2007-06-24 13:19:22 -04:00
|
|
|
/**********************************************************************
|
|
|
|
|
2008-11-14 06:31:10 -05:00
|
|
|
vm_insnhelper.c - instruction helper functions.
|
2007-06-24 13:19:22 -04:00
|
|
|
|
|
|
|
$Author$
|
|
|
|
|
|
|
|
Copyright (C) 2007 Koichi Sasada
|
|
|
|
|
|
|
|
**********************************************************************/
|
|
|
|
|
|
|
|
/* finish iseq array */
|
|
|
|
#include "insns.inc"
|
2008-01-17 12:06:51 -05:00
|
|
|
#include <math.h>
|
2010-10-26 13:27:32 -04:00
|
|
|
#include "constant.h"
|
2011-05-18 09:41:54 -04:00
|
|
|
#include "internal.h"
|
* probes.d: add DTrace probe declarations. [ruby-core:27448]
* array.c (empty_ary_alloc, ary_new): added array create DTrace probe.
* compile.c (rb_insns_name): allowing DTrace probes to access
instruction sequence name.
* Makefile.in: translate probes.d file to appropriate header file.
* common.mk: declare dependencies on the DTrace header.
* configure.in: add a test for existence of DTrace.
* eval.c (setup_exception): add a probe for when an exception is
raised.
* gc.c: Add DTrace probes for mark begin and end, and sweep begin and
end.
* hash.c (empty_hash_alloc): Add a probe for hash allocation.
* insns.def: Add probes for function entry and return.
* internal.h: function declaration for compile.c change.
* load.c (rb_f_load): add probes for `load` entry and exit, require
entry and exit, and wrapping search_required for load path search.
* object.c (rb_obj_alloc): added a probe for general object creation.
* parse.y (yycompile0): added a probe around parse and compile phase.
* string.c (empty_str_alloc, str_new): DTrace probes for string
allocation.
* test/dtrace/*: tests for DTrace probes.
* vm.c (vm_invoke_proc): add probes for function return on exception
raise, hash create, and instruction sequence execution.
* vm_core.h: add probe declarations for function entry and exit.
* vm_dump.c: add probes header file.
* vm_eval.c (vm_call0_cfunc, vm_call0_cfunc_with_frame): add probe on
function entry and return.
* vm_exec.c: expose instruction number to instruction name function.
* vm_insnshelper.c: add function entry and exit probes for cfunc
methods.
* vm_insnhelper.h: vm usage information is always collected, so
uncomment the functions.
12 19:14:50 2012 Akinori MUSHA <knu@iDaemons.org>
* configure.in (isinf, isnan): isinf() and isnan() are macros on
DragonFly which cannot be found by AC_REPLACE_FUNCS(). This
workaround enforces the fact that they exist on DragonFly.
12 15:59:38 2012 Shugo Maeda <shugo@ruby-lang.org>
* vm_core.h (rb_call_info_t::refinements), compile.c (new_callinfo),
vm_insnhelper.c (vm_search_method): revert r37616 because it's too
slow. [ruby-dev:46477]
* test/ruby/test_refinement.rb (test_inline_method_cache): skip
the test until the bug is fixed efficiently.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@37631 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-11-12 16:52:12 -05:00
|
|
|
#include "probes.h"
|
2012-11-18 11:30:10 -05:00
|
|
|
#include "probes_helper.h"
|
2008-01-17 12:06:51 -05:00
|
|
|
|
2007-06-24 13:19:22 -04:00
|
|
|
/* control stack frame */
|
|
|
|
|
2007-08-06 07:36:30 -04:00
|
|
|
#ifndef INLINE
|
|
|
|
#define INLINE inline
|
|
|
|
#endif
|
|
|
|
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
static rb_control_frame_t *vm_get_ruby_level_caller_cfp(const rb_thread_t *th, const rb_control_frame_t *cfp);
|
2009-01-18 22:03:09 -05:00
|
|
|
|
2014-06-28 00:58:25 -04:00
|
|
|
VALUE
|
|
|
|
ruby_vm_sysstack_error_copy(void)
|
2012-12-25 04:57:07 -05:00
|
|
|
{
|
2014-06-22 22:35:18 -04:00
|
|
|
VALUE e = rb_obj_alloc(rb_eSysStackError);
|
|
|
|
rb_obj_copy_ivar(e, sysstack_error);
|
2014-06-28 00:58:25 -04:00
|
|
|
return e;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
vm_stackoverflow(void)
|
|
|
|
{
|
|
|
|
rb_exc_raise(ruby_vm_sysstack_error_copy());
|
2012-12-25 04:57:07 -05:00
|
|
|
}
|
|
|
|
|
2015-06-02 00:20:30 -04:00
|
|
|
#if VM_CHECK_MODE > 0
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
|
|
|
|
static int
|
|
|
|
callable_class_p(VALUE klass)
|
|
|
|
{
|
|
|
|
#if VM_CHECK_MODE >= 2
|
|
|
|
while (klass) {
|
|
|
|
if (klass == rb_cBasicObject) {
|
|
|
|
return TRUE;
|
|
|
|
}
|
|
|
|
klass = RCLASS_SUPER(klass);
|
|
|
|
}
|
|
|
|
return FALSE;
|
|
|
|
#else
|
|
|
|
return klass != 0;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
callable_method_entry_p(const rb_callable_method_entry_t *me)
|
|
|
|
{
|
|
|
|
if (me == NULL || callable_class_p(me->defined_class)) {
|
|
|
|
return TRUE;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
return FALSE;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-06-02 00:20:30 -04:00
|
|
|
static void
|
|
|
|
check_frame(int magic, int req_block, int req_me, int req_cref, VALUE specval, VALUE cref_or_me)
|
|
|
|
{
|
2015-06-10 17:56:23 -04:00
|
|
|
enum imemo_type cref_or_me_type = imemo_none;
|
|
|
|
|
|
|
|
if (RB_TYPE_P(cref_or_me, T_IMEMO)) {
|
|
|
|
cref_or_me_type = imemo_type(cref_or_me);
|
|
|
|
}
|
|
|
|
|
2015-06-02 00:20:30 -04:00
|
|
|
if (req_block && !VM_ENVVAL_BLOCK_PTR_P(specval)) {
|
|
|
|
rb_bug("vm_push_frame: specval (%p) should be a block_ptr on %x frame", (void *)specval, magic);
|
|
|
|
}
|
|
|
|
if (!req_block && VM_ENVVAL_BLOCK_PTR_P(specval)) {
|
|
|
|
rb_bug("vm_push_frame: specval (%p) should not be a block_ptr on %x frame", (void *)specval, magic);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (req_me) {
|
2015-06-10 17:56:23 -04:00
|
|
|
if (cref_or_me_type != imemo_ment) {
|
2015-06-02 00:20:30 -04:00
|
|
|
rb_bug("vm_push_frame: (%s) should be method entry on %x frame", rb_obj_info(cref_or_me), magic);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else {
|
2015-06-10 17:56:23 -04:00
|
|
|
if (req_cref && cref_or_me_type != imemo_cref) {
|
2015-06-02 00:20:30 -04:00
|
|
|
rb_bug("vm_push_frame: (%s) should be CREF on %x frame", rb_obj_info(cref_or_me), magic);
|
|
|
|
}
|
|
|
|
else { /* cref or Qfalse */
|
2015-06-10 17:56:23 -04:00
|
|
|
if (cref_or_me != Qfalse && cref_or_me_type != imemo_cref) {
|
|
|
|
if ((magic == VM_FRAME_MAGIC_LAMBDA || magic == VM_FRAME_MAGIC_IFUNC) && (cref_or_me_type == imemo_ment)) {
|
2015-06-02 00:20:30 -04:00
|
|
|
/* ignore */
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
rb_bug("vm_push_frame: (%s) should be false or cref on %x frame", rb_obj_info(cref_or_me), magic);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
|
|
|
|
if (cref_or_me_type == imemo_ment) {
|
|
|
|
const rb_callable_method_entry_t *me = (const rb_callable_method_entry_t *)cref_or_me;
|
|
|
|
|
|
|
|
if (!callable_method_entry_p(me)) {
|
|
|
|
rb_bug("vm_push_frame: ment (%s) should be callable on %x frame.", rb_obj_info(cref_or_me), magic);
|
|
|
|
}
|
|
|
|
}
|
2015-06-02 00:20:30 -04:00
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2007-06-24 13:19:22 -04:00
|
|
|
static inline rb_control_frame_t *
|
2012-06-10 23:14:59 -04:00
|
|
|
vm_push_frame(rb_thread_t *th,
|
|
|
|
const rb_iseq_t *iseq,
|
|
|
|
VALUE type,
|
|
|
|
VALUE self,
|
|
|
|
VALUE specval,
|
2015-06-02 00:20:30 -04:00
|
|
|
VALUE cref_or_me,
|
2012-06-10 23:14:59 -04:00
|
|
|
const VALUE *pc,
|
|
|
|
VALUE *sp,
|
2012-07-03 22:11:37 -04:00
|
|
|
int local_size,
|
2014-07-16 07:46:06 -04:00
|
|
|
int stack_max)
|
2007-06-24 13:19:22 -04:00
|
|
|
{
|
2012-06-10 23:14:59 -04:00
|
|
|
rb_control_frame_t *const cfp = th->cfp - 1;
|
2007-06-24 13:19:22 -04:00
|
|
|
int i;
|
|
|
|
|
2015-06-02 00:20:30 -04:00
|
|
|
#if VM_CHECK_MODE > 0
|
|
|
|
int magic = (int)(type & VM_FRAME_MAGIC_MASK);
|
|
|
|
|
|
|
|
#define CHECK(magic, req_block, req_me, req_cref) case magic: check_frame(magic, req_block, req_me, req_cref, specval, cref_or_me); break;
|
|
|
|
switch (magic) {
|
|
|
|
/* BLK ME CREF */
|
|
|
|
CHECK(VM_FRAME_MAGIC_METHOD, TRUE, TRUE, FALSE);
|
|
|
|
CHECK(VM_FRAME_MAGIC_CLASS, TRUE, FALSE, TRUE);
|
|
|
|
CHECK(VM_FRAME_MAGIC_TOP, TRUE, FALSE, TRUE);
|
|
|
|
CHECK(VM_FRAME_MAGIC_CFUNC, TRUE, TRUE, FALSE);
|
|
|
|
CHECK(VM_FRAME_MAGIC_BLOCK, FALSE, FALSE, FALSE);
|
|
|
|
CHECK(VM_FRAME_MAGIC_PROC, FALSE, FALSE, FALSE);
|
|
|
|
CHECK(VM_FRAME_MAGIC_IFUNC, FALSE, FALSE, FALSE);
|
|
|
|
CHECK(VM_FRAME_MAGIC_EVAL, FALSE, FALSE, FALSE);
|
|
|
|
CHECK(VM_FRAME_MAGIC_LAMBDA, FALSE, FALSE, FALSE);
|
|
|
|
CHECK(VM_FRAME_MAGIC_RESCUE, FALSE, FALSE, FALSE);
|
|
|
|
CHECK(VM_FRAME_MAGIC_DUMMY, TRUE, FALSE, FALSE);
|
|
|
|
default:
|
|
|
|
rb_bug("vm_push_frame: unknown type (%x)", magic);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2012-06-10 23:14:59 -04:00
|
|
|
/* check stack overflow */
|
2014-07-16 07:46:06 -04:00
|
|
|
CHECK_VM_STACK_OVERFLOW0(cfp, sp, local_size + stack_max);
|
2013-08-06 04:33:05 -04:00
|
|
|
|
2009-11-06 21:45:08 -05:00
|
|
|
th->cfp = cfp;
|
2012-06-10 23:14:59 -04:00
|
|
|
|
* vm.c, insns.def, eval.c, vm_insnhelper.c: fix CREF handling.
VM value stack frame of block contains cref information.
(dfp[-1] points CREF)
* compile.c, eval_intern.h, eval_method.c, load.c, proc.c,
vm_dump.h, vm_core.h: ditto.
* include/ruby/ruby.h, gc.c: remove T_VALUES because of above
changes.
* bootstraptest/test_eval.rb, test_knownbug.rb: move solved test.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@16468 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2008-05-18 23:08:50 -04:00
|
|
|
/* setup vm value stack */
|
2009-02-22 09:23:33 -05:00
|
|
|
|
2012-06-10 23:14:59 -04:00
|
|
|
/* initialize local variables */
|
2007-06-24 13:19:22 -04:00
|
|
|
for (i=0; i < local_size; i++) {
|
2012-06-10 23:14:59 -04:00
|
|
|
*sp++ = Qnil;
|
2007-06-24 13:19:22 -04:00
|
|
|
}
|
|
|
|
|
|
|
|
/* set special val */
|
2015-06-02 00:20:30 -04:00
|
|
|
sp[-1] = cref_or_me; /* Qnil or T_IMEMO(cref) or T_IMEMO(ment) */
|
* fix namespace issue on singleton class expressions. [Bug #10943]
* vm_core.h, method.h: remove rb_iseq_t::cref_stack. CREF is stored
to rb_method_definition_t::body.iseq_body.cref.
* vm_insnhelper.c: modify SVAR usage.
When calling ISEQ type method, push CREF information onto method
frame, SVAR located place. Before this fix, SVAR is simply nil.
After this patch, CREF (or NULL == Qfalse for not iseq methods)
is stored at the method invocation.
When SVAR is requierd, then put NODE_IF onto SVAR location,
and NDOE_IF::nd_reserved points CREF itself.
* vm.c (vm_cref_new, vm_cref_dump, vm_cref_new_toplevel): added.
* vm_insnhelper.c (vm_push_frame): accept CREF.
* method.h, vm_method.c (rb_add_method_iseq): added. This function
accepts iseq and CREF.
* class.c (clone_method): use rb_add_method_iseq().
* gc.c (mark_method_entry): mark method_entry::body.iseq_body.cref.
* iseq.c: remove CREF related codes.
* insns.def (getinlinecache/setinlinecache): CREF should be cache key
because a different CREF has a different namespace.
* node.c (rb_gc_mark_node): mark NODE_IF::nd_reserved for SVAR.
* proc.c: catch up changes.
* struct.c: ditto.
* insns.def: ditto.
* vm_args.c (raise_argument_error): ditto.
* vm_eval.c: ditto.
* test/ruby/test_class.rb: add a test.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@49874 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-03-06 07:24:58 -05:00
|
|
|
sp[ 0] = specval;
|
2007-06-24 13:19:22 -04:00
|
|
|
|
* vm.c, insns.def, eval.c, vm_insnhelper.c: fix CREF handling.
VM value stack frame of block contains cref information.
(dfp[-1] points CREF)
* compile.c, eval_intern.h, eval_method.c, load.c, proc.c,
vm_dump.h, vm_core.h: ditto.
* include/ruby/ruby.h, gc.c: remove T_VALUES because of above
changes.
