1
0
Fork 0
mirror of https://github.com/ruby/ruby.git synced 2022-11-09 12:17:21 -05:00
ruby--ruby/ext/openssl/ossl.c

1002 lines
26 KiB
C
Raw Normal View History

/*
* $Id$
* 'OpenSSL for Ruby' project
* Copyright (C) 2001-2002 Michal Rokos <m.rokos@sh.cvut.cz>
* All rights reserved.
*/
/*
* This program is licenced under the same licence as Ruby.
* (See the file 'LICENCE'.)
*/
#include "ossl.h"
#include <stdarg.h> /* for ossl_raise */
/*
* String to HEXString conversion
*/
int
string2hex(const unsigned char *buf, int buf_len, char **hexbuf, int *hexbuf_len)
{
static const char hex[]="0123456789abcdef";
int i, len = 2 * buf_len;
if (buf_len < 0 || len < buf_len) { /* PARANOIA? */
return -1;
}
if (!hexbuf) { /* if no buf, return calculated len */
if (hexbuf_len) {
*hexbuf_len = len;
}
return len;
}
if (!(*hexbuf = OPENSSL_malloc(len + 1))) {
return -1;
}
for (i = 0; i < buf_len; i++) {
(*hexbuf)[2 * i] = hex[((unsigned char)buf[i]) >> 4];
(*hexbuf)[2 * i + 1] = hex[buf[i] & 0x0f];
}
(*hexbuf)[2 * i] = '\0';
if (hexbuf_len) {
*hexbuf_len = len;
}
return len;
}
/*
* Data Conversion
*/
#define OSSL_IMPL_ARY2SK(name, type, expected_class, dup) \
STACK_OF(type) * \
ossl_##name##_ary2sk0(VALUE ary) \
{ \
STACK_OF(type) *sk; \
VALUE val; \
type *x; \
int i; \
\
Check_Type(ary, T_ARRAY); \
sk = sk_##type##_new_null(); \
if (!sk) ossl_raise(eOSSLError, NULL); \
\
for (i = 0; i < RARRAY_LEN(ary); i++) { \
val = rb_ary_entry(ary, i); \
if (!rb_obj_is_kind_of(val, expected_class)) { \
sk_##type##_pop_free(sk, type##_free); \
ossl_raise(eOSSLError, "object in array not" \
" of class ##type##"); \
} \
x = dup(val); /* NEED TO DUP */ \
sk_##type##_push(sk, x); \
} \
return sk; \
} \
\
STACK_OF(type) * \
ossl_protect_##name##_ary2sk(VALUE ary, int *status) \
{ \
return (STACK_OF(type)*)rb_protect( \
(VALUE(*)_((VALUE)))ossl_##name##_ary2sk0, \
ary, \
status); \
} \
\
STACK_OF(type) * \
ossl_##name##_ary2sk(VALUE ary) \
{ \
STACK_OF(type) *sk; \
int status = 0; \
\
sk = ossl_protect_##name##_ary2sk(ary, &status); \
if (status) rb_jump_tag(status); \
\
return sk; \
}
OSSL_IMPL_ARY2SK(x509, X509, cX509Cert, DupX509CertPtr)
#define OSSL_IMPL_SK2ARY(name, type) \
VALUE \
ossl_##name##_sk2ary(STACK_OF(type) *sk) \
{ \
type *t; \
int i, num; \
VALUE ary; \
\
if (!sk) { \
OSSL_Debug("empty sk!"); \
return Qnil; \
} \
num = sk_##type##_num(sk); \
if (num < 0) { \
OSSL_Debug("items in sk < -1???"); \
return rb_ary_new(); \
} \
ary = rb_ary_new2(num); \
\
for (i=0; i<num; i++) { \
t = sk_##type##_value(sk, i); \
rb_ary_push(ary, ossl_##name##_new(t)); \
} \
return ary; \
}
OSSL_IMPL_SK2ARY(x509, X509)
OSSL_IMPL_SK2ARY(x509crl, X509_CRL)
OSSL_IMPL_SK2ARY(x509name, X509_NAME)
static VALUE
ossl_str_new(int size)
{
return rb_str_new(0, size);
}
VALUE
ossl_buf2str(char *buf, int len)
{
VALUE str;
int status = 0;
str = rb_protect((VALUE(*)_((VALUE)))ossl_str_new, len, &status);
if(!NIL_P(str)) memcpy(RSTRING_PTR(str), buf, len);
OPENSSL_free(buf);
if(status) rb_jump_tag(status);
return str;
}
/*
* our default PEM callback
*/
static VALUE
ossl_pem_passwd_cb0(VALUE flag)
{
VALUE pass;
pass = rb_yield(flag);
SafeStringValue(pass);
return pass;
}
int
ossl_pem_passwd_cb(char *buf, int max_len, int flag, void *pwd)
{
int len, status = 0;
VALUE rflag, pass;
if (pwd || !rb_block_given_p())
return PEM_def_callback(buf, max_len, flag, pwd);
while (1) {
/*
* when the flag is nonzero, this passphrase
* will be used to perform encryption; otherwise it will
* be used to perform decryption.
