2017-09-03 08:35:27 -04:00
|
|
|
/*
|
|
|
|
* Ruby/OpenSSL Project
|
|
|
|
* Copyright (C) 2007, 2017 Ruby/OpenSSL Project Authors
|
|
|
|
*/
|
|
|
|
#include "ossl.h"
|
2017-11-25 09:12:08 -05:00
|
|
|
#if OPENSSL_VERSION_NUMBER >= 0x10100000 && !defined(LIBRESSL_VERSION_NUMBER)
|
|
|
|
# include <openssl/kdf.h>
|
|
|
|
#endif
|
2017-09-03 08:35:27 -04:00
|
|
|
|
|
|
|
static VALUE mKDF, eKDF;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* call-seq:
|
|
|
|
* KDF.pbkdf2_hmac(pass, salt:, iterations:, length:, hash:) -> aString
|
|
|
|
*
|
|
|
|
* PKCS #5 PBKDF2 (Password-Based Key Derivation Function 2) in combination
|
|
|
|
* with HMAC. Takes _pass_, _salt_ and _iterations_, and then derives a key
|
|
|
|
* of _length_ bytes.
|
|
|
|
*
|
|
|
|
* For more information about PBKDF2, see RFC 2898 Section 5.2
|
|
|
|
* (https://tools.ietf.org/html/rfc2898#section-5.2).
|
|
|
|
*
|
|
|
|
* === Parameters
|
|
|
|
* pass :: The passphrase.
|
|
|
|
* salt :: The salt. Salts prevent attacks based on dictionaries of common
|
|
|
|
* passwords and attacks based on rainbow tables. It is a public
|
|
|
|
* value that can be safely stored along with the password (e.g.
|
|
|
|
* if the derived value is used for password storage).
|
|
|
|
* iterations :: The iteration count. This provides the ability to tune the
|
|
|
|
* algorithm. It is better to use the highest count possible for
|
|
|
|
* the maximum resistance to brute-force attacks.
|
|
|
|
* length :: The desired length of the derived key in octets.
|
|
|
|
* hash :: The hash algorithm used with HMAC for the PRF. May be a String
|
|
|
|
* representing the algorithm name, or an instance of
|
|
|
|
* OpenSSL::Digest.
|
|
|
|
*/
|
|
|
|
static VALUE
|
|
|
|
kdf_pbkdf2_hmac(int argc, VALUE *argv, VALUE self)
|
|
|
|
{
|
|
|
|
VALUE pass, salt, opts, kwargs[4], str;
|
|
|
|
static ID kwargs_ids[4];
|
|
|
|
int iters, len;
|
|
|
|
const EVP_MD *md;
|
|
|
|
|
|
|
|
if (!kwargs_ids[0]) {
|
|
|
|
kwargs_ids[0] = rb_intern_const("salt");
|
|
|
|
kwargs_ids[1] = rb_intern_const("iterations");
|
|
|
|
kwargs_ids[2] = rb_intern_const("length");
|
|
|
|
kwargs_ids[3] = rb_intern_const("hash");
|
|
|
|
}
|
|
|
|
rb_scan_args(argc, argv, "1:", &pass, &opts);
|
|
|
|
rb_get_kwargs(opts, kwargs_ids, 4, 0, kwargs);
|
|
|
|
|
|
|
|
StringValue(pass);
|
|
|
|
salt = StringValue(kwargs[0]);
|
|
|
|
iters = NUM2INT(kwargs[1]);
|
|
|
|
len = NUM2INT(kwargs[2]);
|
|
|
|
md = ossl_evp_get_digestbyname(kwargs[3]);
|
|
|
|
|
|
|
|
str = rb_str_new(0, len);
|
|
|
|
if (!PKCS5_PBKDF2_HMAC(RSTRING_PTR(pass), RSTRING_LENINT(pass),
|
|
|
|
(unsigned char *)RSTRING_PTR(salt),
|
|
|
|
RSTRING_LENINT(salt), iters, md, len,
|
|
|
|
(unsigned char *)RSTRING_PTR(str)))
|
|
|
|
ossl_raise(eKDF, "PKCS5_PBKDF2_HMAC");
|
|
|
|
|
|
|
|
return str;
|
|
|
|
}
|
|
|
|
|
|
|
|
#if defined(HAVE_EVP_PBE_SCRYPT)
|
|
|
|
/*
|
|
|
|
* call-seq:
|
|
|
|
* KDF.scrypt(pass, salt:, N:, r:, p:, length:) -> aString
|
|
|
|
*
|
|
|
|
* Derives a key from _pass_ using given parameters with the scrypt
|
|
|
|
* password-based key derivation function. The result can be used for password
|
|
|
|
* storage.