* bootstraptest/test_eval.rb, test_knownbug.rb: move solved test.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@16468 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2008-05-18 23:08:50 -04:00
|
|
|
/* setup vm control frame stack */
|
|
|
|
|
2008-05-19 14:47:56 -04:00
|
|
|
cfp->pc = (VALUE *)pc;
|
2007-06-24 13:19:22 -04:00
|
|
|
cfp->sp = sp + 1;
|
2012-09-28 00:05:36 -04:00
|
|
|
#if VM_DEBUG_BP_CHECK
|
|
|
|
cfp->bp_check = sp + 1;
|
|
|
|
#endif
|
2012-06-10 23:14:59 -04:00
|
|
|
cfp->ep = sp;
|
2008-05-19 14:47:56 -04:00
|
|
|
cfp->iseq = (rb_iseq_t *) iseq;
|
2007-11-08 20:29:24 -05:00
|
|
|
cfp->flag = type;
|
2007-06-24 13:19:22 -04:00
|
|
|
cfp->self = self;
|
2010-08-18 17:03:32 -04:00
|
|
|
cfp->block_iseq = 0;
|
2007-06-24 13:19:22 -04:00
|
|
|
cfp->proc = 0;
|
2015-06-02 00:20:30 -04:00
|
|
|
|
2007-08-12 15:12:55 -04:00
|
|
|
if (VMDEBUG == 2) {
|
|
|
|
SDR();
|
|
|
|
}
|
|
|
|
|
2007-06-24 13:19:22 -04:00
|
|
|
return cfp;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void
|
2008-05-22 12:19:14 -04:00
|
|
|
vm_pop_frame(rb_thread_t *th)
|
2007-06-24 13:19:22 -04:00
|
|
|
{
|
|
|
|
th->cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(th->cfp);
|
2007-08-12 15:12:55 -04:00
|
|
|
|
|
|
|
if (VMDEBUG == 2) {
|
|
|
|
SDR();
|
|
|
|
}
|
2007-06-24 13:19:22 -04:00
|
|
|
}
|
|
|
|
|
|
|
|
/* method dispatch */
|
2012-03-14 17:10:16 -04:00
|
|
|
static inline VALUE
|
2014-11-27 05:15:47 -05:00
|
|
|
rb_arity_error_new(int argc, int min, int max)
|
2012-03-14 21:39:00 -04:00
|
|
|
{
|
2012-03-14 17:10:16 -04:00
|
|
|
VALUE err_mess = 0;
|
|
|
|
if (min == max) {
|
|
|
|
err_mess = rb_sprintf("wrong number of arguments (%d for %d)", argc, min);
|
|
|
|
}
|
|
|
|
else if (max == UNLIMITED_ARGUMENTS) {
|
|
|
|
err_mess = rb_sprintf("wrong number of arguments (%d for %d+)", argc, min);
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
err_mess = rb_sprintf("wrong number of arguments (%d for %d..%d)", argc, min, max);
|
|
|
|
}
|
|
|
|
return rb_exc_new3(rb_eArgError, err_mess);
|
|
|
|
}
|
2007-06-24 13:19:22 -04:00
|
|
|
|
2012-03-14 17:10:34 -04:00
|
|
|
void
|
2012-03-14 21:39:00 -04:00
|
|
|
rb_error_arity(int argc, int min, int max)
|
|
|
|
{
|
2014-11-27 05:15:47 -05:00
|
|
|
rb_exc_raise(rb_arity_error_new(argc, min, max));
|
2012-03-14 17:10:34 -04:00
|
|
|
}
|
|
|
|
|
2012-10-14 15:58:59 -04:00
|
|
|
/* svar */
|
|
|
|
|
2015-03-11 08:27:34 -04:00
|
|
|
static inline struct vm_svar **
|
2015-02-27 03:10:04 -05:00
|
|
|
lep_svar_place(rb_thread_t *th, const VALUE *lep)
|
2012-10-14 15:58:59 -04:00
|
|
|
{
|
2015-06-02 00:20:30 -04:00
|
|
|
const VALUE *svar_place;
|
2012-10-14 15:58:59 -04:00
|
|
|
|
2015-02-27 03:10:04 -05:00
|
|
|
if (lep && (th == NULL || th->root_lep != lep)) {
|
2015-06-02 00:20:30 -04:00
|
|
|
svar_place = &lep[-1];
|
2008-06-06 10:48:07 -04:00
|
|
|
}
|
2012-10-14 15:58:59 -04:00
|
|
|
else {
|
2015-06-02 00:20:30 -04:00
|
|
|
svar_place = &th->root_svar;
|
|
|
|
}
|
|
|
|
|
|
|
|
#if VM_CHECK_MODE > 0
|
|
|
|
{
|
|
|
|
VALUE svar = *svar_place;
|
|
|
|
|
|
|
|
if (svar != Qfalse) {
|
|
|
|
if (RB_TYPE_P((VALUE)svar, T_IMEMO)) {
|
|
|
|
switch (imemo_type(svar)) {
|
|
|
|
case imemo_svar:
|
|
|
|
case imemo_cref:
|
|
|
|
case imemo_ment:
|
|
|
|
goto okay;
|
|
|
|
default:
|
|
|
|
break; /* fall through */
|
|
|
|
}
|
|
|
|
}
|
|
|
|
rb_bug("lep_svar_place: unknown type: %s", rb_obj_info(svar));
|
|
|
|
}
|
|
|
|
okay:;
|
2012-10-14 15:58:59 -04:00
|
|
|
}
|
2015-06-02 00:20:30 -04:00
|
|
|
#endif
|
2015-02-24 05:11:14 -05:00
|
|
|
|
2015-06-02 00:20:30 -04:00
|
|
|
return (struct vm_svar **)svar_place;
|
2012-10-14 15:58:59 -04:00
|
|
|
}
|
2008-06-06 10:48:07 -04:00
|
|
|
|
2012-10-14 15:58:59 -04:00
|
|
|
static VALUE
|
2015-02-27 03:10:04 -05:00
|
|
|
lep_svar_get(rb_thread_t *th, const VALUE *lep, rb_num_t key)
|
2007-06-24 13:19:22 -04:00
|
|
|
{
|
2015-03-11 08:27:34 -04:00
|
|
|
struct vm_svar ** const svar_place = lep_svar_place(th, lep);
|
|
|
|
const struct vm_svar *const svar = *svar_place;
|
2015-02-24 05:11:14 -05:00
|
|
|
|
2015-06-02 00:20:30 -04:00
|
|
|
if ((VALUE)svar == Qfalse || imemo_type((VALUE)svar) != imemo_svar) return Qnil;
|
2007-06-24 13:19:22 -04:00
|
|
|
|
2012-10-14 15:58:59 -04:00
|
|
|
switch (key) {
|
2015-02-27 03:10:04 -05:00
|
|
|
case VM_SVAR_LASTLINE:
|
2015-03-08 17:53:05 -04:00
|
|
|
return svar->lastline;
|
2015-02-27 03:10:04 -05:00
|
|
|
case VM_SVAR_BACKREF:
|
2015-03-08 17:53:05 -04:00
|
|
|
return svar->backref;
|
2012-10-14 15:58:59 -04:00
|
|
|
default: {
|
2015-03-08 17:53:05 -04:00
|
|
|
const VALUE ary = svar->others;
|
2008-06-06 10:48:07 -04:00
|
|
|
|
2012-12-10 01:11:16 -05:00
|
|
|
if (NIL_P(ary)) {
|
2012-10-14 15:58:59 -04:00
|
|
|
return Qnil;
|
2011-12-26 09:20:09 -05:00
|
|
|
}
|
|
|
|
else {
|
2015-02-27 03:10:04 -05:00
|
|
|
return rb_ary_entry(ary, key - VM_SVAR_EXTRA_START);
|
2011-12-26 09:20:09 -05:00
|
|
|
}
|
2012-10-14 15:58:59 -04:00
|
|
|
}
|
2011-12-26 09:20:09 -05:00
|
|
|
}
|
2012-10-14 15:58:59 -04:00
|
|
|
}
|
2011-12-26 09:20:09 -05:00
|
|
|
|
2015-03-11 08:27:34 -04:00
|
|
|
static struct vm_svar *
|
2015-06-02 00:20:30 -04:00
|
|
|
svar_new(VALUE obj)
|
2015-03-11 08:27:34 -04:00
|
|
|
{
|
2015-06-02 00:20:30 -04:00
|
|
|
return (struct vm_svar *)rb_imemo_new(imemo_svar, Qnil, Qnil, Qnil, obj);
|
2015-03-11 08:27:34 -04:00
|
|
|
}
|
|
|
|
|
2012-10-14 15:58:59 -04:00
|
|
|
static void
|
2012-12-10 01:11:16 -05:00
|
|
|
lep_svar_set(rb_thread_t *th, VALUE *lep, rb_num_t key, VALUE val)
|
2012-10-14 15:58:59 -04:00
|
|
|
{
|
2015-03-11 08:27:34 -04:00
|
|
|
struct vm_svar **svar_place = lep_svar_place(th, lep);
|
|
|
|
struct vm_svar *svar = *svar_place;
|
2015-02-24 05:11:14 -05:00
|
|
|
|
2015-06-02 00:20:30 -04:00
|
|
|
if ((VALUE)svar == Qfalse || imemo_type((VALUE)svar) != imemo_svar) {
|
|
|
|
svar = *svar_place = svar_new((VALUE)svar);
|
2015-02-24 05:11:14 -05:00
|
|
|
}
|
2008-05-21 11:18:15 -04:00
|
|
|
|
2012-10-14 15:58:59 -04:00
|
|
|
switch (key) {
|
2015-02-27 03:10:04 -05:00
|
|
|
case VM_SVAR_LASTLINE:
|
2015-03-08 17:53:05 -04:00
|
|
|
RB_OBJ_WRITE(svar, &svar->lastline, val);
|
2012-10-14 15:58:59 -04:00
|
|
|
return;
|
2015-02-27 03:10:04 -05:00
|
|
|
case VM_SVAR_BACKREF:
|
2015-03-08 17:53:05 -04:00
|
|
|
RB_OBJ_WRITE(svar, &svar->backref, val);
|
2012-10-14 15:58:59 -04:00
|
|
|
return;
|
|
|
|
default: {
|
2015-03-08 17:53:05 -04:00
|
|
|
VALUE ary = svar->others;
|
2007-06-24 13:19:22 -04:00
|
|
|
|
2012-12-10 01:11:16 -05:00
|
|
|
if (NIL_P(ary)) {
|
2015-03-08 17:53:05 -04:00
|
|
|
RB_OBJ_WRITE(svar, &svar->others, ary = rb_ary_new());
|
2007-06-24 13:19:22 -04:00
|
|
|
}
|
2015-02-27 03:10:04 -05:00
|
|
|
rb_ary_store(ary, key - VM_SVAR_EXTRA_START, val);
|
2012-10-14 15:58:59 -04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2007-06-24 13:19:22 -04:00
|
|
|
|
2012-10-14 15:58:59 -04:00
|
|
|
static inline VALUE
|
2012-12-10 01:11:16 -05:00
|
|
|
vm_getspecial(rb_thread_t *th, VALUE *lep, rb_num_t key, rb_num_t type)
|
2012-10-14 15:58:59 -04:00
|
|
|
{
|
|
|
|
VALUE val;
|
|
|
|
|
|
|
|
if (type == 0) {
|
2012-12-10 01:11:16 -05:00
|
|
|
val = lep_svar_get(th, lep, key);
|
2008-06-06 10:48:07 -04:00
|
|
|
}
|
2012-10-14 15:58:59 -04:00
|
|
|
else {
|
2015-02-27 03:10:04 -05:00
|
|
|
VALUE backref = lep_svar_get(th, lep, VM_SVAR_BACKREF);
|
2007-06-24 13:19:22 -04:00
|
|
|
|
2012-10-14 15:58:59 -04:00
|
|
|
if (type & 0x01) {
|
|
|
|
switch (type >> 1) {
|
|
|
|
case '&':
|
|
|
|
val = rb_reg_last_match(backref);
|
|
|
|
break;
|
|
|
|
case '`':
|
|
|
|
val = rb_reg_match_pre(backref);
|
|
|
|
break;
|
|
|
|
case '\'':
|
|
|
|
val = rb_reg_match_post(backref);
|
|
|
|
break;
|
|
|
|
case '+':
|
|
|
|
val = rb_reg_match_last(backref);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
rb_bug("unexpected back-ref");
|
|
|
|
}
|
2007-06-24 13:19:22 -04:00
|
|
|
}
|
2008-06-06 10:48:07 -04:00
|
|
|
else {
|
2012-10-14 15:58:59 -04:00
|
|
|
val = rb_reg_nth_match((int)(type >> 1), backref);
|
2007-06-24 13:19:22 -04:00
|
|
|
}
|
2008-06-06 10:48:07 -04:00
|
|
|
}
|
2012-10-14 15:58:59 -04:00
|
|
|
return val;
|
|
|
|
}
|
2007-06-24 13:19:22 -04:00
|
|
|
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
static rb_callable_method_entry_t *
|
2015-06-02 00:20:30 -04:00
|
|
|
check_method_entry(VALUE obj, int can_be_svar)
|
2012-10-14 15:58:59 -04:00
|
|
|
{
|
2015-06-02 00:20:30 -04:00
|
|
|
if (obj == Qfalse) return NULL;
|
* fix namespace issue on singleton class expressions. [Bug #10943]
* vm_core.h, method.h: remove rb_iseq_t::cref_stack. CREF is stored
to rb_method_definition_t::body.iseq_body.cref.
* vm_insnhelper.c: modify SVAR usage.
When calling ISEQ type method, push CREF information onto method
frame, SVAR located place. Before this fix, SVAR is simply nil.
After this patch, CREF (or NULL == Qfalse for not iseq methods)
is stored at the method invocation.
When SVAR is requierd, then put NODE_IF onto SVAR location,
and NDOE_IF::nd_reserved points CREF itself.
* vm.c (vm_cref_new, vm_cref_dump, vm_cref_new_toplevel): added.
* vm_insnhelper.c (vm_push_frame): accept CREF.
* method.h, vm_method.c (rb_add_method_iseq): added. This function
accepts iseq and CREF.
* class.c (clone_method): use rb_add_method_iseq().
* gc.c (mark_method_entry): mark method_entry::body.iseq_body.cref.
* iseq.c: remove CREF related codes.
* insns.def (getinlinecache/setinlinecache): CREF should be cache key
because a different CREF has a different namespace.
* node.c (rb_gc_mark_node): mark NODE_IF::nd_reserved for SVAR.
* proc.c: catch up changes.
* struct.c: ditto.
* insns.def: ditto.
* vm_args.c (raise_argument_error): ditto.
* vm_eval.c: ditto.
* test/ruby/test_class.rb: add a test.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@49874 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-03-06 07:24:58 -05:00
|
|
|
|
2015-06-02 00:20:30 -04:00
|
|
|
#if VM_CHECK_MODE > 0
|
|
|
|
if (!RB_TYPE_P(obj, T_IMEMO)) rb_bug("check_method_entry: unknown type: %s", rb_obj_info(obj));
|
|
|
|
#endif
|
|
|
|
|
|
|
|
switch (imemo_type(obj)) {
|
|
|
|
case imemo_ment:
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
return (rb_callable_method_entry_t *)obj;
|
2015-06-02 00:20:30 -04:00
|
|
|
case imemo_cref:
|
|
|
|
return NULL;
|
|
|
|
case imemo_svar:
|
|
|
|
if (can_be_svar) {
|
|
|
|
return check_method_entry(((struct vm_svar *)obj)->cref_or_me, FALSE);
|
|
|
|
}
|
|
|
|
default:
|
|
|
|
#if VM_CHECK_MODE > 0
|
|
|
|
rb_bug("check_method_entry: svar should not be there:");
|
|
|
|
#endif
|
* fix namespace issue on singleton class expressions. [Bug #10943]
* vm_core.h, method.h: remove rb_iseq_t::cref_stack. CREF is stored
to rb_method_definition_t::body.iseq_body.cref.
* vm_insnhelper.c: modify SVAR usage.
When calling ISEQ type method, push CREF information onto method
frame, SVAR located place. Before this fix, SVAR is simply nil.
After this patch, CREF (or NULL == Qfalse for not iseq methods)
is stored at the method invocation.
When SVAR is requierd, then put NODE_IF onto SVAR location,
and NDOE_IF::nd_reserved points CREF itself.
* vm.c (vm_cref_new, vm_cref_dump, vm_cref_new_toplevel): added.
* vm_insnhelper.c (vm_push_frame): accept CREF.
* method.h, vm_method.c (rb_add_method_iseq): added. This function
accepts iseq and CREF.
* class.c (clone_method): use rb_add_method_iseq().
* gc.c (mark_method_entry): mark method_entry::body.iseq_body.cref.
* iseq.c: remove CREF related codes.
* insns.def (getinlinecache/setinlinecache): CREF should be cache key
because a different CREF has a different namespace.
* node.c (rb_gc_mark_node): mark NODE_IF::nd_reserved for SVAR.
* proc.c: catch up changes.
* struct.c: ditto.
* insns.def: ditto.
* vm_args.c (raise_argument_error): ditto.
* vm_eval.c: ditto.
* test/ruby/test_class.rb: add a test.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@49874 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-03-06 07:24:58 -05:00
|
|
|
return NULL;
|
|
|
|
}
|
2015-06-02 00:20:30 -04:00
|
|
|
}
|
|
|
|
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
const rb_callable_method_entry_t *
|
2015-06-02 00:20:30 -04:00
|
|
|
rb_vm_frame_method_entry(const rb_control_frame_t *cfp)
|
|
|
|
{
|
|
|
|
VALUE *ep = cfp->ep;
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
rb_callable_method_entry_t *me;
|
2015-06-02 00:20:30 -04:00
|
|
|
|
|
|
|
while (!VM_EP_LEP_P(ep)) {
|
|
|
|
if ((me = check_method_entry(ep[-1], FALSE)) != NULL) return me;
|
|
|
|
ep = VM_EP_PREV_EP(ep);
|
* fix namespace issue on singleton class expressions. [Bug #10943]
* vm_core.h, method.h: remove rb_iseq_t::cref_stack. CREF is stored
to rb_method_definition_t::body.iseq_body.cref.
* vm_insnhelper.c: modify SVAR usage.
When calling ISEQ type method, push CREF information onto method
frame, SVAR located place. Before this fix, SVAR is simply nil.
After this patch, CREF (or NULL == Qfalse for not iseq methods)
is stored at the method invocation.
When SVAR is requierd, then put NODE_IF onto SVAR location,
and NDOE_IF::nd_reserved points CREF itself.
* vm.c (vm_cref_new, vm_cref_dump, vm_cref_new_toplevel): added.
* vm_insnhelper.c (vm_push_frame): accept CREF.
* method.h, vm_method.c (rb_add_method_iseq): added. This function
accepts iseq and CREF.
* class.c (clone_method): use rb_add_method_iseq().
* gc.c (mark_method_entry): mark method_entry::body.iseq_body.cref.
* iseq.c: remove CREF related codes.
* insns.def (getinlinecache/setinlinecache): CREF should be cache key
because a different CREF has a different namespace.
* node.c (rb_gc_mark_node): mark NODE_IF::nd_reserved for SVAR.
* proc.c: catch up changes.
* struct.c: ditto.
* insns.def: ditto.
* vm_args.c (raise_argument_error): ditto.
* vm_eval.c: ditto.
* test/ruby/test_class.rb: add a test.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@49874 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-03-06 07:24:58 -05:00
|
|
|
}
|
2015-06-02 00:20:30 -04:00
|
|
|
|
|
|
|
return check_method_entry(ep[-1], TRUE);
|
|
|
|
}
|
|
|
|
|
|
|
|
static rb_cref_t *
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
method_entry_cref(rb_callable_method_entry_t *me)
|
2015-06-02 00:20:30 -04:00
|
|
|
{
|
|
|
|
switch (me->def->type) {
|
|
|
|
case VM_METHOD_TYPE_ISEQ:
|
|
|
|
return me->def->body.iseq.cref;
|
|
|
|
default:
|
|
|
|
return NULL;
|
* fix namespace issue on singleton class expressions. [Bug #10943]
* vm_core.h, method.h: remove rb_iseq_t::cref_stack. CREF is stored
to rb_method_definition_t::body.iseq_body.cref.
* vm_insnhelper.c: modify SVAR usage.
When calling ISEQ type method, push CREF information onto method
frame, SVAR located place. Before this fix, SVAR is simply nil.