*/
rflag = flag ? Qtrue : Qfalse;
pass = rb_protect(ossl_pem_passwd_cb0, rflag, &status);
if (status) {
/* ignore an exception raised. */
rb_set_errinfo(Qnil);
return -1;
}
len = RSTRING_LENINT(pass);
if (len < 4) { /* 4 is OpenSSL hardcoded limit */
rb_warning("password must be longer than 4 bytes");
continue;
}
if (len > max_len) {
rb_warning("password must be shorter then %d bytes", max_len-1);
continue;
}
memcpy(buf, RSTRING_PTR(pass), len);
break;
}
return len;
}
/*
* Verify callback
*/
int ossl_verify_cb_idx;
VALUE
ossl_call_verify_cb_proc(struct ossl_verify_cb_args *args)
{
return rb_funcall(args->proc, rb_intern("call"), 2,
args->preverify_ok, args->store_ctx);
}
int
ossl_verify_cb(int ok, X509_STORE_CTX *ctx)
{
VALUE proc, rctx, ret;
struct ossl_verify_cb_args args;
int state = 0;
proc = (VALUE)X509_STORE_CTX_get_ex_data(ctx, ossl_verify_cb_idx);
if ((void*)proc == 0)
proc = (VALUE)X509_STORE_get_ex_data(ctx->ctx, ossl_verify_cb_idx);
if ((void*)proc == 0)
return ok;
if (!NIL_P(proc)) {
ret = Qfalse;
rctx = rb_protect((VALUE(*)(VALUE))ossl_x509stctx_new,
(VALUE)ctx, &state);
if (state) {
rb_set_errinfo(Qnil);
rb_warn("StoreContext initialization failure");
}
else {
args.proc = proc;
args.preverify_ok = ok ? Qtrue : Qfalse;
args.store_ctx = rctx;
ret = rb_protect((VALUE(*)(VALUE))ossl_call_verify_cb_proc, (VALUE)&args, &state);
if (state) {
rb_set_errinfo(Qnil);
rb_warn("exception in verify_callback is ignored");
}
ossl_x509stctx_clear_ptr(rctx);
}
if (ret == Qtrue) {
X509_STORE_CTX_set_error(ctx, X509_V_OK);
ok = 1;
}
else{
if (X509_STORE_CTX_get_error(ctx) == X509_V_OK) {
X509_STORE_CTX_set_error(ctx, X509_V_ERR_CERT_REJECTED);
}
ok = 0;
}
}
return ok;
}
/*
* main module
*/
VALUE mOSSL;
/*
* OpenSSLError < StandardError
*/
VALUE eOSSLError;
/*
* Convert to DER string
*/
ID ossl_s_to_der;
VALUE
ossl_to_der(VALUE obj)
{
VALUE tmp;
tmp = rb_funcall(obj, ossl_s_to_der, 0);
StringValue(tmp);
return tmp;
}
VALUE
ossl_to_der_if_possible(VALUE obj)
{
if(rb_respond_to(obj, ossl_s_to_der))
return ossl_to_der(obj);
return obj;
}
/*
* Errors
*/
static VALUE
ossl_make_error(VALUE exc, const char *fmt, va_list args)
{
char buf[BUFSIZ];
const char *msg;
long e;
int len = 0;
#ifdef HAVE_ERR_PEEK_LAST_ERROR
e = ERR_peek_last_error();
#else
e = ERR_peek_error();
#endif
if (fmt) {
len = vsnprintf(buf, BUFSIZ, fmt, args);
}
if (len < BUFSIZ && e) {
if (dOSSL == Qtrue) /* FULL INFO */
msg = ERR_error_string(e, NULL);
else
msg = ERR_reason_error_string(e);
len += snprintf(buf+len, BUFSIZ-len, "%s%s", (len ? ": " : ""), msg);
}
if (dOSSL == Qtrue){ /* show all errors on the stack */
while ((e = ERR_get_error()) != 0){
rb_warn("error on stack: %s", ERR_error_string(e, NULL));
}
}
ERR_clear_error();
if(len > BUFSIZ) len = rb_long2int(strlen(buf));
return rb_exc_new(exc, buf, len);
}
void
ossl_raise(VALUE exc, const char *fmt, ...)