|
|
|
|
*
|
|
|
|
* scrypt is designed to be memory-hard and more secure against brute-force
|
|
|
|
* attacks using custom hardwares than alternative KDFs such as PBKDF2 or
|
|
|
|
* bcrypt.
|
|
|
|
*
|
|
|
|
* The keyword arguments _N_, _r_ and _p_ can be used to tune scrypt. RFC 7914
|
|
|
|
* (published on 2016-08, https://tools.ietf.org/html/rfc7914#section-2) states
|
|
|
|
* that using values r=8 and p=1 appears to yield good results.
|
|
|
|
*
|
|
|
|
* See RFC 7914 (https://tools.ietf.org/html/rfc7914) for more information.
|
|
|
|
*
|
|
|
|
* === Parameters
|
|
|
|
* pass :: Passphrase.
|
|
|
|
* salt :: Salt.
|
|
|
|
* N :: CPU/memory cost parameter. This must be a power of 2.
|
|
|
|
* r :: Block size parameter.
|
|
|
|
* p :: Parallelization parameter.
|
|
|
|
* length :: Length in octets of the derived key.
|
|
|
|
*
|
|
|
|
* === Example
|
|
|
|
* pass = "password"
|
|
|
|
* salt = SecureRandom.random_bytes(16)
|
|
|
|
* dk = OpenSSL::KDF.scrypt(pass, salt: salt, N: 2**14, r: 8, p: 1, length: 32)
|
|
|
|
* p dk #=> "\xDA\xE4\xE2...\x7F\xA1\x01T"
|
|
|
|
*/
|
|
|
|
static VALUE
|
|
|
|
kdf_scrypt(int argc, VALUE *argv, VALUE self)
|
|
|
|
{
|
|
|
|
VALUE pass, salt, opts, kwargs[5], str;
|
|
|
|
static ID kwargs_ids[5];
|
|
|
|
size_t len;
|
|
|
|
uint64_t N, r, p, maxmem;
|
|
|
|
|
|
|
|
if (!kwargs_ids[0]) {
|
|
|
|
kwargs_ids[0] = rb_intern_const("salt");
|
|
|
|
kwargs_ids[1] = rb_intern_const("N");
|
|
|
|
kwargs_ids[2] = rb_intern_const("r");
|
|
|
|
kwargs_ids[3] = rb_intern_const("p");
|
|
|
|
kwargs_ids[4] = rb_intern_const("length");
|
|
|
|
}
|
|
|
|
rb_scan_args(argc, argv, "1:", &pass, &opts);
|
|
|
|
rb_get_kwargs(opts, kwargs_ids, 5, 0, kwargs);
|
|
|
|
|
|
|
|
StringValue(pass);
|
|
|
|
salt = StringValue(kwargs[0]);
|
|
|
|
N = NUM2UINT64T(kwargs[1]);
|
|
|
|
r = NUM2UINT64T(kwargs[2]);
|
|
|
|
p = NUM2UINT64T(kwargs[3]);
|
|
|
|
len = NUM2LONG(kwargs[4]);
|
|
|
|
/*
|
|
|
|
* OpenSSL uses 32MB by default (if zero is specified), which is too small.
|
|
|
|
* Let's not limit memory consumption but just let malloc() fail inside
|
|
|
|
* OpenSSL. The amount is controllable by other parameters.
|
|
|
|
*/
|
|
|
|
maxmem = SIZE_MAX;
|
|
|
|
|
|
|
|
str = rb_str_new(0, len);
|
|
|
|
if (!EVP_PBE_scrypt(RSTRING_PTR(pass), RSTRING_LEN(pass),
|
|
|
|
(unsigned char *)RSTRING_PTR(salt), RSTRING_LEN(salt),
|
|
|
|
N, r, p, maxmem, (unsigned char *)RSTRING_PTR(str), len))
|
|
|
|
ossl_raise(eKDF, "EVP_PBE_scrypt");
|
|
|
|
|
|
|
|
return str;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2017-11-25 09:12:08 -05:00
|
|
|
#if OPENSSL_VERSION_NUMBER >= 0x10100000 && !defined(LIBRESSL_VERSION_NUMBER)
|
|
|
|
/*
|
|
|
|
* call-seq:
|
|
|
|
* KDF.hkdf(ikm, salt:, info:, length:, hash:) -> String
|
|
|
|
*
|
|
|
|
* HMAC-based Extract-and-Expand Key Derivation Function (HKDF) as specified in
|
|
|
|
* {RFC 5869}[https://tools.ietf.org/html/rfc5869].
|
|
|
|
*
|
|
|
|
* New in OpenSSL 1.1.0.
|
|
|
|
*
|
|
|
|
* === Parameters
|
|
|
|
* _ikm_::
|
|
|
|
* The input keying material.