After this patch, CREF (or NULL == Qfalse for not iseq methods)
is stored at the method invocation.
When SVAR is requierd, then put NODE_IF onto SVAR location,
and NDOE_IF::nd_reserved points CREF itself.
* vm.c (vm_cref_new, vm_cref_dump, vm_cref_new_toplevel): added.
* vm_insnhelper.c (vm_push_frame): accept CREF.
* method.h, vm_method.c (rb_add_method_iseq): added. This function
accepts iseq and CREF.
* class.c (clone_method): use rb_add_method_iseq().
* gc.c (mark_method_entry): mark method_entry::body.iseq_body.cref.
* iseq.c: remove CREF related codes.
* insns.def (getinlinecache/setinlinecache): CREF should be cache key
because a different CREF has a different namespace.
* node.c (rb_gc_mark_node): mark NODE_IF::nd_reserved for SVAR.
* proc.c: catch up changes.
* struct.c: ditto.
* insns.def: ditto.
* vm_args.c (raise_argument_error): ditto.
* vm_eval.c: ditto.
* test/ruby/test_class.rb: add a test.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@49874 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-03-06 07:24:58 -05:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-03-08 17:22:43 -04:00
|
|
|
static rb_cref_t *
|
2015-06-02 00:20:30 -04:00
|
|
|
check_cref(VALUE obj, int can_be_svar)
|
* fix namespace issue on singleton class expressions. [Bug #10943]
* vm_core.h, method.h: remove rb_iseq_t::cref_stack. CREF is stored
to rb_method_definition_t::body.iseq_body.cref.
* vm_insnhelper.c: modify SVAR usage.
When calling ISEQ type method, push CREF information onto method
frame, SVAR located place. Before this fix, SVAR is simply nil.
After this patch, CREF (or NULL == Qfalse for not iseq methods)
is stored at the method invocation.
When SVAR is requierd, then put NODE_IF onto SVAR location,
and NDOE_IF::nd_reserved points CREF itself.
* vm.c (vm_cref_new, vm_cref_dump, vm_cref_new_toplevel): added.
* vm_insnhelper.c (vm_push_frame): accept CREF.
* method.h, vm_method.c (rb_add_method_iseq): added. This function
accepts iseq and CREF.
* class.c (clone_method): use rb_add_method_iseq().
* gc.c (mark_method_entry): mark method_entry::body.iseq_body.cref.
* iseq.c: remove CREF related codes.
* insns.def (getinlinecache/setinlinecache): CREF should be cache key
because a different CREF has a different namespace.
* node.c (rb_gc_mark_node): mark NODE_IF::nd_reserved for SVAR.
* proc.c: catch up changes.
* struct.c: ditto.
* insns.def: ditto.
* vm_args.c (raise_argument_error): ditto.
* vm_eval.c: ditto.
* test/ruby/test_class.rb: add a test.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@49874 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-03-06 07:24:58 -05:00
|
|
|
{
|
2015-06-02 00:20:30 -04:00
|
|
|
if (obj == Qfalse) return NULL;
|
|
|
|
|
|
|
|
#if VM_CHECK_MODE > 0
|
|
|
|
if (!RB_TYPE_P(obj, T_IMEMO)) rb_bug("check_cref: unknown type: %s", rb_obj_info(obj));
|
|
|
|
#endif
|
|
|
|
|
|
|
|
switch (imemo_type(obj)) {
|
|
|
|
case imemo_ment:
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
return method_entry_cref((rb_callable_method_entry_t *)obj);
|
2015-06-02 00:20:30 -04:00
|
|
|
case imemo_cref:
|
|
|
|
return (rb_cref_t *)obj;
|
|
|
|
case imemo_svar:
|
|
|
|
if (can_be_svar) {
|
|
|
|
return check_cref(((struct vm_svar *)obj)->cref_or_me, FALSE);
|
|
|
|
}
|
|
|
|
default:
|
|
|
|
#if VM_CHECK_MODE > 0
|
|
|
|
rb_bug("check_method_entry: svar should not be there:");
|
|
|
|
#endif
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static rb_cref_t *
|
|
|
|
vm_env_cref(const VALUE *ep)
|
|
|
|
{
|
|
|
|
rb_cref_t *cref;
|
|
|
|
|
* fix namespace issue on singleton class expressions. [Bug #10943]
* vm_core.h, method.h: remove rb_iseq_t::cref_stack. CREF is stored
to rb_method_definition_t::body.iseq_body.cref.
* vm_insnhelper.c: modify SVAR usage.
When calling ISEQ type method, push CREF information onto method
frame, SVAR located place. Before this fix, SVAR is simply nil.
After this patch, CREF (or NULL == Qfalse for not iseq methods)
is stored at the method invocation.
When SVAR is requierd, then put NODE_IF onto SVAR location,
and NDOE_IF::nd_reserved points CREF itself.
* vm.c (vm_cref_new, vm_cref_dump, vm_cref_new_toplevel): added.
* vm_insnhelper.c (vm_push_frame): accept CREF.
* method.h, vm_method.c (rb_add_method_iseq): added. This function
accepts iseq and CREF.
* class.c (clone_method): use rb_add_method_iseq().
* gc.c (mark_method_entry): mark method_entry::body.iseq_body.cref.
* iseq.c: remove CREF related codes.
* insns.def (getinlinecache/setinlinecache): CREF should be cache key
because a different CREF has a different namespace.
* node.c (rb_gc_mark_node): mark NODE_IF::nd_reserved for SVAR.
* proc.c: catch up changes.
* struct.c: ditto.
* insns.def: ditto.
* vm_args.c (raise_argument_error): ditto.
* vm_eval.c: ditto.
* test/ruby/test_class.rb: add a test.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@49874 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-03-06 07:24:58 -05:00
|
|
|
while (!VM_EP_LEP_P(ep)) {
|
2015-06-02 00:20:30 -04:00
|
|
|
if ((cref = check_cref(ep[-1], FALSE)) != NULL) return cref;
|
|
|
|
ep = VM_EP_PREV_EP(ep);
|
|
|
|
}
|
|
|
|
|
|
|
|
return check_cref(ep[-1], TRUE);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
is_cref(const VALUE v, int can_be_svar)
|
|
|
|
{
|
|
|
|
if (RB_TYPE_P(v, T_IMEMO)) {
|
|
|
|
switch (imemo_type(v)) {
|
|
|
|
case imemo_cref:
|
|
|
|
return TRUE;
|
|
|
|
case imemo_svar:
|
|
|
|
if (can_be_svar) return is_cref(((struct vm_svar *)v)->cref_or_me, FALSE);
|
|
|
|
default:
|
|
|
|
break;
|
2012-10-14 15:58:59 -04:00
|
|
|
}
|
2015-06-02 00:20:30 -04:00
|
|
|
}
|
|
|
|
return FALSE;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
vm_env_cref_by_cref(const VALUE *ep)
|
|
|
|
{
|
|
|
|
while (!VM_EP_LEP_P(ep)) {
|
|
|
|
if (is_cref(ep[-1], FALSE)) return TRUE;
|
2012-10-14 15:58:59 -04:00
|
|
|
ep = VM_EP_PREV_EP(ep);
|
2008-06-06 10:48:07 -04:00
|
|
|
}
|
2015-06-02 00:20:30 -04:00
|
|
|
return is_cref(ep[-1], TRUE);
|
2012-10-14 15:58:59 -04:00
|
|
|
}
|
2007-06-24 13:19:22 -04:00
|
|
|
|
2015-06-02 00:20:30 -04:00
|
|
|
static rb_cref_t *
|
* fix namespace issue on singleton class expressions. [Bug #10943]
* vm_core.h, method.h: remove rb_iseq_t::cref_stack. CREF is stored
to rb_method_definition_t::body.iseq_body.cref.
* vm_insnhelper.c: modify SVAR usage.
When calling ISEQ type method, push CREF information onto method
frame, SVAR located place. Before this fix, SVAR is simply nil.
After this patch, CREF (or NULL == Qfalse for not iseq methods)
is stored at the method invocation.
When SVAR is requierd, then put NODE_IF onto SVAR location,
and NDOE_IF::nd_reserved points CREF itself.
* vm.c (vm_cref_new, vm_cref_dump, vm_cref_new_toplevel): added.
* vm_insnhelper.c (vm_push_frame): accept CREF.
* method.h, vm_method.c (rb_add_method_iseq): added. This function
accepts iseq and CREF.
* class.c (clone_method): use rb_add_method_iseq().
* gc.c (mark_method_entry): mark method_entry::body.iseq_body.cref.
* iseq.c: remove CREF related codes.
* insns.def (getinlinecache/setinlinecache): CREF should be cache key
because a different CREF has a different namespace.
* node.c (rb_gc_mark_node): mark NODE_IF::nd_reserved for SVAR.
* proc.c: catch up changes.
* struct.c: ditto.
* insns.def: ditto.
* vm_args.c (raise_argument_error): ditto.
* vm_eval.c: ditto.
* test/ruby/test_class.rb: add a test.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@49874 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-03-06 07:24:58 -05:00
|
|
|
rb_vm_get_cref(const VALUE *ep)
|
2012-10-14 15:58:59 -04:00
|
|
|
{
|
2015-06-02 00:20:30 -04:00
|
|
|
rb_cref_t *cref = vm_env_cref(ep);
|
2011-12-26 09:20:09 -05:00
|
|
|
|
2012-10-14 15:58:59 -04:00
|
|
|
if (cref == 0) {
|
|
|
|
rb_bug("rb_vm_get_cref: unreachable");
|
|
|
|
}
|
* fix namespace issue on singleton class expressions. [Bug #10943]
* vm_core.h, method.h: remove rb_iseq_t::cref_stack. CREF is stored
to rb_method_definition_t::body.iseq_body.cref.
* vm_insnhelper.c: modify SVAR usage.
When calling ISEQ type method, push CREF information onto method
frame, SVAR located place. Before this fix, SVAR is simply nil.
After this patch, CREF (or NULL == Qfalse for not iseq methods)
is stored at the method invocation.
When SVAR is requierd, then put NODE_IF onto SVAR location,
and NDOE_IF::nd_reserved points CREF itself.
* vm.c (vm_cref_new, vm_cref_dump, vm_cref_new_toplevel): added.
* vm_insnhelper.c (vm_push_frame): accept CREF.
* method.h, vm_method.c (rb_add_method_iseq): added. This function
accepts iseq and CREF.
* class.c (clone_method): use rb_add_method_iseq().
* gc.c (mark_method_entry): mark method_entry::body.iseq_body.cref.
* iseq.c: remove CREF related codes.
* insns.def (getinlinecache/setinlinecache): CREF should be cache key
because a different CREF has a different namespace.
* node.c (rb_gc_mark_node): mark NODE_IF::nd_reserved for SVAR.
* proc.c: catch up changes.
* struct.c: ditto.
* insns.def: ditto.
* vm_args.c (raise_argument_error): ditto.
* vm_eval.c: ditto.
* test/ruby/test_class.rb: add a test.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@49874 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-03-06 07:24:58 -05:00
|
|
|
|
2012-10-14 15:58:59 -04:00
|
|
|
return cref;
|
|
|
|
}
|
2007-08-18 00:17:39 -04:00
|
|
|
|
2015-02-22 02:05:14 -05:00
|
|
|
void
|
2015-06-03 15:12:26 -04:00
|
|
|
rb_vm_rewrite_cref(rb_cref_t *cref, VALUE old_klass, VALUE new_klass, rb_cref_t **new_cref_ptr)
|
2015-02-22 02:05:14 -05:00
|
|
|
{
|
2015-06-03 15:12:26 -04:00
|
|
|
rb_cref_t *new_cref;
|
|
|
|
|
|
|
|
while (cref) {
|
|
|
|
if (CREF_CLASS(cref) == old_klass) {
|
2015-06-05 07:42:34 -04:00
|
|
|
new_cref = vm_cref_new(new_klass, METHOD_VISI_UNDEF, NULL);
|
2015-06-03 15:12:26 -04:00
|
|
|
COPY_CREF_OMOD(new_cref, cref);
|
|
|
|
CREF_NEXT_SET(new_cref, CREF_NEXT(cref));
|
|
|
|
*new_cref_ptr = new_cref;
|
2015-02-22 02:05:14 -05:00
|
|
|
return;
|
|
|
|
}
|
2015-06-05 07:42:34 -04:00
|
|
|
new_cref = vm_cref_new(CREF_CLASS(cref), METHOD_VISI_UNDEF, NULL);
|
2015-06-03 15:12:26 -04:00
|
|
|
COPY_CREF_OMOD(new_cref, cref);
|
|
|
|
cref = CREF_NEXT(cref);
|
|
|
|
*new_cref_ptr = new_cref;
|
|
|
|
new_cref_ptr = (rb_cref_t **)&new_cref->next;
|
2015-02-22 02:05:14 -05:00
|
|
|
}
|
|
|
|
*new_cref_ptr = NULL;
|
|
|
|
}
|
|
|
|
|
2015-03-08 17:22:43 -04:00
|
|
|
static rb_cref_t *
|
2015-06-02 21:39:16 -04:00
|
|
|
vm_cref_push(rb_thread_t *th, VALUE klass, rb_block_t *blockptr)
|
2012-10-14 15:58:59 -04:00
|
|
|
{
|
2015-03-08 17:22:43 -04:00
|
|
|
const rb_cref_t *prev_cref = NULL;
|
|
|
|
rb_cref_t *cref = NULL;
|
2007-12-09 00:56:00 -05:00
|
|
|
|
2012-10-14 15:58:59 -04:00
|
|
|
if (blockptr) {
|
2015-06-02 00:20:30 -04:00
|
|
|
prev_cref = vm_env_cref(blockptr->ep);
|
2012-10-14 15:58:59 -04:00
|
|
|
}
|
* fix namespace issue on singleton class expressions. [Bug #10943]
* vm_core.h, method.h: remove rb_iseq_t::cref_stack. CREF is stored
to rb_method_definition_t::body.iseq_body.cref.
* vm_insnhelper.c: modify SVAR usage.
When calling ISEQ type method, push CREF information onto method
frame, SVAR located place. Before this fix, SVAR is simply nil.
After this patch, CREF (or NULL == Qfalse for not iseq methods)
is stored at the method invocation.
When SVAR is requierd, then put NODE_IF onto SVAR location,
and NDOE_IF::nd_reserved points CREF itself.
* vm.c (vm_cref_new, vm_cref_dump, vm_cref_new_toplevel): added.
* vm_insnhelper.c (vm_push_frame): accept CREF.
* method.h, vm_method.c (rb_add_method_iseq): added. This function
accepts iseq and CREF.
* class.c (clone_method): use rb_add_method_iseq().
* gc.c (mark_method_entry): mark method_entry::body.iseq_body.cref.
* iseq.c: remove CREF related codes.
* insns.def (getinlinecache/setinlinecache): CREF should be cache key
because a different CREF has a different namespace.
* node.c (rb_gc_mark_node): mark NODE_IF::nd_reserved for SVAR.
* proc.c: catch up changes.
* struct.c: ditto.
* insns.def: ditto.
* vm_args.c (raise_argument_error): ditto.
* vm_eval.c: ditto.
* test/ruby/test_class.rb: add a test.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@49874 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-03-06 07:24:58 -05:00
|
|
|
else {
|
|
|
|
rb_control_frame_t *cfp = vm_get_ruby_level_caller_cfp(th, th->cfp);
|
|
|
|
|
|
|
|
if (cfp) {
|
2015-06-02 00:20:30 -04:00
|
|
|
prev_cref = vm_env_cref(cfp->ep);
|
* fix namespace issue on singleton class expressions. [Bug #10943]
* vm_core.h, method.h: remove rb_iseq_t::cref_stack. CREF is stored
to rb_method_definition_t::body.iseq_body.cref.
* vm_insnhelper.c: modify SVAR usage.
When calling ISEQ type method, push CREF information onto method
frame, SVAR located place. Before this fix, SVAR is simply nil.
After this patch, CREF (or NULL == Qfalse for not iseq methods)
is stored at the method invocation.
When SVAR is requierd, then put NODE_IF onto SVAR location,
and NDOE_IF::nd_reserved points CREF itself.
* vm.c (vm_cref_new, vm_cref_dump, vm_cref_new_toplevel): added.
* vm_insnhelper.c (vm_push_frame): accept CREF.
* method.h, vm_method.c (rb_add_method_iseq): added. This function
accepts iseq and CREF.
* class.c (clone_method): use rb_add_method_iseq().
* gc.c (mark_method_entry): mark method_entry::body.iseq_body.cref.
* iseq.c: remove CREF related codes.
* insns.def (getinlinecache/setinlinecache): CREF should be cache key
because a different CREF has a different namespace.
* node.c (rb_gc_mark_node): mark NODE_IF::nd_reserved for SVAR.
* proc.c: catch up changes.
* struct.c: ditto.
* insns.def: ditto.
* vm_args.c (raise_argument_error): ditto.
* vm_eval.c: ditto.
* test/ruby/test_class.rb: add a test.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@49874 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-03-06 07:24:58 -05:00
|
|
|
}
|
2012-10-14 15:58:59 -04:00
|
|
|
}
|
2015-06-02 21:39:16 -04:00
|
|
|
cref = vm_cref_new(klass, METHOD_VISI_PUBLIC, prev_cref);
|
* fix namespace issue on singleton class expressions. [Bug #10943]
* vm_core.h, method.h: remove rb_iseq_t::cref_stack. CREF is stored
to rb_method_definition_t::body.iseq_body.cref.
* vm_insnhelper.c: modify SVAR usage.
When calling ISEQ type method, push CREF information onto method
frame, SVAR located place. Before this fix, SVAR is simply nil.