{
va_list args;
VALUE err;
va_start(args, fmt);
err = ossl_make_error(exc, fmt, args);
va_end(args);
rb_exc_raise(err);
}
VALUE
ossl_exc_new(VALUE exc, const char *fmt, ...)
{
va_list args;
VALUE err;
va_start(args, fmt);
err = ossl_make_error(exc, fmt, args);
va_end(args);
return err;
}
/*
* call-seq:
* OpenSSL.errors -> [String...]
*
* See any remaining errors held in queue.
*
* Any errors you see here are probably due to a bug in ruby's OpenSSL implementation.
*/
VALUE
ossl_get_errors()
{
VALUE ary;
long e;
ary = rb_ary_new();
while ((e = ERR_get_error()) != 0){
rb_ary_push(ary, rb_str_new2(ERR_error_string(e, NULL)));
}
return ary;
}
/*
* Debug
*/
VALUE dOSSL;
#if !defined(HAVE_VA_ARGS_MACRO)
void
ossl_debug(const char *fmt, ...)
{
va_list args;
if (dOSSL == Qtrue) {
fprintf(stderr, "OSSL_DEBUG: ");
va_start(args, fmt);
vfprintf(stderr, fmt, args);
va_end(args);
fprintf(stderr, " [CONTEXT N/A]\n");
}
}
#endif
/*
* call-seq:
* OpenSSL.debug -> true | false
*/
static VALUE
ossl_debug_get(VALUE self)
{
return dOSSL;
}
/*
* call-seq:
* OpenSSL.debug = boolean -> boolean
*
* Turns on or off CRYPTO_MEM_CHECK.
* Also shows some debugging message on stderr.
*/
static VALUE
ossl_debug_set(VALUE self, VALUE val)
{
VALUE old = dOSSL;
dOSSL = val;
if (old != dOSSL) {
if (dOSSL == Qtrue) {
CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_ON);
fprintf(stderr, "OSSL_DEBUG: IS NOW ON!\n");
} else if (old == Qtrue) {
CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_OFF);
fprintf(stderr, "OSSL_DEBUG: IS NOW OFF!\n");
}
}
return val;
}
/*
* OpenSSL provides SSL, TLS and general purpose cryptography. It wraps the
* OpenSSL[http://www.openssl.org/] library.
*
* = Examples
*
* All examples assume you have loaded OpenSSL with:
*
* require 'openssl'
*
* These examples build atop each other. For example the key created in the
* next is used in throughout these examples.
*
* == Keys
*
* === Creating a Key
*
* This example creates a 2048 bit RSA keypair and writes it to the current
* directory.
*
* key = OpenSSL::PKey::RSA.new 2048
*
* open 'private_key.pem', 'w' do |io| io.write key.to_pem end
* open 'public_key.pem', 'w' do |io| io.write key.public_key.to_pem end
*
* === Exporting a Key
*
* Keys saved to disk without encryption are not secure as anyone who gets
* ahold of the key may use it unless it is encrypted. In order to securely
* export a key you may export it with a pass phrase.
*
* cipher = OpenSSL::Cipher.new 'AES-128-CBC'
* pass_phrase = 'my secure pass phrase goes here'
*
* key_secure = key.export cipher, pass_phrase
*
* open 'private.secure.pem', 'w' do |io|
* io.write key_secure
* end
*
* OpenSSL::Cipher.ciphers returns a list of available ciphers.
