb_define_method(rb_cMutex, "locked?", rb_mutex_locked_p, 0);
rb_define_method(rb_cMutex, "try_lock", rb_mutex_trylock, 0);
rb_define_method(rb_cMutex, "lock", rb_mutex_lock, 0);
rb_define_method(rb_cMutex, "unlock", rb_mutex_unlock, 0);
rb_define_method(rb_cMutex, "sleep", mutex_sleep, -1);
rb_define_method(rb_cMutex, "synchronize", rb_mutex_synchronize_m, 0);
rb_define_method(rb_cMutex, "owned?", rb_mutex_owned_p, 0);
/* Queue */
rb_cQueue = rb_struct_define_without_accessor_under(
rb_cThread,
"Queue", rb_cObject, rb_struct_alloc_noinit,
"que", "waiters", NULL);
rb_eClosedQueueError = rb_define_class("ClosedQueueError", rb_eStopIteration);
rb_define_method(rb_cQueue, "initialize", rb_queue_initialize, 0);
rb_undef_method(rb_cQueue, "initialize_copy");
rb_define_method(rb_cQueue, "marshal_dump", undumpable, 0);
rb_define_method(rb_cQueue, "close", rb_queue_close, -1);
rb_define_method(rb_cQueue, "closed?", rb_queue_closed_p, 0);
rb_define_method(rb_cQueue, "push", rb_queue_push, 1);
rb_define_method(rb_cQueue, "pop", rb_queue_pop, -1);
rb_define_method(rb_cQueue, "empty?", rb_queue_empty_p, 0);
rb_define_method(rb_cQueue, "clear", rb_queue_clear, 0);
rb_define_method(rb_cQueue, "length", rb_queue_length, 0);
rb_define_method(rb_cQueue, "num_waiting", rb_queue_num_waiting, 0);
rb_define_alias(rb_cQueue, "enq", "push"); /* Alias for #push. */
rb_define_alias(rb_cQueue, "<<", "push"); /* Alias for #push. */
rb_define_alias(rb_cQueue, "deq", "pop"); /* Alias for #pop. */
rb_define_alias(rb_cQueue, "shift", "pop"); /* Alias for #pop. */
rb_define_alias(rb_cQueue, "size", "length"); /* Alias for #length. */
rb_cSizedQueue = rb_struct_define_without_accessor_under(
rb_cThread,
"SizedQueue", rb_cQueue, rb_struct_alloc_noinit,
"que", "waiters", "queue_waiters", "size", NULL);
rb_define_method(rb_cSizedQueue, "initialize", rb_szqueue_initialize, 1);
rb_define_method(rb_cSizedQueue, "close", rb_szqueue_close, -1);
rb_define_method(rb_cSizedQueue, "max", rb_szqueue_max_get, 0);
rb_define_method(rb_cSizedQueue, "max=", rb_szqueue_max_set, 1);
rb_define_method(rb_cSizedQueue, "push", rb_szqueue_push, -1);
rb_define_method(rb_cSizedQueue, "pop", rb_szqueue_pop, -1);
rb_define_method(rb_cSizedQueue, "clear", rb_szqueue_clear, 0);
rb_define_method(rb_cSizedQueue, "num_waiting", rb_szqueue_num_waiting, 0);
rb_define_alias(rb_cSizedQueue, "enq", "push"); /* Alias for #push. */
rb_define_alias(rb_cSizedQueue, "<<", "push"); /* Alias for #push. */
rb_define_alias(rb_cSizedQueue, "deq", "pop"); /* Alias for #pop. */
rb_define_alias(rb_cSizedQueue, "shift", "pop"); /* Alias for #pop. */
/* CVar */
rb_cConditionVariable = rb_struct_define_without_accessor_under(
rb_cThread,
"ConditionVariable", rb_cObject, rb_struct_alloc_noinit,
"waiters", NULL);
id_sleep = rb_intern("sleep");
rb_define_method(rb_cConditionVariable, "initialize", rb_condvar_initialize, 0);
rb_undef_method(rb_cConditionVariable, "initialize_copy");
rb_define_method(rb_cConditionVariable, "marshal_dump", undumpable, 0);
rb_define_method(rb_cConditionVariable, "wait", rb_condvar_wait, -1);
rb_define_method(rb_cConditionVariable, "signal", rb_condvar_signal, 0);
rb_define_method(rb_cConditionVariable, "broadcast", rb_condvar_broadcast, 0);
#define ALIAS_GLOBAL_CONST(name) do { \
ID id = rb_intern_const(#name); \
if (!rb_const_defined_at(rb_cObject, id)) { \
rb_const_set(rb_cObject, id, rb_c##name); \
} \
} while (0)
ALIAS_GLOBAL_CONST(Mutex);
ALIAS_GLOBAL_CONST(Queue);
ALIAS_GLOBAL_CONST(SizedQueue);
ALIAS_GLOBAL_CONST(ConditionVariable);
rb_provide("thread.rb");
}