After this patch, CREF (or NULL == Qfalse for not iseq methods)
is stored at the method invocation.
When SVAR is requierd, then put NODE_IF onto SVAR location,
and NDOE_IF::nd_reserved points CREF itself.
* vm.c (vm_cref_new, vm_cref_dump, vm_cref_new_toplevel): added.
* vm_insnhelper.c (vm_push_frame): accept CREF.
* method.h, vm_method.c (rb_add_method_iseq): added. This function
accepts iseq and CREF.
* class.c (clone_method): use rb_add_method_iseq().
* gc.c (mark_method_entry): mark method_entry::body.iseq_body.cref.
* iseq.c: remove CREF related codes.
* insns.def (getinlinecache/setinlinecache): CREF should be cache key
because a different CREF has a different namespace.
* node.c (rb_gc_mark_node): mark NODE_IF::nd_reserved for SVAR.
* proc.c: catch up changes.
* struct.c: ditto.
* insns.def: ditto.
* vm_args.c (raise_argument_error): ditto.
* vm_eval.c: ditto.
* test/ruby/test_class.rb: add a test.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@49874 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-03-06 07:24:58 -05:00
|
|
|
|
2015-03-08 15:50:37 -04:00
|
|
|
/* TODO: why CREF_NEXT(cref) is 1? */
|
|
|
|
if (CREF_NEXT(cref) && CREF_NEXT(cref) != (void *) 1 &&
|
|
|
|
!NIL_P(CREF_REFINEMENTS(CREF_NEXT(cref)))) {
|
|
|
|
COPY_CREF_OMOD(cref, CREF_NEXT(cref));
|
2007-06-24 13:19:22 -04:00
|
|
|
}
|
2008-06-06 10:48:07 -04:00
|
|
|
|
2012-10-14 15:58:59 -04:00
|
|
|
return cref;
|
2007-06-24 13:19:22 -04:00
|
|
|
}
|
|
|
|
|
2012-10-14 15:58:59 -04:00
|
|
|
static inline VALUE
|
* fix namespace issue on singleton class expressions. [Bug #10943]
* vm_core.h, method.h: remove rb_iseq_t::cref_stack. CREF is stored
to rb_method_definition_t::body.iseq_body.cref.
* vm_insnhelper.c: modify SVAR usage.
When calling ISEQ type method, push CREF information onto method
frame, SVAR located place. Before this fix, SVAR is simply nil.
After this patch, CREF (or NULL == Qfalse for not iseq methods)
is stored at the method invocation.
When SVAR is requierd, then put NODE_IF onto SVAR location,
and NDOE_IF::nd_reserved points CREF itself.
* vm.c (vm_cref_new, vm_cref_dump, vm_cref_new_toplevel): added.
* vm_insnhelper.c (vm_push_frame): accept CREF.
* method.h, vm_method.c (rb_add_method_iseq): added. This function
accepts iseq and CREF.
* class.c (clone_method): use rb_add_method_iseq().
* gc.c (mark_method_entry): mark method_entry::body.iseq_body.cref.
* iseq.c: remove CREF related codes.
* insns.def (getinlinecache/setinlinecache): CREF should be cache key
because a different CREF has a different namespace.
* node.c (rb_gc_mark_node): mark NODE_IF::nd_reserved for SVAR.
* proc.c: catch up changes.
* struct.c: ditto.
* insns.def: ditto.
* vm_args.c (raise_argument_error): ditto.
* vm_eval.c: ditto.
* test/ruby/test_class.rb: add a test.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@49874 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-03-06 07:24:58 -05:00
|
|
|
vm_get_cbase(const VALUE *ep)
|
2007-06-24 13:19:22 -04:00
|
|
|
{
|
2015-03-08 17:22:43 -04:00
|
|
|
const rb_cref_t *cref = rb_vm_get_cref(ep);
|
2012-10-14 15:58:59 -04:00
|
|
|
VALUE klass = Qundef;
|
* insns.def (send, invokesuper, invokeblock, opt_*), vm_core.h:
use only a `ci' (rb_call_info_t) parameter instead of using
parameters such as `op_id', 'op_argc', `blockiseq' and flag.
These information are stored in rb_call_info_t at the compile
time.
This technique simplifies parameter passings at related
function calls (~10% speedups for simple mehtod invocation at
my machine).
`rb_call_info_t' also has new function pointer variable `call'.
This `call' variable enables to customize method (block)
invocation process for each place. However, it always call
`vm_call_general()' at this changes.
`rb_call_info_t' also has temporary variables for method
(block) invocation.
* vm_core.h, compile.c, insns.def: introduce VM_CALL_ARGS_SKIP_SETUP
VM_CALL macro. This flag indicates that this call can skip
caller_setup (block arg and splat arg).
* compile.c: catch up above changes.
* iseq.c: catch up above changes (especially for TS_CALLINFO).
* tool/instruction.rb: catch up above chagnes.
* vm_insnhelper.c, vm_insnhelper.h: ditto. Macros and functions
parameters are changed.
* vm_eval.c (vm_call0): ditto (it will be rewriten soon).
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@37180 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-10-14 12:59:05 -04:00
|
|
|
|
2012-10-14 15:58:59 -04:00
|
|
|
while (cref) {
|
2015-03-08 15:50:37 -04:00
|
|
|
if ((klass = CREF_CLASS(cref)) != 0) {
|
2012-10-14 15:58:59 -04:00
|
|
|
break;
|
2007-06-24 14:40:13 -04:00
|
|
|
}
|
2015-03-08 15:50:37 -04:00
|
|
|
cref = CREF_NEXT(cref);
|
2007-06-24 13:19:22 -04:00
|
|
|
}
|
|
|
|
|
2012-10-14 15:58:59 -04:00
|
|
|
return klass;
|
|
|
|
}
|
* insns.def (send, invokesuper, invokeblock, opt_*), vm_core.h:
use only a `ci' (rb_call_info_t) parameter instead of using
parameters such as `op_id', 'op_argc', `blockiseq' and flag.
These information are stored in rb_call_info_t at the compile
time.
This technique simplifies parameter passings at related
function calls (~10% speedups for simple mehtod invocation at
my machine).
`rb_call_info_t' also has new function pointer variable `call'.
This `call' variable enables to customize method (block)
invocation process for each place. However, it always call
`vm_call_general()' at this changes.
`rb_call_info_t' also has temporary variables for method
(block) invocation.
* vm_core.h, compile.c, insns.def: introduce VM_CALL_ARGS_SKIP_SETUP
VM_CALL macro. This flag indicates that this call can skip
caller_setup (block arg and splat arg).
* compile.c: catch up above changes.
* iseq.c: catch up above changes (especially for TS_CALLINFO).
* tool/instruction.rb: catch up above chagnes.
* vm_insnhelper.c, vm_insnhelper.h: ditto. Macros and functions
parameters are changed.
* vm_eval.c (vm_call0): ditto (it will be rewriten soon).
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@37180 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-10-14 12:59:05 -04:00
|
|
|
|
2012-10-14 15:58:59 -04:00
|
|
|
static inline VALUE
|
* fix namespace issue on singleton class expressions. [Bug #10943]
* vm_core.h, method.h: remove rb_iseq_t::cref_stack. CREF is stored
to rb_method_definition_t::body.iseq_body.cref.
* vm_insnhelper.c: modify SVAR usage.
When calling ISEQ type method, push CREF information onto method
frame, SVAR located place. Before this fix, SVAR is simply nil.
After this patch, CREF (or NULL == Qfalse for not iseq methods)
is stored at the method invocation.
When SVAR is requierd, then put NODE_IF onto SVAR location,
and NDOE_IF::nd_reserved points CREF itself.
* vm.c (vm_cref_new, vm_cref_dump, vm_cref_new_toplevel): added.
* vm_insnhelper.c (vm_push_frame): accept CREF.
* method.h, vm_method.c (rb_add_method_iseq): added. This function
accepts iseq and CREF.
* class.c (clone_method): use rb_add_method_iseq().
* gc.c (mark_method_entry): mark method_entry::body.iseq_body.cref.
* iseq.c: remove CREF related codes.
* insns.def (getinlinecache/setinlinecache): CREF should be cache key
because a different CREF has a different namespace.
* node.c (rb_gc_mark_node): mark NODE_IF::nd_reserved for SVAR.
* proc.c: catch up changes.
* struct.c: ditto.
* insns.def: ditto.
* vm_args.c (raise_argument_error): ditto.
* vm_eval.c: ditto.
* test/ruby/test_class.rb: add a test.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@49874 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-03-06 07:24:58 -05:00
|
|
|
vm_get_const_base(const VALUE *ep)
|
2012-10-14 15:58:59 -04:00
|
|
|
{
|
2015-03-08 17:22:43 -04:00
|
|
|
const rb_cref_t *cref = rb_vm_get_cref(ep);
|
2012-10-14 15:58:59 -04:00
|
|
|
VALUE klass = Qundef;
|
2007-06-24 13:19:22 -04:00
|
|
|
|
2012-10-14 15:58:59 -04:00
|
|
|
while (cref) {
|
2015-03-08 15:50:37 -04:00
|
|
|
if (!CREF_PUSHED_BY_EVAL(cref) &&
|
|
|
|
(klass = CREF_CLASS(cref)) != 0) {
|
2012-10-14 15:58:59 -04:00
|
|
|
break;
|
2007-06-24 13:19:22 -04:00
|
|
|
}
|
2015-03-08 15:50:37 -04:00
|
|
|
cref = CREF_NEXT(cref);
|
2012-10-14 15:58:59 -04:00
|
|
|
}
|
2007-06-24 13:19:22 -04:00
|
|
|
|
2012-10-14 15:58:59 -04:00
|
|
|
return klass;
|
|
|
|
}
|
2007-06-24 13:19:22 -04:00
|
|
|
|
2012-10-14 15:58:59 -04:00
|
|
|
static inline void
|
|
|
|
vm_check_if_namespace(VALUE klass)
|
|
|
|
{
|
|
|
|
VALUE str;
|
|
|
|
if (!RB_TYPE_P(klass, T_CLASS) && !RB_TYPE_P(klass, T_MODULE)) {
|
|
|
|
str = rb_inspect(klass);
|
|
|
|
rb_raise(rb_eTypeError, "%s is not a class/module",
|
|
|
|
StringValuePtr(str));
|
2007-06-24 13:19:22 -04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline VALUE
|
2012-10-14 15:58:59 -04:00
|
|
|
vm_get_iclass(rb_control_frame_t *cfp, VALUE klass)
|
2007-06-24 13:19:22 -04:00
|
|
|
{
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
return klass;
|
2007-06-24 13:19:22 -04:00
|
|
|
}
|
|
|
|
|
|
|
|
static inline VALUE
|
* fix namespace issue on singleton class expressions. [Bug #10943]
* vm_core.h, method.h: remove rb_iseq_t::cref_stack. CREF is stored
to rb_method_definition_t::body.iseq_body.cref.
* vm_insnhelper.c: modify SVAR usage.
When calling ISEQ type method, push CREF information onto method
frame, SVAR located place. Before this fix, SVAR is simply nil.
After this patch, CREF (or NULL == Qfalse for not iseq methods)
is stored at the method invocation.
When SVAR is requierd, then put NODE_IF onto SVAR location,
and NDOE_IF::nd_reserved points CREF itself.
* vm.c (vm_cref_new, vm_cref_dump, vm_cref_new_toplevel): added.
* vm_insnhelper.c (vm_push_frame): accept CREF.
* method.h, vm_method.c (rb_add_method_iseq): added. This function
accepts iseq and CREF.
* class.c (clone_method): use rb_add_method_iseq().
* gc.c (mark_method_entry): mark method_entry::body.iseq_body.cref.
* iseq.c: remove CREF related codes.
* insns.def (getinlinecache/setinlinecache): CREF should be cache key
because a different CREF has a different namespace.
* node.c (rb_gc_mark_node): mark NODE_IF::nd_reserved for SVAR.
* proc.c: catch up changes.
* struct.c: ditto.
* insns.def: ditto.
* vm_args.c (raise_argument_error): ditto.
* vm_eval.c: ditto.
* test/ruby/test_class.rb: add a test.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@49874 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-03-06 07:24:58 -05:00
|
|
|
vm_get_ev_const(rb_thread_t *th, VALUE orig_klass, ID id, int is_defined)
|
2007-06-24 13:19:22 -04:00
|
|
|
{
|
2012-10-14 15:58:59 -04:00
|
|
|
VALUE val;
|
2007-06-24 13:19:22 -04:00
|
|
|
|
2012-10-14 15:58:59 -04:00
|
|
|
if (orig_klass == Qnil) {
|
|
|
|
/* in current lexical scope */
|
2015-03-08 17:22:43 -04:00
|
|
|
const rb_cref_t *root_cref = rb_vm_get_cref(th->cfp->ep);
|
|
|
|
const rb_cref_t *cref;
|
2012-10-14 15:58:59 -04:00
|
|
|
VALUE klass = orig_klass;
|
2009-07-15 10:59:41 -04:00
|
|
|
|
2015-03-08 15:50:37 -04:00
|
|
|
while (root_cref && CREF_PUSHED_BY_EVAL(root_cref)) {
|
|
|
|
root_cref = CREF_NEXT(root_cref);
|
2012-10-14 15:58:59 -04:00
|
|
|
}
|
|
|
|
cref = root_cref;
|
2015-03-08 15:50:37 -04:00
|
|
|
while (cref && CREF_NEXT(cref)) {
|
|
|
|
if (CREF_PUSHED_BY_EVAL(cref)) {
|
2012-10-14 15:58:59 -04:00
|
|
|
klass = Qnil;
|
|
|
|
}
|
|
|
|
else {
|
2015-03-08 15:50:37 -04:00
|
|
|
klass = CREF_CLASS(cref);
|
2012-10-14 15:58:59 -04:00
|
|
|
}
|
2015-03-08 15:50:37 -04:00
|
|
|
cref = CREF_NEXT(cref);
|
2012-06-10 23:14:59 -04:00
|
|
|
|
2012-10-14 15:58:59 -04:00
|
|
|
if (!NIL_P(klass)) {
|
|
|
|
VALUE av, am = 0;
|
2014-08-03 21:12:53 -04:00
|
|
|
rb_const_entry_t *ce;
|
2012-10-14 15:58:59 -04:00
|
|
|
search_continue:
|
2014-08-03 21:12:53 -04:00
|
|
|
if ((ce = rb_const_lookup(klass, id))) {
|
|
|
|
val = ce->value;
|
2012-10-14 15:58:59 -04:00
|
|
|
if (val == Qundef) {
|
|
|
|
if (am == klass) break;
|
|
|
|
am = klass;
|
|
|
|
if (is_defined) return 1;
|
|
|
|
if (rb_autoloading_value(klass, id, &av)) return av;
|
|
|
|
rb_autoload_load(klass, id);
|
|
|
|
goto search_continue;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
if (is_defined) {
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
return val;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2007-06-24 13:19:22 -04:00
|
|
|
|
2012-10-14 15:58:59 -04:00
|
|
|
/* search self */
|
2015-03-08 15:50:37 -04:00
|
|
|
if (root_cref && !NIL_P(CREF_CLASS(root_cref))) {
|
|
|
|
klass = vm_get_iclass(th->cfp, CREF_CLASS(root_cref));
|
2012-10-14 15:58:59 -04:00
|
|
|
}
|
|
|
|
else {
|
|
|
|
klass = CLASS_OF(th->cfp->self);
|
|
|
|
}
|
2007-06-24 13:19:22 -04:00
|
|
|
|
2012-10-14 15:58:59 -04:00
|
|
|
if (is_defined) {
|
|
|
|
return rb_const_defined(klass, id);
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
return rb_const_get(klass, id);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
vm_check_if_namespace(orig_klass);
|
|
|
|
if (is_defined) {
|
|
|
|
return rb_public_const_defined_from(orig_klass, id);
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
return rb_public_const_get_from(orig_klass, id);
|
|
|
|
}
|
2010-01-24 08:52:32 -05:00
|
|
|
}
|
2007-06-24 13:19:22 -04:00
|
|
|
}
|
|
|
|
|
|
|
|
static inline VALUE
|
2015-03-08 17:22:43 -04:00
|
|
|
vm_get_cvar_base(const rb_cref_t *cref, rb_control_frame_t *cfp)
|
2007-06-24 13:19:22 -04:00
|
|
|
{
|
2012-10-14 15:58:59 -04:00
|
|
|
VALUE klass;
|
2007-06-24 13:19:22 -04:00
|
|
|
|
2012-10-14 15:58:59 -04:00
|
|
|
if (!cref) {
|
|
|
|
rb_bug("vm_get_cvar_base: no cref");
|
|
|
|
}
|
2011-06-30 09:34:53 -04:00
|
|
|
|
2015-03-08 15:50:37 -04:00
|
|
|
while (CREF_NEXT(cref) &&
|
|
|
|
(NIL_P(CREF_CLASS(cref)) || FL_TEST(CREF_CLASS(cref), FL_SINGLETON) ||
|
|
|
|
CREF_PUSHED_BY_EVAL(cref))) {
|
|
|
|
cref = CREF_NEXT(cref);
|
2012-10-14 15:58:59 -04:00
|
|
|
}
|
2015-03-08 15:50:37 -04:00
|
|
|
if (!CREF_NEXT(cref)) {
|
2012-10-14 15:58:59 -04:00
|
|
|
rb_warn("class variable access from toplevel");
|
|
|
|
}
|
2011-06-30 09:34:53 -04:00
|
|
|
|
2015-03-08 15:50:37 -04:00
|
|
|
klass = vm_get_iclass(cfp, CREF_CLASS(cref));
|
2011-06-30 09:34:53 -04:00
|
|
|
|
2012-10-14 15:58:59 -04:00
|
|
|
if (NIL_P(klass)) {
|
|
|
|
rb_raise(rb_eTypeError, "no class variables available");
|
|
|
|
}
|
|
|
|
return klass;
|
2007-06-24 13:19:22 -04:00
|
|
|
}
|
|
|
|
|
2012-10-14 15:58:59 -04:00
|
|
|
static VALUE
|
|
|
|
vm_search_const_defined_class(const VALUE cbase, ID id)
|
2009-02-21 20:43:59 -05:00
|
|
|
{
|
2012-10-14 15:58:59 -04:00
|
|
|
if (rb_const_defined_at(cbase, id)) return cbase;
|
|
|
|
if (cbase == rb_cObject) {
|
|
|
|
VALUE tmp = RCLASS_SUPER(cbase);
|
|
|
|
while (tmp) {
|
|
|
|
if (rb_const_defined_at(tmp, id)) return tmp;
|
|
|
|
tmp = RCLASS_SUPER(tmp);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return 0;
|
2007-06-24 13:19:22 -04:00
|
|
|
}
|
|
|
|
|
2012-10-14 15:58:59 -04:00
|
|
|
#ifndef USE_IC_FOR_IVAR
|
|
|
|
#define USE_IC_FOR_IVAR 1
|
|
|
|
#endif
|
|
|
|
|
2012-10-16 13:07:23 -04:00
|
|
|
static inline VALUE
|
|
|
|
vm_getivar(VALUE obj, ID id, IC ic, rb_call_info_t *ci, int is_attr)
|
2007-06-24 13:19:22 -04:00
|
|
|
{
|
2012-10-14 15:58:59 -04:00
|
|
|
#if USE_IC_FOR_IVAR
|
|
|
|
if (RB_TYPE_P(obj, T_OBJECT)) {
|
|
|
|
VALUE val = Qundef;
|
|
|
|
VALUE klass = RBASIC(obj)->klass;
|
2014-10-19 12:58:58 -04:00
|
|
|
const long len = ROBJECT_NUMIV(obj);
|
|
|
|
const VALUE *const ptr = ROBJECT_IVPTR(obj);
|
2007-06-24 13:19:22 -04:00
|
|
|
|
2014-10-19 12:58:58 -04:00
|
|
|
if (LIKELY(is_attr ? ci->aux.index > 0 : ic->ic_serial == RCLASS_SERIAL(klass))) {
|
rb_call_info_t: shrink to 96 bytes from 104 bytes on 64-bit
This keeps ci->flag and ci->aux.index consistent across 32-bit
and 64-bit platforms.