*
* === Loading a Key
*
* A key can also be loaded from a file.
*
* key2 = OpenSSL::PKey::RSA.new File.read 'private_key.pem'
* key2.public? # => true
*
* or
*
* key3 = OpenSSL::PKey::RSA.new File.read 'public_key.pem'
* key3.private? # => false
*
* === Loading an Encrypted Key
*
* OpenSSL will prompt you for your pass phrase when loading an encrypted key.
* If you will not be able to type in the pass phrase you may provide it when
* loading the key:
*
* key4_pem = File.read 'private.secure.pem'
* key4 = OpenSSL::PKey::RSA.new key4_pem, pass_phrase
*
* == RSA Encryption
*
* RSA provides encryption and decryption using the public and private keys.
* You can use a variety of padding methods depending upon the intended use of
* encrypted data.
*
* === Encryption & Decryption
*
* Asymmetric public/private key encryption is slow and victim to attack in
* cases where it is used without padding or directly to encrypt larger chunks
* of data. Typical use cases for RSA encryption involve "wrapping" a symmetric
* key with the public key of the recipient who would "unwrap" that symmetric
* key again using their private key.
* The following illustrates a simplified example of such a key transport
* scheme. It shouldn't be used in practice, though, standardized protocols
* should always be preferred.
*
* wrapped_key = key.public_encrypt key
*
* A symmetric key encrypted with the public key can only be decrypted with
* the corresponding private key of the recipient.
*
* original_key = key.private_decrypt wrapped_key
*
* By default PKCS#1 padding will be used, but it is also possible to use
* other forms of padding, see PKey::RSA for further details.
*
* === Signatures
*
* Using "private_encrypt" to encrypt some data with the private key is
* equivalent to applying a digital signature to the data. A verifying
* party may validate the signature by comparing the result of decrypting
* the signature with "public_decrypt" to the original data. However,
* OpenSSL::PKey already has methods "sign" and "verify" that handle
* digital signatures in a standardized way - "private_encrypt" and
* "public_decrypt" shouldn't be used in practice.
*
* To sign a document, a cryptographically secure hash of the document is
* computed first, which is then signed using the private key.
*
* digest = OpenSSL::Digest::SHA256.new
* signature = key.sign digest, document
*
* To validate the signature, again a hash of the document is computed and
* the signature is decrypted using the public key. The result is then
* compared to the hash just computed, if they are equal the signature was
* valid.
*
* digest = OpenSSL::Digest::SHA256.new
* if key.verify digest, signature, document
* puts 'Valid'
* else
* puts 'Invalid'
* end
*
* == PBKDF2 Password-based Encryption
*
* If supported by the underlying OpenSSL version used, Password-based
* Encryption should use the features of PKCS5. If not supported or if
* required by legacy applications, the older, less secure methods specified
* in RFC 2898 are also supported (see below).
*
* PKCS5 supports PBKDF2 as it was specified in PKCS#5
* v2.0[http://www.rsa.com/rsalabs/node.asp?id=2127]. It still uses a
* password, a salt, and additionally a number of iterations that will
* slow the key derivation process down. The slower this is, the more work
* it requires being able to brute-force the resulting key.
*
* === Encryption
*
* The strategy is to first instantiate a Cipher for encryption, and
* then to generate a random IV plus a key derived from the password
* using PBKDF2. PKCS #5 v2.0 recommends at least 8 bytes for the salt,
* the number of iterations largely depends on the hardware being used.
*
* cipher = OpenSSL::Cipher.new 'AES-128-CBC'
* cipher.encrypt
* iv = cipher.random_iv
*
* pwd = 'some hopefully not to easily guessable password'
* salt = OpenSSL::Random.random_bytes 16
* iter = 20000
* key_len = cipher.key_len
* digest = OpenSSL::Digest::SHA256.new
*
* key = OpenSSL::PKCS5.pbkdf2_hmac(pwd, salt, iter, key_len, digest)
* cipher.key = key
*
* Now encrypt the data:
*
* encrypted = cipher.update document
* encrypted << cipher.final
*
* === Decryption
*
* Use the same steps as before to derive the symmetric AES key, this time
* setting the Cipher up for decryption.