|
|
|
|
* _salt_::
|
|
|
|
* The salt.
|
|
|
|
* _info_::
|
|
|
|
* The context and application specific information.
|
|
|
|
* _length_::
|
|
|
|
* The output length in octets. Must be <= <tt>255 * HashLen</tt>, where
|
|
|
|
* HashLen is the length of the hash function output in octets.
|
|
|
|
* _hash_::
|
|
|
|
* The hash function.
|
|
|
|
*/
|
|
|
|
static VALUE
|
|
|
|
kdf_hkdf(int argc, VALUE *argv, VALUE self)
|
|
|
|
{
|
|
|
|
VALUE ikm, salt, info, opts, kwargs[4], str;
|
|
|
|
static ID kwargs_ids[4];
|
|
|
|
int saltlen, ikmlen, infolen;
|
|
|
|
size_t len;
|
|
|
|
const EVP_MD *md;
|
|
|
|
EVP_PKEY_CTX *pctx;
|
|
|
|
|
|
|
|
if (!kwargs_ids[0]) {
|
|
|
|
kwargs_ids[0] = rb_intern_const("salt");
|
|
|
|
kwargs_ids[1] = rb_intern_const("info");
|
|
|
|
kwargs_ids[2] = rb_intern_const("length");
|
|
|
|
kwargs_ids[3] = rb_intern_const("hash");
|
|
|
|
}
|
|
|
|
rb_scan_args(argc, argv, "1:", &ikm, &opts);
|
|
|
|
rb_get_kwargs(opts, kwargs_ids, 4, 0, kwargs);
|
|
|
|
|
|
|
|
StringValue(ikm);
|
|
|
|
ikmlen = RSTRING_LENINT(ikm);
|
|
|
|
salt = StringValue(kwargs[0]);
|
|
|
|
saltlen = RSTRING_LENINT(salt);
|
|
|
|
info = StringValue(kwargs[1]);
|
|
|
|
infolen = RSTRING_LENINT(info);
|
|
|
|
len = (size_t)NUM2LONG(kwargs[2]);
|
|
|
|
if (len > LONG_MAX)
|
|
|
|
rb_raise(rb_eArgError, "length must be non-negative");
|
|
|
|
md = ossl_evp_get_digestbyname(kwargs[3]);
|
|
|
|
|
|
|
|
str = rb_str_new(NULL, (long)len);
|
|
|
|
pctx = EVP_PKEY_CTX_new_id(EVP_PKEY_HKDF, NULL);
|
|
|
|
if (!pctx)
|
|
|
|
ossl_raise(eKDF, "EVP_PKEY_CTX_new_id");
|
|
|
|
if (EVP_PKEY_derive_init(pctx) <= 0) {
|
|
|
|
EVP_PKEY_CTX_free(pctx);
|
|
|
|
ossl_raise(eKDF, "EVP_PKEY_derive_init");
|
|
|
|
}
|
|
|
|
if (EVP_PKEY_CTX_set_hkdf_md(pctx, md) <= 0) {
|
|
|
|
EVP_PKEY_CTX_free(pctx);
|
|
|
|
ossl_raise(eKDF, "EVP_PKEY_CTX_set_hkdf_md");
|
|
|
|
}
|
|
|
|
if (EVP_PKEY_CTX_set1_hkdf_salt(pctx, (unsigned char *)RSTRING_PTR(salt),
|
|
|
|
saltlen) <= 0) {
|
|
|
|
EVP_PKEY_CTX_free(pctx);
|
|
|
|
ossl_raise(eKDF, "EVP_PKEY_CTX_set_hkdf_salt");
|
|
|
|
}
|
|
|
|
if (EVP_PKEY_CTX_set1_hkdf_key(pctx, (unsigned char *)RSTRING_PTR(ikm),
|
|
|
|
ikmlen) <= 0) {
|
|
|
|
EVP_PKEY_CTX_free(pctx);
|
|
|
|
ossl_raise(eKDF, "EVP_PKEY_CTX_set_hkdf_key");
|
|
|
|
}
|
|
|
|
if (EVP_PKEY_CTX_add1_hkdf_info(pctx, (unsigned char *)RSTRING_PTR(info),
|
|
|
|
infolen) <= 0) {
|
|
|
|
EVP_PKEY_CTX_free(pctx);
|
|
|
|
ossl_raise(eKDF, "EVP_PKEY_CTX_set_hkdf_info");
|
|
|
|
}
|
|
|
|
if (EVP_PKEY_derive(pctx, (unsigned char *)RSTRING_PTR(str), &len) <= 0) {
|
|
|
|
EVP_PKEY_CTX_free(pctx);
|
|
|
|
ossl_raise(eKDF, "EVP_PKEY_derive");
|
|
|
|
}
|
|
|
|
rb_str_set_len(str, (long)len);
|
|
|
|
EVP_PKEY_CTX_free(pctx);
|
|
|
|
|
|
|
|
return str;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2017-09-03 08:35:27 -04:00
|
|
|
void
|
|
|
|
Init_ossl_kdf(void)
|
|
|
|
{
|
|
|
|
#if 0
|
|
|
|
mOSSL = rb_define_module("OpenSSL");
|
|
|
|
eOSSLError = rb_define_class_under(mOSSL, "OpenSSLError", rb_eStandardError);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Document-module: OpenSSL::KDF
|
|
|
|
*
|
|
|
|
* Provides functionality of various KDFs (key derivation function).