ci->flag: VM_CALL_* flags only use 9 bits, currently
ci->aux.index: 2 billion ivars per class should be enough for anybody
This saves around 50K allocations on "valgrind ruby -e exit" on x86-64
before:
total heap usage: 48,122 allocs, 19,253 frees, 8,099,197 bytes allocated
after:
total heap usage: 48,069 allocs, 19,214 frees, 8,047,266 bytes allocated
* vm_core.h (rb_call_info_t): ci->flag becomes 32-bit unsigned int
ci->index becomes a 32-bit signed int (from signed long).
Reorder for better packing on 64-bit, giving an 8 byte reduction
from 104 to 96 bytes for each ci.
* compile.c (new_callinfo, setup_args, iseq_compile_each,
iseq_build_from_ary_body): adjust for type changes
* vm_insnhelper.c (vm_getivar): ditto
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@47509 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2014-09-10 02:32:44 -04:00
|
|
|
int index = !is_attr ? (int)ic->ic_value.index : ci->aux.index - 1;
|
2007-06-24 13:19:22 -04:00
|
|
|
|
2012-10-14 15:58:59 -04:00
|
|
|
if (index < len) {
|
|
|
|
val = ptr[index];
|
2007-08-06 07:36:30 -04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
else {
|
2012-10-14 15:58:59 -04:00
|
|
|
st_data_t index;
|
|
|
|
struct st_table *iv_index_tbl = ROBJECT_IV_INDEX_TBL(obj);
|
2007-08-06 07:36:30 -04:00
|
|
|
|
2012-10-14 15:58:59 -04:00
|
|
|
if (iv_index_tbl) {
|
|
|
|
if (st_lookup(iv_index_tbl, id, &index)) {
|
|
|
|
if ((long)index < len) {
|
|
|
|
val = ptr[index];
|
|
|
|
}
|
2012-10-16 13:07:23 -04:00
|
|
|
if (!is_attr) {
|
|
|
|
ic->ic_value.index = index;
|
2013-12-09 06:00:23 -05:00
|
|
|
ic->ic_serial = RCLASS_SERIAL(klass);
|
2012-10-16 13:07:23 -04:00
|
|
|
}
|
|
|
|
else { /* call_info */
|
rb_call_info_t: shrink to 96 bytes from 104 bytes on 64-bit
This keeps ci->flag and ci->aux.index consistent across 32-bit
and 64-bit platforms.
ci->flag: VM_CALL_* flags only use 9 bits, currently
ci->aux.index: 2 billion ivars per class should be enough for anybody
This saves around 50K allocations on "valgrind ruby -e exit" on x86-64
before:
total heap usage: 48,122 allocs, 19,253 frees, 8,099,197 bytes allocated
after:
total heap usage: 48,069 allocs, 19,214 frees, 8,047,266 bytes allocated
* vm_core.h (rb_call_info_t): ci->flag becomes 32-bit unsigned int
ci->index becomes a 32-bit signed int (from signed long).
Reorder for better packing on 64-bit, giving an 8 byte reduction
from 104 to 96 bytes for each ci.
* compile.c (new_callinfo, setup_args, iseq_compile_each,
iseq_build_from_ary_body): adjust for type changes
* vm_insnhelper.c (vm_getivar): ditto
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@47509 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2014-09-10 02:32:44 -04:00
|
|
|
ci->aux.index = (int)index + 1;
|
2012-10-16 13:07:23 -04:00
|
|
|
}
|
2012-10-14 15:58:59 -04:00
|
|
|
}
|
|
|
|
}
|
* vm.c, insns.def, eval.c, vm_insnhelper.c: fix CREF handling.
VM value stack frame of block contains cref information.
(dfp[-1] points CREF)
* compile.c, eval_intern.h, eval_method.c, load.c, proc.c,
vm_dump.h, vm_core.h: ditto.
* include/ruby/ruby.h, gc.c: remove T_VALUES because of above
changes.
* bootstraptest/test_eval.rb, test_knownbug.rb: move solved test.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@16468 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2008-05-18 23:08:50 -04:00
|
|
|
}
|
2012-10-16 13:07:23 -04:00
|
|
|
|
2012-10-14 15:58:59 -04:00
|
|
|
if (UNLIKELY(val == Qundef)) {
|
2014-10-19 13:23:31 -04:00
|
|
|
if (!is_attr && RTEST(ruby_verbose))
|
2014-10-20 01:20:39 -04:00
|
|
|
rb_warning("instance variable %"PRIsVALUE" not initialized", QUOTE_ID(id));
|
2012-10-14 15:58:59 -04:00
|
|
|
val = Qnil;
|
* vm.c, insns.def, eval.c, vm_insnhelper.c: fix CREF handling.
VM value stack frame of block contains cref information.
(dfp[-1] points CREF)
* compile.c, eval_intern.h, eval_method.c, load.c, proc.c,
vm_dump.h, vm_core.h: ditto.
* include/ruby/ruby.h, gc.c: remove T_VALUES because of above
changes.
* bootstraptest/test_eval.rb, test_knownbug.rb: move solved test.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@16468 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2008-05-18 23:08:50 -04:00
|
|
|
}
|
2012-10-14 15:58:59 -04:00
|
|
|
return val;
|
|
|
|
}
|
2012-12-11 23:39:48 -05:00
|
|
|
#endif /* USE_IC_FOR_IVAR */
|
2012-12-11 23:40:55 -05:00
|
|
|
if (is_attr)
|
|
|
|
return rb_attr_get(obj, id);
|
2012-10-14 15:58:59 -04:00
|
|
|
return rb_ivar_get(obj, id);
|
2010-09-22 20:01:40 -04:00
|
|
|
}
|
|
|
|
|
2013-02-06 12:31:22 -05:00
|
|
|
static inline VALUE
|
2012-10-16 13:07:23 -04:00
|
|
|
vm_setivar(VALUE obj, ID id, VALUE val, IC ic, rb_call_info_t *ci, int is_attr)
|
2010-09-22 20:01:40 -04:00
|
|
|
{
|
2012-10-14 15:58:59 -04:00
|
|
|
#if USE_IC_FOR_IVAR
|
|
|
|
rb_check_frozen(obj);
|
* common.mk: clean up
- remove blockinlining.$(OBJEXT) to built
- make ENCODING_H_INCLDUES variable (include/ruby/encoding.h)
- make VM_CORE_H_INCLUDES variable (vm_core.h)
- simplify rules.
- make depends rule to output depend status using gcc -MM.
* include/ruby/mvm.h, include/ruby/vm.h: rename mvm.h to vm.h.
* include/ruby.h: ditto.
* load.c: add inclusion explicitly.
* enumerator.c, object.c, parse.y, thread.c, vm_dump.c:
remove useless inclusion.
* eval_intern.h: cleanup inclusion.
* vm_core.h: rb_thread_t should be defined in this file.
* vm_evalbody.c, vm_exec.c: rename vm_evalbody.c to vm_exec.c.
* vm.h, vm_exec.h: rename vm.h to vm_exec.h.
* insnhelper.h, vm_insnhelper.h: rename insnhelper.h to vm_insnhelper.h.
* vm.c, vm_insnhelper.c, vm_insnhelper.h:
- rename vm_eval() to vm_exec_core().
- rename vm_eval_body() to vm_exec().
- cleanup include order.
* vm_method.c: fix comment.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@19466 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2008-09-22 20:20:28 -04:00
|
|
|
|
2012-10-14 15:58:59 -04:00
|
|
|
if (RB_TYPE_P(obj, T_OBJECT)) {
|
|
|
|
VALUE klass = RBASIC(obj)->klass;
|
|
|
|
st_data_t index;
|
* common.mk: clean up
- remove blockinlining.$(OBJEXT) to built
- make ENCODING_H_INCLDUES variable (include/ruby/encoding.h)
- make VM_CORE_H_INCLUDES variable (vm_core.h)
- simplify rules.
- make depends rule to output depend status using gcc -MM.
* include/ruby/mvm.h, include/ruby/vm.h: rename mvm.h to vm.h.
* include/ruby.h: ditto.
* load.c: add inclusion explicitly.
* enumerator.c, object.c, parse.y, thread.c, vm_dump.c:
remove useless inclusion.
* eval_intern.h: cleanup inclusion.
* vm_core.h: rb_thread_t should be defined in this file.
* vm_evalbody.c, vm_exec.c: rename vm_evalbody.c to vm_exec.c.
* vm.h, vm_exec.h: rename vm.h to vm_exec.h.
* insnhelper.h, vm_insnhelper.h: rename insnhelper.h to vm_insnhelper.h.
* vm.c, vm_insnhelper.c, vm_insnhelper.h:
- rename vm_eval() to vm_exec_core().
- rename vm_eval_body() to vm_exec().
- cleanup include order.
* vm_method.c: fix comment.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@19466 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2008-09-22 20:20:28 -04:00
|
|
|
|
2012-10-16 13:07:23 -04:00
|
|
|
if (LIKELY(
|
2013-12-09 06:00:23 -05:00
|
|
|
(!is_attr && ic->ic_serial == RCLASS_SERIAL(klass)) ||
|
2012-10-16 13:07:23 -04:00
|
|
|
(is_attr && ci->aux.index > 0))) {
|
2013-08-20 13:41:13 -04:00
|
|
|
long index = !is_attr ? (long)ic->ic_value.index : ci->aux.index-1;
|
2012-10-14 15:58:59 -04:00
|
|
|
long len = ROBJECT_NUMIV(obj);
|
|
|
|
VALUE *ptr = ROBJECT_IVPTR(obj);
|
* common.mk: clean up
- remove blockinlining.$(OBJEXT) to built
- make ENCODING_H_INCLDUES variable (include/ruby/encoding.h)
- make VM_CORE_H_INCLUDES variable (vm_core.h)
- simplify rules.
- make depends rule to output depend status using gcc -MM.
* include/ruby/mvm.h, include/ruby/vm.h: rename mvm.h to vm.h.
* include/ruby.h: ditto.
* load.c: add inclusion explicitly.
* enumerator.c, object.c, parse.y, thread.c, vm_dump.c:
remove useless inclusion.
* eval_intern.h: cleanup inclusion.
* vm_core.h: rb_thread_t should be defined in this file.
* vm_evalbody.c, vm_exec.c: rename vm_evalbody.c to vm_exec.c.
* vm.h, vm_exec.h: rename vm.h to vm_exec.h.
* insnhelper.h, vm_insnhelper.h: rename insnhelper.h to vm_insnhelper.h.
* vm.c, vm_insnhelper.c, vm_insnhelper.h:
- rename vm_eval() to vm_exec_core().
- rename vm_eval_body() to vm_exec().
- cleanup include order.
* vm_method.c: fix comment.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@19466 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2008-09-22 20:20:28 -04:00
|
|
|
|
2012-10-14 15:58:59 -04:00
|
|
|
if (index < len) {
|
* include/ruby/ruby.h: rename OBJ_WRITE and OBJ_WRITTEN into
RB_OBJ_WRITE and RB_OBJ_WRITTEN.
* array.c, class.c, compile.c, hash.c, internal.h, iseq.c,
proc.c, process.c, re.c, string.c, variable.c, vm.c,
vm_eval.c, vm_insnhelper.c, vm_insnhelper.h,
vm_method.c: catch up this change.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@44299 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2013-12-20 03:07:47 -05:00
|
|
|
RB_OBJ_WRITE(obj, &ptr[index], val);
|
2013-02-06 12:31:22 -05:00
|
|
|
return val; /* inline cache hit */
|
2012-10-14 15:58:59 -04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
struct st_table *iv_index_tbl = ROBJECT_IV_INDEX_TBL(obj);
|
* common.mk: clean up
- remove blockinlining.$(OBJEXT) to built
- make ENCODING_H_INCLDUES variable (include/ruby/encoding.h)
- make VM_CORE_H_INCLUDES variable (vm_core.h)
- simplify rules.
- make depends rule to output depend status using gcc -MM.
* include/ruby/mvm.h, include/ruby/vm.h: rename mvm.h to vm.h.
* include/ruby.h: ditto.
* load.c: add inclusion explicitly.
* enumerator.c, object.c, parse.y, thread.c, vm_dump.c:
remove useless inclusion.
* eval_intern.h: cleanup inclusion.
* vm_core.h: rb_thread_t should be defined in this file.
* vm_evalbody.c, vm_exec.c: rename vm_evalbody.c to vm_exec.c.
* vm.h, vm_exec.h: rename vm.h to vm_exec.h.
* insnhelper.h, vm_insnhelper.h: rename insnhelper.h to vm_insnhelper.h.
* vm.c, vm_insnhelper.c, vm_insnhelper.h:
- rename vm_eval() to vm_exec_core().
- rename vm_eval_body() to vm_exec().
- cleanup include order.
* vm_method.c: fix comment.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@19466 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2008-09-22 20:20:28 -04:00
|
|
|
|
2012-10-14 15:58:59 -04:00
|
|
|
if (iv_index_tbl && st_lookup(iv_index_tbl, (st_data_t)id, &index)) {
|
2012-10-16 13:07:23 -04:00
|
|
|
if (!is_attr) {
|
|
|
|
ic->ic_value.index = index;
|
2013-12-09 06:00:23 -05:00
|
|
|
ic->ic_serial = RCLASS_SERIAL(klass);
|
2012-10-16 13:07:23 -04:00
|
|
|
}
|
2014-09-10 04:05:12 -04:00
|
|
|
else if (index >= INT_MAX) {
|
|
|
|
rb_raise(rb_eArgError, "too many instance variables");
|
|
|
|
}
|
2012-10-16 13:07:23 -04:00
|
|
|
else {
|
2014-09-10 04:05:12 -04:00
|
|
|
ci->aux.index = (int)(index + 1);
|
2012-10-16 13:07:23 -04:00
|
|
|
}
|
2012-10-14 15:58:59 -04:00
|
|
|
}
|
|
|
|
/* fall through */
|
* common.mk: clean up
- remove blockinlining.$(OBJEXT) to built
- make ENCODING_H_INCLDUES variable (include/ruby/encoding.h)
- make VM_CORE_H_INCLUDES variable (vm_core.h)
- simplify rules.
- make depends rule to output depend status using gcc -MM.
* include/ruby/mvm.h, include/ruby/vm.h: rename mvm.h to vm.h.
* include/ruby.h: ditto.
* load.c: add inclusion explicitly.
* enumerator.c, object.c, parse.y, thread.c, vm_dump.c:
remove useless inclusion.
* eval_intern.h: cleanup inclusion.
* vm_core.h: rb_thread_t should be defined in this file.
* vm_evalbody.c, vm_exec.c: rename vm_evalbody.c to vm_exec.c.
* vm.h, vm_exec.h: rename vm.h to vm_exec.h.
* insnhelper.h, vm_insnhelper.h: rename insnhelper.h to vm_insnhelper.h.
* vm.c, vm_insnhelper.c, vm_insnhelper.h:
- rename vm_eval() to vm_exec_core().
- rename vm_eval_body() to vm_exec().
- cleanup include order.