*
* cipher = OpenSSL::Cipher.new 'AES-128-CBC'
* cipher.decrypt
* cipher.iv = iv # the one generated with #random_iv
*
* pwd = 'some hopefully not to easily guessable password'
* salt = ... # the one generated above
* iter = 20000
* key_len = cipher.key_len
* digest = OpenSSL::Digest::SHA256.new
*
* key = OpenSSL::PKCS5.pbkdf2_hmac(pwd, salt, iter, key_len, digest)
* cipher.key = key
*
* Now decrypt the data:
*
* decrypted = cipher.update encrypted
* decrypted << cipher.final
*
* == PKCS #5 Password-based Encryption
*
* PKCS #5 is a password-based encryption standard documented at
* RFC2898[http://www.ietf.org/rfc/rfc2898.txt]. It allows a short password or
* passphrase to be used to create a secure encryption key. If possible, PBKDF2
* as described above should be used if the circumstances allow it.
*
* PKCS #5 uses a Cipher, a pass phrase and a salt to generate an encryption
* key.
*
* pass_phrase = 'my secure pass phrase goes here'
* salt = '8 octets'
*
* === Encryption
*
* First set up the cipher for encryption
*
* encrypter = OpenSSL::Cipher.new 'AES-128-CBC'
* encrypter.encrypt
* encrypter.pkcs5_keyivgen pass_phrase, salt
*
* Then pass the data you want to encrypt through
*
* encrypted = encrypter.update 'top secret document'
* encrypted << encrypter.final
*
* === Decryption
*
* Use a new Cipher instance set up for decryption
*
* decrypter = OpenSSL::Cipher.new 'AES-128-CBC'
* decrypter.decrypt
* decrypter.pkcs5_keyivgen pass_phrase, salt
*
* Then pass the data you want to decrypt through
*
* plain = decrypter.update encrypted
* plain << decrypter.final
*
* == X509 Certificates
*
* === Creating a Certificate
*
* This example creates a self-signed certificate using an RSA key and a SHA1
* signature.
*
* name = OpenSSL::X509::Name.parse 'CN=nobody/DC=example'
*
* cert = OpenSSL::X509::Certificate.new
* cert.version = 2
* cert.serial = 0
* cert.not_before = Time.now
* cert.not_after = Time.now + 3600
*
* cert.public_key = key.public_key
* cert.subject = name
*
* === Certificate Extensions
*
* You can add extensions to the certificate with
* OpenSSL::SSL::ExtensionFactory to indicate the purpose of the certificate.
*
* extension_factory = OpenSSL::X509::ExtensionFactory.new nil, cert
*
* extension_factory.create_extension 'basicConstraints', 'CA:FALSE'
* extension_factory.create_extension 'keyUsage',
* 'keyEncipherment,dataEncipherment,digitalSignature'
* extension_factory.create_extension 'subjectKeyIdentifier', 'hash'
*
* === Signing a Certificate
*
* To sign a certificate set the issuer and use OpenSSL::X509::Certificate#sign
* with a digest algorithm. This creates a self-signed cert because we're using
* the same name and key to sign the certificate as was used to create the
* certificate.
*
* cert.issuer = name
* cert.sign key, OpenSSL::Digest::SHA1.new
*
* open 'certificate.pem', 'w' do |io| io.write cert.to_pem end
*
* === Loading a Certificate
*
* Like a key, a cert can also be loaded from a file.
*
* cert2 = OpenSSL::X509::Certificate.new File.read 'certificate.pem'
*
* === Verifying a Certificate
*
* Certificate#verify will return true when a certificate was signed with the
* given public key.
*
* raise 'certificate can not be verified' unless cert2.verify key
*
* == Certificate Authority
*
* A certificate authority (CA) is a trusted third party that allows you to
* verify the ownership of unknown certificates. The CA issues key signatures
* that indicate it trusts the user of that key. A user encountering the key
* can verify the signature by using the CA's public key.
*
* === CA Key
*
* CA keys are valuable, so we encrypt and save it to disk and make sure it is
* not readable by other users.
*
* ca_key = OpenSSL::PKey::RSA.new 2048
*
* cipher = OpenSSL::Cipher::Cipher.new 'AES-128-CBC'
*
* open 'ca_key.pem', 'w', 0400 do |io|
* io.write key.export(cipher, pass_phrase)
* end
*
* === CA Certificate
*
* A CA certificate is created the same way we created a certificate above, but
* with different extensions.