|
|
|
|
*
|
|
|
|
* KDF is typically used for securely deriving arbitrary length symmetric
|
|
|
|
* keys to be used with an OpenSSL::Cipher from passwords. Another use case
|
|
|
|
* is for storing passwords: Due to the ability to tweak the effort of
|
|
|
|
* computation by increasing the iteration count, computation can be slowed
|
|
|
|
* down artificially in order to render possible attacks infeasible.
|
|
|
|
*
|
|
|
|
* Currently, OpenSSL::KDF provides implementations for the following KDF:
|
|
|
|
*
|
|
|
|
* * PKCS #5 PBKDF2 (Password-Based Key Derivation Function 2) in
|
|
|
|
* combination with HMAC
|
|
|
|
* * scrypt
|
2017-11-25 09:12:08 -05:00
|
|
|
* * HKDF
|
2017-09-03 08:35:27 -04:00
|
|
|
*
|
|
|
|
* == Examples
|
|
|
|
* === Generating a 128 bit key for a Cipher (e.g. AES)
|
|
|
|
* pass = "secret"
|
|
|
|
* salt = OpenSSL::Random.random_bytes(16)
|
|
|
|
* iter = 20_000
|
|
|
|
* key_len = 16
|
|
|
|
* key = OpenSSL::KDF.pbkdf2_hmac(pass, salt: salt, iterations: iter,
|
|
|
|
* length: key_len, hash: "sha1")
|
|
|
|
*
|
|
|
|
* === Storing Passwords
|
|
|
|
* pass = "secret"
|
|
|
|
* # store this with the generated value
|
|
|
|
* salt = OpenSSL::Random.random_bytes(16)
|
|
|
|
* iter = 20_000
|
2020-04-19 11:14:36 -04:00
|
|
|
* hash = OpenSSL::Digest.new('SHA256')
|
2017-09-03 08:35:27 -04:00
|
|
|
* len = hash.digest_length
|
|
|
|
* # the final value to be stored
|
|
|
|
* value = OpenSSL::KDF.pbkdf2_hmac(pass, salt: salt, iterations: iter,
|
|
|
|
* length: len, hash: hash)
|
|
|
|
*
|
|
|
|
* == Important Note on Checking Passwords
|
|
|
|
* When comparing passwords provided by the user with previously stored
|
|
|
|
* values, a common mistake made is comparing the two values using "==".
|
|
|
|
* Typically, "==" short-circuits on evaluation, and is therefore
|
|
|
|
* vulnerable to timing attacks. The proper way is to use a method that
|
|
|
|
* always takes the same amount of time when comparing two values, thus
|
2020-02-16 01:21:29 -05:00
|
|
|
* not leaking any information to potential attackers. To do this, use
|
|
|
|
* +OpenSSL.fixed_length_secure_compare+.
|
2017-09-03 08:35:27 -04:00
|
|
|
*/
|
|
|
|
mKDF = rb_define_module_under(mOSSL, "KDF");
|
|
|
|
/*
|
|
|
|
* Generic exception class raised if an error occurs in OpenSSL::KDF module.
|
|
|
|
*/
|
|
|
|
eKDF = rb_define_class_under(mKDF, "KDFError", eOSSLError);
|
|
|
|
|
|
|
|
rb_define_module_function(mKDF, "pbkdf2_hmac", kdf_pbkdf2_hmac, -1);
|
|
|
|
#if defined(HAVE_EVP_PBE_SCRYPT)
|
|
|
|
rb_define_module_function(mKDF, "scrypt", kdf_scrypt, -1);
|
|
|
|
#endif
|
2017-11-25 09:12:08 -05:00
|
|
|
#if OPENSSL_VERSION_NUMBER >= 0x10100000 && !defined(LIBRESSL_VERSION_NUMBER)
|
|
|
|
rb_define_module_function(mKDF, "hkdf", kdf_hkdf, -1);
|
|
|
|
#endif
|
2017-09-03 08:35:27 -04:00
|
|
|
}
|