* vm_method.c: fix comment.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@19466 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2008-09-22 20:20:28 -04:00
|
|
|
}
|
|
|
|
}
|
2012-12-11 23:39:48 -05:00
|
|
|
#endif /* USE_IC_FOR_IVAR */
|
2013-02-06 12:31:22 -05:00
|
|
|
return rb_ivar_set(obj, id, val);
|
* common.mk: clean up
- remove blockinlining.$(OBJEXT) to built
- make ENCODING_H_INCLDUES variable (include/ruby/encoding.h)
- make VM_CORE_H_INCLUDES variable (vm_core.h)
- simplify rules.
- make depends rule to output depend status using gcc -MM.
* include/ruby/mvm.h, include/ruby/vm.h: rename mvm.h to vm.h.
* include/ruby.h: ditto.
* load.c: add inclusion explicitly.
* enumerator.c, object.c, parse.y, thread.c, vm_dump.c:
remove useless inclusion.
* eval_intern.h: cleanup inclusion.
* vm_core.h: rb_thread_t should be defined in this file.
* vm_evalbody.c, vm_exec.c: rename vm_evalbody.c to vm_exec.c.
* vm.h, vm_exec.h: rename vm.h to vm_exec.h.
* insnhelper.h, vm_insnhelper.h: rename insnhelper.h to vm_insnhelper.h.
* vm.c, vm_insnhelper.c, vm_insnhelper.h:
- rename vm_eval() to vm_exec_core().
- rename vm_eval_body() to vm_exec().
- cleanup include order.
* vm_method.c: fix comment.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@19466 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2008-09-22 20:20:28 -04:00
|
|
|
}
|
* vm.c, insns.def, eval.c, vm_insnhelper.c: fix CREF handling.
VM value stack frame of block contains cref information.
(dfp[-1] points CREF)
* compile.c, eval_intern.h, eval_method.c, load.c, proc.c,
vm_dump.h, vm_core.h: ditto.
* include/ruby/ruby.h, gc.c: remove T_VALUES because of above
changes.
* bootstraptest/test_eval.rb, test_knownbug.rb: move solved test.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@16468 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2008-05-18 23:08:50 -04:00
|
|
|
|
2012-10-16 13:07:23 -04:00
|
|
|
static VALUE
|
|
|
|
vm_getinstancevariable(VALUE obj, ID id, IC ic)
|
|
|
|
{
|
|
|
|
return vm_getivar(obj, id, ic, 0, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
vm_setinstancevariable(VALUE obj, ID id, VALUE val, IC ic)
|
|
|
|
{
|
|
|
|
vm_setivar(obj, id, val, ic, 0, 0);
|
|
|
|
}
|
|
|
|
|
2012-10-14 15:58:59 -04:00
|
|
|
static VALUE
|
2015-03-10 14:39:46 -04:00
|
|
|
vm_throw_continue(rb_thread_t *th, VALUE err)
|
2009-12-03 13:25:57 -05:00
|
|
|
{
|
2015-01-15 21:54:22 -05:00
|
|
|
/* continue throw */
|
2009-12-03 13:25:57 -05:00
|
|
|
|
2015-01-15 21:54:22 -05:00
|
|
|
if (FIXNUM_P(err)) {
|
|
|
|
th->state = FIX2INT(err);
|
|
|
|
}
|
|
|
|
else if (SYMBOL_P(err)) {
|
|
|
|
th->state = TAG_THROW;
|
|
|
|
}
|
2015-03-10 14:39:46 -04:00
|
|
|
else if (THROW_DATA_P(err)) {
|
2015-03-11 08:49:27 -04:00
|
|
|
th->state = THROW_DATA_STATE((struct vm_throw_data *)err);
|
2015-01-15 21:54:22 -05:00
|
|
|
}
|
|
|
|
else {
|
|
|
|
th->state = TAG_RAISE;
|
|
|
|
/*th->state = FIX2INT(rb_ivar_get(err, idThrowState));*/
|
|
|
|
}
|
|
|
|
return err;
|
|
|
|
}
|
2009-12-03 13:25:57 -05:00
|
|
|
|
2015-01-15 21:54:22 -05:00
|
|
|
static VALUE
|
2015-07-19 20:08:23 -04:00
|
|
|
vm_throw_start(rb_thread_t *const th, rb_control_frame_t *const reg_cfp, enum ruby_tag_type state,
|
|
|
|
const int flag, const rb_num_t level, const VALUE throwobj)
|
2015-01-15 21:54:22 -05:00
|
|
|
{
|
|
|
|
rb_control_frame_t *escape_cfp = NULL;
|
|
|
|
const rb_control_frame_t * const eocfp = RUBY_VM_END_CONTROL_FRAME(th); /* end of control frame pointer */
|
|
|
|
|
|
|
|
if (flag != 0) {
|
|
|
|
/* do nothing */
|
|
|
|
}
|
|
|
|
else if (state == TAG_BREAK) {
|
|
|
|
int is_orphan = 1;
|
|
|
|
VALUE *ep = GET_EP();
|
2015-07-16 09:13:50 -04:00
|
|
|
const rb_iseq_t *base_iseq = GET_ISEQ();
|
2015-01-15 21:54:22 -05:00
|
|
|
escape_cfp = reg_cfp;
|
|
|
|
|
2015-07-21 18:52:59 -04:00
|
|
|
while (base_iseq->body->type != ISEQ_TYPE_BLOCK) {
|
|
|
|
if (escape_cfp->iseq->body->type == ISEQ_TYPE_CLASS) {
|
2015-01-15 21:54:22 -05:00
|
|
|
escape_cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(escape_cfp);
|
|
|
|
ep = escape_cfp->ep;
|
|
|
|
base_iseq = escape_cfp->iseq;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
ep = VM_EP_PREV_EP(ep);
|
2015-07-21 18:52:59 -04:00
|
|
|
base_iseq = base_iseq->body->parent_iseq;
|
2015-01-15 21:54:22 -05:00
|
|
|
escape_cfp = rb_vm_search_cf_from_ep(th, escape_cfp, ep);
|
2015-06-10 19:42:01 -04:00
|
|
|
VM_ASSERT(escape_cfp->iseq == base_iseq);
|
2015-01-15 21:54:22 -05:00
|
|
|
}
|
|
|
|
}
|
2008-04-03 06:59:44 -04:00
|
|
|
|
2015-01-15 21:54:22 -05:00
|
|
|
if (VM_FRAME_TYPE(escape_cfp) == VM_FRAME_MAGIC_LAMBDA) {
|
|
|
|
/* lambda{... break ...} */
|
|
|
|
is_orphan = 0;
|
|
|
|
state = TAG_RETURN;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
ep = VM_EP_PREV_EP(ep);
|
|
|
|
|
|
|
|
while (escape_cfp < eocfp) {
|
|
|
|
if (escape_cfp->ep == ep) {
|
2015-07-21 18:52:59 -04:00
|
|
|
const VALUE epc = escape_cfp->pc - escape_cfp->iseq->body->iseq_encoded;
|
2015-01-15 21:54:22 -05:00
|
|
|
const rb_iseq_t * const iseq = escape_cfp->iseq;
|
2015-07-21 18:52:59 -04:00
|
|
|
const struct iseq_catch_table * const ct = iseq->body->catch_table;
|
2015-01-15 21:54:22 -05:00
|
|
|
const int ct_size = ct->size;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i=0; i<ct_size; i++) {
|
|
|
|
const struct iseq_catch_table_entry * const entry = &ct->entries[i];;
|
|
|
|
|
|
|
|
if (entry->type == CATCH_TYPE_BREAK && entry->start < epc && entry->end >= epc) {
|
|
|
|
if (entry->cont == epc) { /* found! */
|
|
|
|
is_orphan = 0;
|
2012-10-14 15:58:59 -04:00
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
2015-01-15 21:54:22 -05:00
|
|
|
break;
|
2012-10-14 15:58:59 -04:00
|
|
|
}
|
2007-06-24 13:19:22 -04:00
|
|
|
|
2015-01-15 21:54:22 -05:00
|
|
|
escape_cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(escape_cfp);
|
2011-03-31 05:07:42 -04:00
|
|
|
}
|
2015-01-15 21:54:22 -05:00
|
|
|
}
|
2012-10-14 15:58:59 -04:00
|
|
|
|
2015-01-15 21:54:22 -05:00
|
|
|
if (is_orphan) {
|
|
|
|
rb_vm_localjump_error("break from proc-closure", throwobj, TAG_BREAK);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else if (state == TAG_RETRY) {
|
|
|
|
rb_num_t i;
|
|
|
|
VALUE *ep = VM_EP_PREV_EP(GET_EP());
|
|
|
|
|
|
|
|
for (i = 0; i < level; i++) {
|
|
|
|
ep = VM_EP_PREV_EP(ep);
|
|
|
|
}
|
2012-10-14 15:58:59 -04:00
|
|
|
|
2015-01-15 21:54:22 -05:00
|
|
|
escape_cfp = rb_vm_search_cf_from_ep(th, reg_cfp, ep);
|
|
|
|
}
|
|
|
|
else if (state == TAG_RETURN) {
|
|
|
|
VALUE *current_ep = GET_EP();
|
|
|
|
VALUE *target_lep = VM_EP_LEP(current_ep);
|
|
|
|
int in_class_frame = 0;
|
|
|
|
escape_cfp = reg_cfp;
|
2012-10-14 15:58:59 -04:00
|
|
|
|
2015-01-15 21:54:22 -05:00
|
|
|
while (escape_cfp < eocfp) {
|
|
|
|
VALUE *lep = VM_CF_LEP(escape_cfp);
|
2012-10-14 15:58:59 -04:00
|
|
|
|
2015-01-15 21:54:22 -05:00
|
|
|
if (!target_lep) {
|
|
|
|
target_lep = lep;
|
|
|
|
}
|
|
|
|
|
2015-07-21 18:52:59 -04:00
|
|
|
if (lep == target_lep && escape_cfp->iseq->body->type == ISEQ_TYPE_CLASS) {
|
2015-01-15 21:54:22 -05:00
|
|
|
in_class_frame = 1;
|
|
|
|
target_lep = 0;
|
|
|
|
}
|
2012-10-14 15:58:59 -04:00
|
|
|
|
2015-01-15 21:54:22 -05:00
|
|
|
if (lep == target_lep) {
|
|
|
|
if (VM_FRAME_TYPE(escape_cfp) == VM_FRAME_MAGIC_LAMBDA) {
|
|
|
|
if (in_class_frame) {
|
|
|
|
/* lambda {class A; ... return ...; end} */
|
2012-10-14 15:58:59 -04:00
|
|
|
goto valid_return;
|
|
|
|
}
|
2015-01-15 21:54:22 -05:00
|
|
|
else {
|
|
|
|
VALUE *tep = current_ep;
|
2012-10-14 15:58:59 -04:00
|
|
|
|
2015-01-15 21:54:22 -05:00
|
|
|
while (target_lep != tep) {
|
|
|
|
if (escape_cfp->ep == tep) {
|
|
|
|
/* in lambda */
|
|
|
|
goto valid_return;
|
|
|
|
}
|
|
|
|
tep = VM_EP_PREV_EP(tep);
|
|
|
|
}
|
|
|
|
}
|
2007-06-24 13:19:22 -04:00
|
|
|
}
|
2012-10-14 15:58:59 -04:00
|
|
|
}
|
2015-01-15 21:54:22 -05:00
|
|
|
|
2015-07-21 18:52:59 -04:00
|
|
|
if (escape_cfp->ep == target_lep && escape_cfp->iseq->body->type == ISEQ_TYPE_METHOD) {
|
2015-01-15 21:54:22 -05:00
|
|
|
goto valid_return;
|
2012-10-14 15:58:59 -04:00
|
|
|
}
|
2015-01-15 21:54:22 -05:00
|
|
|
|
|
|
|
escape_cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(escape_cfp);
|
2007-06-24 13:19:22 -04:00
|
|
|
}
|
2015-01-15 21:54:22 -05:00
|
|
|
rb_vm_localjump_error("unexpected return", throwobj, TAG_RETURN);
|
|
|
|
|
|
|
|
valid_return:;
|
|
|
|
/* do nothing */
|
2007-06-24 13:19:22 -04:00
|
|
|
}
|
|
|
|
else {
|
2015-01-15 21:54:22 -05:00
|
|
|
rb_bug("isns(throw): unsupport throw type");
|
|
|
|
}
|
2012-10-14 15:58:59 -04:00
|
|
|
|
2015-01-15 21:54:22 -05:00
|
|
|
th->state = state;
|
2015-03-11 08:49:27 -04:00
|
|
|
return (VALUE)THROW_DATA_NEW(throwobj, escape_cfp, state);
|
2015-01-15 21:54:22 -05:00
|
|
|
}
|
|
|
|
|
|
|
|
static VALUE
|
|
|
|
vm_throw(rb_thread_t *th, rb_control_frame_t *reg_cfp,
|
|
|
|
rb_num_t throw_state, VALUE throwobj)
|
|
|
|
{
|
2015-07-19 20:08:23 -04:00
|
|
|
const int state = (int)(throw_state & VM_THROW_STATE_MASK);
|
|
|
|
const int flag = (int)(throw_state & VM_THROW_NO_ESCAPE_FLAG);
|
|
|
|
const rb_num_t level = throw_state >> VM_THROW_LEVEL_SHIFT;
|
2015-01-15 21:54:22 -05:00
|
|
|
|
|
|
|
if (state != 0) {
|
|
|
|
return vm_throw_start(th, reg_cfp, state, flag, level, throwobj);
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
return vm_throw_continue(th, throwobj);
|
2007-06-24 13:19:22 -04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2012-10-14 15:58:59 -04:00
|
|
|
static inline void
|
|
|
|
vm_expandarray(rb_control_frame_t *cfp, VALUE ary, rb_num_t num, int flag)
|
2007-06-24 13:19:22 -04:00
|
|
|
{
|
2012-10-14 15:58:59 -04:00
|
|
|
int is_splat = flag & 0x01;
|
|
|
|
rb_num_t space_size = num + is_splat;
|
2013-07-24 05:57:49 -04:00
|
|
|
VALUE *base = cfp->sp;
|
|
|
|
const VALUE *ptr;
|
2012-10-14 15:58:59 -04:00
|
|
|
rb_num_t len;
|
2008-05-19 14:47:56 -04:00
|
|
|
|
2012-10-14 15:58:59 -04:00
|
|
|
if (!RB_TYPE_P(ary, T_ARRAY)) {
|
|
|
|
ary = rb_ary_to_ary(ary);
|
2011-09-20 05:09:00 -04:00
|
|
|
}
|
|
|
|
|
2012-10-14 15:58:59 -04:00
|
|
|
cfp->sp += space_size;
|
2008-05-19 14:47:56 -04:00
|
|
|
|
* include/ruby/ruby.h: rename RARRAY_RAWPTR() to RARRAY_CONST_PTR().
RARRAY_RAWPTR(ary) returns (const VALUE *) type pointer and
usecase of this macro is not acquire raw pointer, but acquire
read-only pointer. So we rename to better name.
RSTRUCT_RAWPTR() is also renamed to RSTRUCT_CONST_PTR()
(I expect that nobody use it).
* array.c, compile.c, cont.c, enumerator.c, gc.c, proc.c, random.c,
string.c, struct.c, thread.c, vm_eval.c, vm_insnhelper.c:
catch up this change.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@43043 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2013-09-25 04:24:34 -04:00
|
|
|
ptr = RARRAY_CONST_PTR(ary);
|
2012-10-14 15:58:59 -04:00
|
|
|
len = (rb_num_t)RARRAY_LEN(ary);
|
2008-05-19 14:47:56 -04:00
|
|
|
|
2012-10-14 15:58:59 -04:00
|
|
|
if (flag & 0x02) {
|
|
|
|
/* post: ..., nil ,ary[-1], ..., ary[0..-num] # top */
|
|
|
|
rb_num_t i = 0, j;
|
|
|
|
|
|
|
|
if (len < num) {
|
|
|
|
for (i=0; i<num-len; i++) {
|
|
|
|
*base++ = Qnil;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for (j=0; i<num; i++, j++) {
|
|
|
|
VALUE v = ptr[len - j - 1];
|
|
|
|
*base++ = v;
|
|
|
|
}
|
|
|
|
if (is_splat) {
|
|
|
|
*base = rb_ary_new4(len - j, ptr);
|
|
|
|
}
|
2007-06-24 13:19:22 -04:00
|
|
|
}
|
2012-10-14 15:58:59 -04:00
|
|
|
else {
|
|
|
|
/* normal: ary[num..-1], ary[num-2], ary[num-3], ..., ary[0] # top */
|
|
|
|
rb_num_t i;
|
|
|
|
VALUE *bptr = &base[space_size - 1];
|
2007-06-24 13:19:22 -04:00
|
|
|
|
2012-10-14 15:58:59 -04:00
|
|
|
for (i=0; i<num; i++) {
|
|
|
|
if (len <= i) {
|
|
|
|
for (; i<num; i++) {
|
|
|
|
*bptr-- = Qnil;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
*bptr-- = ptr[i];
|
|
|
|
}
|
|
|
|
if (is_splat) {
|
|
|
|
if (num > len) {
|
|
|
|
*bptr = rb_ary_new();
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
*bptr = rb_ary_new4(len - num, ptr + num);
|
|
|
|
}
|
2011-09-02 01:36:49 -04:00
|
|
|
}
|
2011-09-01 04:31:24 -04:00
|
|
|
}
|
2012-10-14 15:58:59 -04:00
|
|
|
RB_GC_GUARD(ary);
|
2011-09-01 04:31:24 -04:00
|
|
|
}
|
2009-09-06 03:40:24 -04:00
|
|
|
|
2012-10-14 15:58:59 -04:00
|
|
|
static VALUE vm_call_general(rb_thread_t *th, rb_control_frame_t *reg_cfp, rb_call_info_t *ci);
|
2009-09-06 03:40:24 -04:00
|
|
|
|
2012-10-14 15:58:59 -04:00
|
|
|
static void
|
|
|
|
vm_search_method(rb_call_info_t *ci, VALUE recv)
|
2009-07-13 00:44:20 -04:00
|
|
|
{
|
2012-10-14 15:58:59 -04:00
|
|
|
VALUE klass = CLASS_OF(recv);
|
2009-07-13 00:44:20 -04:00
|
|
|
|
2012-10-14 15:58:59 -04:00
|
|
|
#if OPT_INLINE_METHOD_CACHE
|
2013-12-09 06:00:23 -05:00
|
|
|
if (LIKELY(GET_GLOBAL_METHOD_STATE() == ci->method_state && RCLASS_SERIAL(klass) == ci->class_serial)) {
|
2012-10-14 15:58:59 -04:00
|
|
|
/* cache hit! */
|
2013-08-27 03:11:49 -04:00
|
|
|
return;
|
2009-07-13 00:44:20 -04:00
|
|
|
}
|
2013-08-27 03:11:49 -04:00
|
|
|
#endif
|
* class.c, compile.c, eval.c, gc.h, insns.def, internal.h, method.h,
variable.c, vm.c, vm_core.c, vm_insnhelper.c, vm_insnhelper.h,
vm_method.c: Implement class hierarchy method cache invalidation.