*
* ca_name = OpenSSL::X509::Name.parse 'CN=ca/DC=example'
*
* ca_cert = OpenSSL::X509::Certificate.new
* ca_cert.serial = 0
* ca_cert.version = 2
* ca_cert.not_before = Time.now
* ca_cert.not_after = Time.now + 86400
*
* ca_cert.public_key = ca_key.public_key
* ca_cert.subject = ca_name
* ca_cert.issuer = ca_name
*
* extension_factory = OpenSSL::X509::ExtensionFactory.new
* extension_factory.subject_certificate = ca_cert
* extension_factory.issuer_certificate = ca_cert
*
* extension_factory.create_extension 'subjectKeyIdentifier', 'hash'
*
* This extension indicates the CA's key may be used as a CA.
*
* extension_factory.create_extension 'basicConstraints', 'CA:TRUE', true
*
* This extension indicates the CA's key may be used to verify signatures on
* both certificates and certificate revocations.
*
* extension_factory.create_extension 'keyUsage', 'cRLSign,keyCertSign', true
*
* Root CA certificates are self-signed.
*
* ca_cert.sign ca_key, OpenSSL::Digest::SHA1.new
*
* The CA certificate is saved to disk so it may be distributed to all the
* users of the keys this CA will sign.
*
* open 'ca_cert.pem', 'w' do |io|
* io.write ca_cert.to_pem
* end
*
* === Certificate Signing Request
*
* The CA signs keys through a Certificate Signing Request (CSR). The CSR
* contains the information necessary to identify the key.
*
* csr = OpenSSL::X509::Request.new
* csr.version = 0
* csr.subject = name
* csr.public_key = key.public_key
* csr.sign key, OpenSSL::Digest::SHA1.new
*
* A CSR is saved to disk and sent to the CA for signing.
*
* open 'csr.pem', 'w' do |io|
* io.write csr.to_pem
* end
*
* === Creating a Certificate from a CSR
*
* Upon receiving a CSR the CA will verify it before signing it. A minimal
* verification would be to check the CSR's signature.
*
* csr = OpenSSL::X509::Request.new File.read 'csr.pem'
*
* raise 'CSR can not be verified' unless csr.verify csr.public_key
*
* After verification a certificate is created, marked for various usages,
* signed with the CA key and returned to the requester.
*
* csr_cert = OpenSSL::X509::Certificate.new
* csr_cert.serial = 0
* csr_cert.version = 2
* csr_cert.not_before = Time.now
* csr_cert.not_after = Time.now + 600
*
* csr_cert.subject = csr.subject
* csr_cert.public_key = csr.public_key
* csr_cert.issuer = ca_cert.subject
*
* extension_factory = OpenSSL::X509::ExtensionFactory.new
* extension_factory.subject_certificate = csr_cert
* extension_factory.issuer_certificate = ca_cert
*
* extension_factory.create_extension 'basicConstraints', 'CA:FALSE'
* extension_factory.create_extension 'keyUsage',
* 'keyEncipherment,dataEncipherment,digitalSignature'
* extension_factory.create_extension 'subjectKeyIdentifier', 'hash'
*
* csr_cert.sign ca_key, OpenSSL::Digest::SHA1.new
*
* open 'csr_cert.pem', 'w' do |io|
* io.write csr_cert.to_pem
* end
*
* == SSL and TLS Connections
*
* Using our created key and certificate we can create an SSL or TLS connection.
* An SSLContext is used to set up an SSL session.
*
* context = OpenSSL::SSL::SSLContext.new
*
* === SSL Server
*
* An SSL server requires the certificate and private key to communicate
* securely with its clients:
*
* context.cert = cert
* context.key = key
*
* Then create an SSLServer with a TCP server socket and the context. Use the
* SSLServer like an ordinary TCP server.
*
* require 'socket'
*
* tcp_server = TCPServer.new 5000
* ssl_server = OpenSSL::SSL::SSLServer.new tcp_server, context
*
* loop do
* ssl_connection = ssl_server.accept
*
* data = connection.gets
*
* response = "I got #{data.dump}"
* puts response
*
* connection.puts "I got #{data.dump}"
* connection.close
* end
*
* === SSL client
*
* An SSL client is created with a TCP socket and the context.
* SSLSocket#connect must be called to initiate the SSL handshake and start
* encryption. A key and certificate are not required for the client socket.
*
* require 'socket'
*
* tcp_client = TCPSocket.new 'localhost', 5000
* ssl_client = OpenSSL::SSL::SSLSocket.new client_socket, context
* ssl_client.connect
*
* ssl_client.puts "hello server!"
* puts ssl_client.gets
*
* === Peer Verification
*
* An unverified SSL connection does not provide much security. For enhanced
* security the client or server can verify the certificate of its peer.
*
* The client can be modified to verify the server's certificate against the
* certificate authority's certificate:
*
* context.ca_file = 'ca_cert.pem'
* context.verify_mode = OpenSSL::SSL::VERIFY_PEER
*
* require 'socket'
*
* tcp_client = TCPSocket.new 'localhost', 5000
* ssl_client = OpenSSL::SSL::SSLSocket.new client_socket, context
* ssl_client.connect
*
* ssl_client.puts "hello server!"
* puts ssl_client.gets
*
* If the server certificate is invalid or <tt>context.ca_file</tt> is not set
* when verifying peers an OpenSSL::SSL::SSLError will be raised.
*
*/
void
Init_openssl()
{
/*
* Init timezone info
*/
#if 0
tzset();
#endif
/*
* Init all digests, ciphers
*/
/* CRYPTO_malloc_init(); */
/* ENGINE_load_builtin_engines(); */
OpenSSL_add_ssl_algorithms();
OpenSSL_add_all_algorithms();
ERR_load_crypto_strings();
SSL_load_error_strings();
/*
* FIXME:
* On unload do:
*/
#if 0
CONF_modules_unload(1);
destroy_ui_method();
EVP_cleanup();
ENGINE_cleanup();
CRYPTO_cleanup_all_ex_data();
ERR_remove_state(0);
ERR_free_strings();
#endif
/*
* Init main module
*/
mOSSL = rb_define_module("OpenSSL");
/*
* OpenSSL ruby extension version
*/
rb_define_const(mOSSL, "VERSION", rb_str_new2(OSSL_VERSION));
/*
* Version of OpenSSL the ruby OpenSSL extension was built with
*/
rb_define_const(mOSSL, "OPENSSL_VERSION", rb_str_new2(OPENSSL_VERSION_TEXT));
/*
* Version number of OpenSSL the ruby OpenSSL extension was built with
* (base 16)
*/
rb_define_const(mOSSL, "OPENSSL_VERSION_NUMBER", INT2NUM(OPENSSL_VERSION_NUMBER));
/*
* Generic error,
* common for all classes under OpenSSL module
*/
eOSSLError = rb_define_class_under(mOSSL,"OpenSSLError",rb_eStandardError);
/*
* Verify callback Proc index for ext-data
*/
if ((ossl_verify_cb_idx = X509_STORE_CTX_get_ex_new_index(0, (void *)"ossl_verify_cb_idx", 0, 0, 0)) < 0)
ossl_raise(eOSSLError, "X509_STORE_CTX_get_ex_new_index");
/*
* Init debug core
*/
dOSSL = Qfalse;
rb_define_module_function(mOSSL, "debug", ossl_debug_get, 0);
rb_define_module_function(mOSSL, "debug=", ossl_debug_set, 1);
rb_define_module_function(mOSSL, "errors", ossl_get_errors, 0);
/*
* Get ID of to_der
*/
ossl_s_to_der = rb_intern("to_der");
/*
* Init components
*/
Init_ossl_bn();
Init_ossl_cipher();
Init_ossl_config();
Init_ossl_digest();
Init_ossl_hmac();
Init_ossl_ns_spki();
Init_ossl_pkcs12();
Init_ossl_pkcs7();
Init_ossl_pkcs5();
Init_ossl_pkey();
Init_ossl_rand();
Init_ossl_ssl();
Init_ossl_x509();
Init_ossl_ocsp();
Init_ossl_engine();
Init_ossl_asn1();
}
#if defined(OSSL_DEBUG)
/*
* Check if all symbols are OK with 'make LDSHARED=gcc all'
*/
int
main(int argc, char *argv[])
{
return 0;
}
#endif /* OSSL_DEBUG */