[ruby-core:55053] [Feature #8426] [GH-387]
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@42822 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2013-09-04 01:25:06 -04:00
|
|
|
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
ci->me = rb_callable_method_entry(klass, ci->mid);
|
|
|
|
VM_ASSERT(callable_method_entry_p(ci->me));
|
* class.c, compile.c, eval.c, gc.h, insns.def, internal.h, method.h,
variable.c, vm.c, vm_core.c, vm_insnhelper.c, vm_insnhelper.h,
vm_method.c: Implement class hierarchy method cache invalidation.
[ruby-core:55053] [Feature #8426] [GH-387]
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@42822 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2013-09-04 01:25:06 -04:00
|
|
|
ci->call = vm_call_general;
|
2013-08-27 03:11:49 -04:00
|
|
|
#if OPT_INLINE_METHOD_CACHE
|
2013-12-09 05:51:02 -05:00
|
|
|
ci->method_state = GET_GLOBAL_METHOD_STATE();
|
2013-12-09 06:00:23 -05:00
|
|
|
ci->class_serial = RCLASS_SERIAL(klass);
|
2009-07-13 00:44:20 -04:00
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
2012-10-14 15:58:59 -04:00
|
|
|
static inline int
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
check_cfunc(const rb_callable_method_entry_t *me, VALUE (*func)())
|
2009-09-06 03:40:24 -04:00
|
|
|
{
|
2012-10-14 15:58:59 -04:00
|
|
|
if (me && me->def->type == VM_METHOD_TYPE_CFUNC &&
|
|
|
|
me->def->body.cfunc.func == func) {
|
|
|
|
return 1;
|
2009-09-06 03:40:24 -04:00
|
|
|
}
|
2012-10-14 15:58:59 -04:00
|
|
|
else {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
}
|
* array.c, gc.c, hash.c, object.c, string.c, struct.c,
transcode.c, variable.c, vm.c, vm_insnhelper.c, vm_method.c:
replace calls to rb_error_frozen() with rb_check_frozen(). a
patch from Run Paint Run Run at [ruby-core:32014]
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@29583 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2010-10-24 04:14:05 -04:00
|
|
|
|
2012-10-14 15:58:59 -04:00
|
|
|
static
|
|
|
|
#ifndef NO_BIG_INLINE
|
|
|
|
inline
|
|
|
|
#endif
|
|
|
|
VALUE
|
|
|
|
opt_eq_func(VALUE recv, VALUE obj, CALL_INFO ci)
|
|
|
|
{
|
|
|
|
if (FIXNUM_2_P(recv, obj) &&
|
|
|
|
BASIC_OP_UNREDEFINED_P(BOP_EQ, FIXNUM_REDEFINED_OP_FLAG)) {
|
|
|
|
return (recv == obj) ? Qtrue : Qfalse;
|
|
|
|
}
|
|
|
|
else if (FLONUM_2_P(recv, obj) &&
|
|
|
|
BASIC_OP_UNREDEFINED_P(BOP_EQ, FLOAT_REDEFINED_OP_FLAG)) {
|
|
|
|
return (recv == obj) ? Qtrue : Qfalse;
|
|
|
|
}
|
|
|
|
else if (!SPECIAL_CONST_P(recv) && !SPECIAL_CONST_P(obj)) {
|
vm_insnhelper.h: RBASIC_CLASS
* vm_insnhelper.c (opt_eq_func): use RBASIC_CLASS() instead of HEAP_CLASS_OF().
* insns.def (opt_plus, opt_minus, opt_mult, opt_div, opt_mod, opt_lt),
(opt_gt, opt_ltlt, opt_aref, opt_aset, opt_length, opt_size),
(opt_empty_p, opt_succ): ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@42702 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2013-08-27 03:11:10 -04:00
|
|
|
if (RBASIC_CLASS(recv) == rb_cFloat &&
|
|
|
|
RBASIC_CLASS(obj) == rb_cFloat &&
|
2012-10-14 15:58:59 -04:00
|
|
|
BASIC_OP_UNREDEFINED_P(BOP_EQ, FLOAT_REDEFINED_OP_FLAG)) {
|
|
|
|
double a = RFLOAT_VALUE(recv);
|
|
|
|
double b = RFLOAT_VALUE(obj);
|
2009-09-06 03:40:24 -04:00
|
|
|
|
2012-10-14 15:58:59 -04:00
|
|
|
if (isnan(a) || isnan(b)) {
|
|
|
|
return Qfalse;
|
2009-09-06 03:40:24 -04:00
|
|
|
}
|
2012-10-14 15:58:59 -04:00
|
|
|
return (a == b) ? Qtrue : Qfalse;
|
2009-09-06 03:40:24 -04:00
|
|
|
}
|
vm_insnhelper.h: RBASIC_CLASS
* vm_insnhelper.c (opt_eq_func): use RBASIC_CLASS() instead of HEAP_CLASS_OF().
* insns.def (opt_plus, opt_minus, opt_mult, opt_div, opt_mod, opt_lt),
(opt_gt, opt_ltlt, opt_aref, opt_aset, opt_length, opt_size),
(opt_empty_p, opt_succ): ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@42702 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2013-08-27 03:11:10 -04:00
|
|
|
else if (RBASIC_CLASS(recv) == rb_cString &&
|
|
|
|
RBASIC_CLASS(obj) == rb_cString &&
|
2012-10-14 15:58:59 -04:00
|
|
|
BASIC_OP_UNREDEFINED_P(BOP_EQ, STRING_REDEFINED_OP_FLAG)) {
|
|
|
|
return rb_str_equal(recv, obj);
|
|
|
|
}
|
|
|
|
}
|
2009-09-06 03:40:24 -04:00
|
|
|
|
2012-10-14 15:58:59 -04:00
|
|
|
{
|
|
|
|
vm_search_method(ci, recv);
|
|
|
|
|
|
|
|
if (check_cfunc(ci->me, rb_obj_equal)) {
|
|
|
|
return recv == obj ? Qtrue : Qfalse;
|
2009-09-06 03:40:24 -04:00
|
|
|
}
|
|
|
|
}
|
2012-10-14 15:58:59 -04:00
|
|
|
|
|
|
|
return Qundef;
|
2009-09-06 03:40:24 -04:00
|
|
|
}
|
|
|
|
|
2013-08-27 03:46:08 -04:00
|
|
|
VALUE
|
|
|
|
rb_equal_opt(VALUE obj1, VALUE obj2)
|
|
|
|
{
|
|
|
|
rb_call_info_t ci;
|
|
|
|
ci.mid = idEq;
|
2013-12-09 05:51:02 -05:00
|
|
|
ci.method_state = 0;
|
2013-08-27 03:46:08 -04:00
|
|
|
ci.me = NULL;
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
ci.class_serial = 0;
|
2013-08-27 03:46:08 -04:00
|
|
|
return opt_eq_func(obj1, obj2, &ci);
|
|
|
|
}
|
|
|
|
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
static VALUE vm_call0(rb_thread_t*, VALUE, ID, int, const VALUE*, const rb_callable_method_entry_t *);
|
2013-09-07 02:44:31 -04:00
|
|
|
|
2012-10-14 15:58:59 -04:00
|
|
|
static VALUE
|
|
|
|
check_match(VALUE pattern, VALUE target, enum vm_check_match_type type)
|
|
|
|
{
|
|
|
|
switch (type) {
|
|
|
|
case VM_CHECKMATCH_TYPE_WHEN:
|
|
|
|
return pattern;
|
2013-09-07 02:44:31 -04:00
|
|
|
case VM_CHECKMATCH_TYPE_RESCUE:
|
2012-10-14 15:58:59 -04:00
|
|
|
if (!rb_obj_is_kind_of(pattern, rb_cModule)) {
|
|
|
|
rb_raise(rb_eTypeError, "class or module required for rescue clause");
|
|
|
|
}
|
2013-09-07 02:44:31 -04:00
|
|
|
/* fall through */
|
|
|
|
case VM_CHECKMATCH_TYPE_CASE: {
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
const rb_callable_method_entry_t *me = rb_callable_method_entry_with_refinements(CLASS_OF(pattern), idEqq);
|
2013-11-29 03:57:02 -05:00
|
|
|
if (me) {
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
return vm_call0(GET_THREAD(), pattern, idEqq, 1, &target, me);
|
2013-11-29 03:57:02 -05:00
|
|
|
}
|
|
|
|
else {
|
2014-02-08 04:20:33 -05:00
|
|
|
/* fallback to funcall (e.g. method_missing) */
|
|
|
|
return rb_funcall2(pattern, idEqq, 1, &target);
|
2013-11-29 03:57:02 -05:00
|
|
|
}
|
2012-10-14 15:58:59 -04:00
|
|
|
}
|
|
|
|
default:
|
|
|
|
rb_bug("check_match: unreachable");
|
|
|
|
}
|
|
|
|
}
|
2007-08-06 07:36:30 -04:00
|
|
|
|
|
|
|
|
2012-10-14 15:58:59 -04:00
|
|
|
#if defined(_MSC_VER) && _MSC_VER < 1300
|
|
|
|
#define CHECK_CMP_NAN(a, b) if (isnan(a) || isnan(b)) return Qfalse;
|
|
|
|
#else
|
|
|
|
#define CHECK_CMP_NAN(a, b) /* do nothing */
|
|
|
|
#endif
|
2007-08-06 07:36:30 -04:00
|
|
|
|
2012-10-14 15:58:59 -04:00
|
|
|
static inline VALUE
|
|
|
|
double_cmp_lt(double a, double b)
|
|
|
|
{
|
|
|
|
CHECK_CMP_NAN(a, b);
|
|
|
|
return a < b ? Qtrue : Qfalse;
|
|
|
|
}
|
2007-08-06 07:36:30 -04:00
|
|
|
|
2012-10-14 15:58:59 -04:00
|
|
|
static inline VALUE
|
|
|
|
double_cmp_le(double a, double b)
|
|
|
|
{
|
|
|
|
CHECK_CMP_NAN(a, b);
|
|
|
|
return a <= b ? Qtrue : Qfalse;
|
|
|
|
}
|
2007-08-06 07:36:30 -04:00
|
|
|
|
2012-10-14 15:58:59 -04:00
|
|
|
static inline VALUE
|
|
|
|
double_cmp_gt(double a, double b)
|
|
|
|
{
|
|
|
|
CHECK_CMP_NAN(a, b);
|
|
|
|
return a > b ? Qtrue : Qfalse;
|
|
|
|
}
|
2012-06-10 23:14:59 -04:00
|
|
|
|
2012-10-14 15:58:59 -04:00
|
|
|
static inline VALUE
|
|
|
|
double_cmp_ge(double a, double b)
|
|
|
|
{
|
|
|
|
CHECK_CMP_NAN(a, b);
|
|
|
|
return a >= b ? Qtrue : Qfalse;
|
|
|
|
}
|
2012-06-10 23:14:59 -04:00
|
|
|
|
2012-10-14 15:58:59 -04:00
|
|
|
static VALUE *
|
|
|
|
vm_base_ptr(rb_control_frame_t *cfp)
|
|
|
|
{
|
|
|
|
rb_control_frame_t *prev_cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp);
|
2015-07-21 18:52:59 -04:00
|
|
|
VALUE *bp = prev_cfp->sp + cfp->iseq->body->local_size + 1;
|
2010-05-09 14:21:39 -04:00
|
|
|
|
2015-07-21 18:52:59 -04:00
|
|
|
if (cfp->iseq->body->type == ISEQ_TYPE_METHOD) {
|
2012-10-14 15:58:59 -04:00
|
|
|
/* adjust `self' */
|
|
|
|
bp += 1;
|
|
|
|
}
|
2008-06-17 15:27:24 -04:00
|
|
|
|
2012-10-14 15:58:59 -04:00
|
|
|
#if VM_DEBUG_BP_CHECK
|
|
|
|
if (bp != cfp->bp_check) {
|
|
|
|
fprintf(stderr, "bp_check: %ld, bp: %ld\n",
|
|
|
|
(long)(cfp->bp_check - GET_THREAD()->stack),
|
|
|
|
(long)(bp - GET_THREAD()->stack));
|
|
|
|
rb_bug("vm_base_ptr: unreachable");
|
|
|
|
}
|
|
|
|
#endif
|
2011-07-10 05:04:44 -04:00
|
|
|
|
2012-10-14 15:58:59 -04:00
|
|
|
return bp;
|
|
|
|
}
|
2008-06-17 15:27:24 -04:00
|
|
|
|
2012-10-14 15:58:59 -04:00
|
|
|
/* method call processes with call_info */
|
2008-06-17 15:27:24 -04:00
|
|
|
|
* rewrite method/block parameter fitting logic to optimize
keyword arguments/parameters and a splat argument.
[Feature #10440] (Details are described in this ticket)
Most of complex part is moved to vm_args.c.
Now, ISeq#to_a does not catch up new instruction format.
* vm_core.h: change iseq data structures.
* introduce rb_call_info_kw_arg_t to represent keyword arguments.
* add rb_call_info_t::kw_arg.
* rename rb_iseq_t::arg_post_len to rb_iseq_t::arg_post_num.
* rename rb_iseq_t::arg_keywords to arg_keyword_num.
* rename rb_iseq_t::arg_keyword to rb_iseq_t::arg_keyword_bits.
to represent keyword bitmap parameter index.
This bitmap parameter shows that which keyword parameters are given
or not given (0 for given).
It is refered by `checkkeyword' instruction described bellow.
* rename rb_iseq_t::arg_keyword_check to rb_iseq_t::arg_keyword_rest
to represent keyword rest parameter index.
* add rb_iseq_t::arg_keyword_default_values to represent default
keyword values.
* rename VM_CALL_ARGS_SKIP_SETUP to VM_CALL_ARGS_SIMPLE
to represent
(ci->flag & (SPLAT|BLOCKARG)) &&
ci->blockiseq == NULL &&
ci->kw_arg == NULL.
* vm_insnhelper.c, vm_args.c: rewrite with refactoring.
* rewrite splat argument code.
* rewrite keyword arguments/parameters code.
* merge method and block parameter fitting code into one code base.
* vm.c, vm_eval.c: catch up these changes.
* compile.c (new_callinfo): callinfo requires kw_arg parameter.
* compile.c (compile_array_): check the last argument Hash object or
not. If Hash object and all keys are Symbol literals, they are
compiled to keyword arguments.
* insns.def (checkkeyword): add new instruction.
This instruction check the availability of corresponding keyword.
For example, a method "def foo k1: 'v1'; end" is cimpiled to the
following instructions.
0000 checkkeyword 2, 0 # check k1 is given.
0003 branchif 9 # if given, jump to address #9
0005 putstring "v1"
0007 setlocal_OP__WC__0 3 # k1 = 'v1'
0009 trace 8
0011 putnil
0012 trace 16
0014 leave
* insns.def (opt_send_simple): removed and add new instruction
"opt_send_without_block".
* parse.y (new_args_tail_gen): reorder variables.
Before this patch, a method "def foo(k1: 1, kr1:, k2: 2, **krest, &b)"
has parameter variables "k1, kr1, k2, &b, internal_id, krest",
but this patch reorders to "kr1, k1, k2, internal_id, krest, &b".
(locate a block variable at last)
* parse.y (vtable_pop): added.
This function remove latest `n' variables from vtable.
* iseq.c: catch up iseq data changes.
* proc.c: ditto.
* class.c (keyword_error): export as rb_keyword_error().
* common.mk: depend vm_args.c for vm.o.
* hash.c (rb_hash_has_key): export.
* internal.h: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@48239 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2014-11-02 13:02:55 -05:00
|
|
|
#include "vm_args.c"
|
2012-11-13 03:34:43 -05:00
|
|
|
|
* rewrite method/block parameter fitting logic to optimize
keyword arguments/parameters and a splat argument.
[Feature #10440] (Details are described in this ticket)
Most of complex part is moved to vm_args.c.
Now, ISeq#to_a does not catch up new instruction format.
* vm_core.h: change iseq data structures.
* introduce rb_call_info_kw_arg_t to represent keyword arguments.
* add rb_call_info_t::kw_arg.
* rename rb_iseq_t::arg_post_len to rb_iseq_t::arg_post_num.
* rename rb_iseq_t::arg_keywords to arg_keyword_num.
* rename rb_iseq_t::arg_keyword to rb_iseq_t::arg_keyword_bits.
to represent keyword bitmap parameter index.
This bitmap parameter shows that which keyword parameters are given
or not given (0 for given).
It is refered by `checkkeyword' instruction described bellow.
* rename rb_iseq_t::arg_keyword_check to rb_iseq_t::arg_keyword_rest
to represent keyword rest parameter index.
* add rb_iseq_t::arg_keyword_default_values to represent default
keyword values.
* rename VM_CALL_ARGS_SKIP_SETUP to VM_CALL_ARGS_SIMPLE
to represent
(ci->flag & (SPLAT|BLOCKARG)) &&
ci->blockiseq == NULL &&
ci->kw_arg == NULL.
* vm_insnhelper.c, vm_args.c: rewrite with refactoring.
* rewrite splat argument code.
* rewrite keyword arguments/parameters code.
* merge method and block parameter fitting code into one code base.
* vm.c, vm_eval.c: catch up these changes.
* compile.c (new_callinfo): callinfo requires kw_arg parameter.
* compile.c (compile_array_): check the last argument Hash object or
not. If Hash object and all keys are Symbol literals, they are
compiled to keyword arguments.
* insns.def (checkkeyword): add new instruction.
This instruction check the availability of corresponding keyword.
For example, a method "def foo k1: 'v1'; end" is cimpiled to the
following instructions.
0000 checkkeyword 2, 0 # check k1 is given.
0003 branchif 9 # if given, jump to address #9
0005 putstring "v1"
0007 setlocal_OP__WC__0 3 # k1 = 'v1'
0009 trace 8
0011 putnil
0012 trace 16
0014 leave
* insns.def (opt_send_simple): removed and add new instruction
"opt_send_without_block".
* parse.y (new_args_tail_gen): reorder variables.
Before this patch, a method "def foo(k1: 1, kr1:, k2: 2, **krest, &b)"
has parameter variables "k1, kr1, k2, &b, internal_id, krest",
but this patch reorders to "kr1, k1, k2, internal_id, krest, &b".
(locate a block variable at last)
* parse.y (vtable_pop): added.
This function remove latest `n' variables from vtable.
* iseq.c: catch up iseq data changes.
* proc.c: ditto.
* class.c (keyword_error): export as rb_keyword_error().
* common.mk: depend vm_args.c for vm.o.
* hash.c (rb_hash_has_key): export.
* internal.h: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@48239 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2014-11-02 13:02:55 -05:00
|
|
|
static VALUE vm_call_iseq_setup_2(rb_thread_t *th, rb_control_frame_t *cfp, rb_call_info_t *ci);
|
|
|
|
static inline VALUE vm_call_iseq_setup_normal(rb_thread_t *th, rb_control_frame_t *cfp, rb_call_info_t *ci);
|
|
|
|
static inline VALUE vm_call_iseq_setup_tailcall(rb_thread_t *th, rb_control_frame_t *cfp, rb_call_info_t *ci);
|
2012-10-14 15:58:59 -04:00
|
|
|
|
|
|
|
|
* rewrite method/block parameter fitting logic to optimize
keyword arguments/parameters and a splat argument.
[Feature #10440] (Details are described in this ticket)
Most of complex part is moved to vm_args.c.
Now, ISeq#to_a does not catch up new instruction format.
* vm_core.h: change iseq data structures.
* introduce rb_call_info_kw_arg_t to represent keyword arguments.
* add rb_call_info_t::kw_arg.
* rename rb_iseq_t::arg_post_len to rb_iseq_t::arg_post_num.
* rename rb_iseq_t::arg_keywords to arg_keyword_num.
* rename rb_iseq_t::arg_keyword to rb_iseq_t::arg_keyword_bits.
to represent keyword bitmap parameter index.
This bitmap parameter shows that which keyword parameters are given
or not given (0 for given).
It is refered by `checkkeyword' instruction described bellow.
* rename rb_iseq_t::arg_keyword_check to rb_iseq_t::arg_keyword_rest
to represent keyword rest parameter index.
* add rb_iseq_t::arg_keyword_default_values to represent default
keyword values.
* rename VM_CALL_ARGS_SKIP_SETUP to VM_CALL_ARGS_SIMPLE
to represent
(ci->flag & (SPLAT|BLOCKARG)) &&
ci->blockiseq == NULL &&
ci->kw_arg == NULL.
* vm_insnhelper.c, vm_args.c: rewrite with refactoring.
* rewrite splat argument code.
* rewrite keyword arguments/parameters code.
* merge method and block parameter fitting code into one code base.
* vm.c, vm_eval.c: catch up these changes.
* compile.c (new_callinfo): callinfo requires kw_arg parameter.
* compile.c (compile_array_): check the last argument Hash object or
not. If Hash object and all keys are Symbol literals, they are
compiled to keyword arguments.
* insns.def (checkkeyword): add new instruction.
This instruction check the availability of corresponding keyword.
For example, a method "def foo k1: 'v1'; end" is cimpiled to the
following instructions.
0000 checkkeyword 2, 0 # check k1 is given.
0003 branchif 9 # if given, jump to address #9
0005 putstring "v1"
0007 setlocal_OP__WC__0 3 # k1 = 'v1'
0009 trace 8
0011 putnil
0012 trace 16
0014 leave
* insns.def (opt_send_simple): removed and add new instruction
"opt_send_without_block".
* parse.y (new_args_tail_gen): reorder variables.
Before this patch, a method "def foo(k1: 1, kr1:, k2: 2, **krest, &b)"
has parameter variables "k1, kr1, k2, &b, internal_id, krest",
but this patch reorders to "kr1, k1, k2, internal_id, krest, &b".
(locate a block variable at last)
* parse.y (vtable_pop): added.
This function remove latest `n' variables from vtable.
* iseq.c: catch up iseq data changes.
* proc.c: ditto.
* class.c (keyword_error): export as rb_keyword_error().
* common.mk: depend vm_args.c for vm.o.
* hash.c (rb_hash_has_key): export.
* internal.h: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@48239 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2014-11-02 13:02:55 -05:00
|
|
|
static inline VALUE
|
|
|
|
vm_callee_setup_block_arg_arg0_check(VALUE *argv)
|
|
|
|
{
|
|
|
|
VALUE ary, arg0 = argv[0];
|
|
|
|
ary = rb_check_array_type(arg0);
|
|
|
|
argv[0] = arg0;
|
|
|
|
return ary;
|
2007-08-06 07:36:30 -04:00
|
|
|
}
|
|
|
|
|
2012-12-29 21:06:28 -05:00
|
|
|
static inline int
|
* rewrite method/block parameter fitting logic to optimize
keyword arguments/parameters and a splat argument.
[Feature #10440] (Details are described in this ticket)
Most of complex part is moved to vm_args.c.
Now, ISeq#to_a does not catch up new instruction format.
* vm_core.h: change iseq data structures.
* introduce rb_call_info_kw_arg_t to represent keyword arguments.
* add rb_call_info_t::kw_arg.
* rename rb_iseq_t::arg_post_len to rb_iseq_t::arg_post_num.
* rename rb_iseq_t::arg_keywords to arg_keyword_num.
* rename rb_iseq_t::arg_keyword to rb_iseq_t::arg_keyword_bits.
to represent keyword bitmap parameter index.
This bitmap parameter shows that which keyword parameters are given
or not given (0 for given).
It is refered by `checkkeyword' instruction described bellow.
* rename rb_iseq_t::arg_keyword_check to rb_iseq_t::arg_keyword_rest
to represent keyword rest parameter index.
* add rb_iseq_t::arg_keyword_default_values to represent default
keyword values.
* rename VM_CALL_ARGS_SKIP_SETUP to VM_CALL_ARGS_SIMPLE
to represent
(ci->flag & (SPLAT|BLOCKARG)) &&
ci->blockiseq == NULL &&
ci->kw_arg == NULL.
* vm_insnhelper.c, vm_args.c: rewrite with refactoring.
* rewrite splat argument code.
* rewrite keyword arguments/parameters code.
* merge method and block parameter fitting code into one code base.
* vm.c, vm_eval.c: catch up these changes.
* compile.c (new_callinfo): callinfo requires kw_arg parameter.
* compile.c (compile_array_): check the last argument Hash object or
not. If Hash object and all keys are Symbol literals, they are
compiled to keyword arguments.
* insns.def (checkkeyword): add new instruction.
This instruction check the availability of corresponding keyword.
For example, a method "def foo k1: 'v1'; end" is cimpiled to the
following instructions.
0000 checkkeyword 2, 0 # check k1 is given.
0003 branchif 9 # if given, jump to address #9
0005 putstring "v1"
0007 setlocal_OP__WC__0 3 # k1 = 'v1'
0009 trace 8
0011 putnil
0012 trace 16
0014 leave
* insns.def (opt_send_simple): removed and add new instruction
"opt_send_without_block".
* parse.y (new_args_tail_gen): reorder variables.
Before this patch, a method "def foo(k1: 1, kr1:, k2: 2, **krest, &b)"
has parameter variables "k1, kr1, k2, &b, internal_id, krest",
but this patch reorders to "kr1, k1, k2, internal_id, krest, &b".
(locate a block variable at last)
* parse.y (vtable_pop): added.
This function remove latest `n' variables from vtable.
* iseq.c: catch up iseq data changes.
* proc.c: ditto.
* class.c (keyword_error): export as rb_keyword_error().
* common.mk: depend vm_args.c for vm.o.
* hash.c (rb_hash_has_key): export.
* internal.h: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@48239 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2014-11-02 13:02:55 -05:00
|
|
|
vm_callee_setup_block_arg_arg0_splat(rb_control_frame_t *cfp, const rb_iseq_t *iseq, VALUE *argv, VALUE ary)
|
2012-12-29 21:06:28 -05:00
|
|
|
{
|
* rewrite method/block parameter fitting logic to optimize
keyword arguments/parameters and a splat argument.
[Feature #10440] (Details are described in this ticket)
Most of complex part is moved to vm_args.c.
Now, ISeq#to_a does not catch up new instruction format.
* vm_core.h: change iseq data structures.
* introduce rb_call_info_kw_arg_t to represent keyword arguments.
* add rb_call_info_t::kw_arg.
* rename rb_iseq_t::arg_post_len to rb_iseq_t::arg_post_num.
* rename rb_iseq_t::arg_keywords to arg_keyword_num.
* rename rb_iseq_t::arg_keyword to rb_iseq_t::arg_keyword_bits.
to represent keyword bitmap parameter index.
This bitmap parameter shows that which keyword parameters are given
or not given (0 for given).
It is refered by `checkkeyword' instruction described bellow.
* rename rb_iseq_t::arg_keyword_check to rb_iseq_t::arg_keyword_rest
to represent keyword rest parameter index.
* add rb_iseq_t::arg_keyword_default_values to represent default
keyword values.
* rename VM_CALL_ARGS_SKIP_SETUP to VM_CALL_ARGS_SIMPLE
to represent
(ci->flag & (SPLAT|BLOCKARG)) &&
ci->blockiseq == NULL &&
ci->kw_arg == NULL.
* vm_insnhelper.c, vm_args.c: rewrite with refactoring.
* rewrite splat argument code.
* rewrite keyword arguments/parameters code.
* merge method and block parameter fitting code into one code base.
* vm.c, vm_eval.c: catch up these changes.
* compile.c (new_callinfo): callinfo requires kw_arg parameter.
* compile.c (compile_array_): check the last argument Hash object or
not. If Hash object and all keys are Symbol literals, they are
compiled to keyword arguments.
* insns.def (checkkeyword): add new instruction.
This instruction check the availability of corresponding keyword.
For example, a method "def foo k1: 'v1'; end" is cimpiled to the
following instructions.
0000 checkkeyword 2, 0 # check k1 is given.
0003 branchif 9 # if given, jump to address #9
0005 putstring "v1"
0007 setlocal_OP__WC__0 3 # k1 = 'v1'
0009 trace 8
0011 putnil
0012 trace 16
0014 leave
* insns.def (opt_send_simple): removed and add new instruction
"opt_send_without_block".
* parse.y (new_args_tail_gen): reorder variables.
Before this patch, a method "def foo(k1: 1, kr1:, k2: 2, **krest, &b)"
has parameter variables "k1, kr1, k2, &b, internal_id, krest",
but this patch reorders to "kr1, k1, k2, internal_id, krest, &b".
(locate a block variable at last)
* parse.y (vtable_pop): added.
This function remove latest `n' variables from vtable.
* iseq.c: catch up iseq data changes.
* proc.c: ditto.
* class.c (keyword_error): export as rb_keyword_error().
* common.mk: depend vm_args.c for vm.o.
* hash.c (rb_hash_has_key): export.
* internal.h: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@48239 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2014-11-02 13:02:55 -05:00
|
|
|
int i;
|
|
|
|
long len = RARRAY_LEN(ary);
|
2012-12-29 21:06:28 -05:00
|
|
|
|
2015-07-21 18:52:59 -04:00
|
|
|
CHECK_VM_STACK_OVERFLOW(cfp, iseq->body->param.lead_num);
|
2014-07-10 02:02:54 -04:00
|
|
|
|
2015-07-21 18:52:59 -04:00
|
|
|
for (i=0; i<len && i<iseq->body->param.lead_num; i++) {
|
* rewrite method/block parameter fitting logic to optimize
keyword arguments/parameters and a splat argument.
[Feature #10440] (Details are described in this ticket)
Most of complex part is moved to vm_args.c.
Now, ISeq#to_a does not catch up new instruction format.
* vm_core.h: change iseq data structures.
* introduce rb_call_info_kw_arg_t to represent keyword arguments.
* add rb_call_info_t::kw_arg.
* rename rb_iseq_t::arg_post_len to rb_iseq_t::arg_post_num.
* rename rb_iseq_t::arg_keywords to arg_keyword_num.
* rename rb_iseq_t::arg_keyword to rb_iseq_t::arg_keyword_bits.
to represent keyword bitmap parameter index.
This bitmap parameter shows that which keyword parameters are given
or not given (0 for given).
It is refered by `checkkeyword' instruction described bellow.
* rename rb_iseq_t::arg_keyword_check to rb_iseq_t::arg_keyword_rest
to represent keyword rest parameter index.
* add rb_iseq_t::arg_keyword_default_values to represent default
keyword values.
* rename VM_CALL_ARGS_SKIP_SETUP to VM_CALL_ARGS_SIMPLE
to represent
(ci->flag & (SPLAT|BLOCKARG)) &&
ci->blockiseq == NULL &&
ci->kw_arg == NULL.
* vm_insnhelper.c, vm_args.c: rewrite with refactoring.
* rewrite splat argument code.
* rewrite keyword arguments/parameters code.
* merge method and block parameter fitting code into one code base.
* vm.c, vm_eval.c: catch up these changes.
* compile.c (new_callinfo): callinfo requires kw_arg parameter.
* compile.c (compile_array_): check the last argument Hash object or
not. If Hash object and all keys are Symbol literals, they are
compiled to keyword arguments.
* insns.def (checkkeyword): add new instruction.
This instruction check the availability of corresponding keyword.
For example, a method "def foo k1: 'v1'; end" is cimpiled to the
following instructions.
0000 checkkeyword 2, 0 # check k1 is given.
0003 branchif 9 # if given, jump to address #9
0005 putstring "v1"
0007 setlocal_OP__WC__0 3 # k1 = 'v1'
0009 trace 8
0011 putnil
0012 trace 16
0014 leave
* insns.def (opt_send_simple): removed and add new instruction
"opt_send_without_block".
* parse.y (new_args_tail_gen): reorder variables.
Before this patch, a method "def foo(k1: 1, kr1:, k2: 2, **krest, &b)"
has parameter variables "k1, kr1, k2, &b, internal_id, krest",
but this patch reorders to "kr1, k1, k2, internal_id, krest, &b".
(locate a block variable at last)
* parse.y (vtable_pop): added.
This function remove latest `n' variables from vtable.
* iseq.c: catch up iseq data changes.
* proc.c: ditto.
* class.c (keyword_error): export as rb_keyword_error().
* common.mk: depend vm_args.c for vm.o.
* hash.c (rb_hash_has_key): export.
* internal.h: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@48239 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2014-11-02 13:02:55 -05:00
|
|
|
argv[i] = RARRAY_AREF(ary, i);
|
2012-12-29 21:06:28 -05:00
|
|
|
}
|
|
|
|
|
* rewrite method/block parameter fitting logic to optimize
keyword arguments/parameters and a splat argument.
[Feature #10440] (Details are described in this ticket)
Most of complex part is moved to vm_args.c.
Now, ISeq#to_a does not catch up new instruction format.
* vm_core.h: change iseq data structures.
* introduce rb_call_info_kw_arg_t to represent keyword arguments.
* add rb_call_info_t::kw_arg.
* rename rb_iseq_t::arg_post_len to rb_iseq_t::arg_post_num.
* rename rb_iseq_t::arg_keywords to arg_keyword_num.
* rename rb_iseq_t::arg_keyword to rb_iseq_t::arg_keyword_bits.
to represent keyword bitmap parameter index.
This bitmap parameter shows that which keyword parameters are given
or not given (0 for given).
It is refered by `checkkeyword' instruction described bellow.
* rename rb_iseq_t::arg_keyword_check to rb_iseq_t::arg_keyword_rest
to represent keyword rest parameter index.
* add rb_iseq_t::arg_keyword_default_values to represent default
keyword values.
* rename VM_CALL_ARGS_SKIP_SETUP to VM_CALL_ARGS_SIMPLE
to represent
(ci->flag & (SPLAT|BLOCKARG)) &&
ci->blockiseq == NULL &&
ci->kw_arg == NULL.
* vm_insnhelper.c, vm_args.c: rewrite with refactoring.
* rewrite splat argument code.
* rewrite keyword arguments/parameters code.
* merge method and block parameter fitting code into one code base.
* vm.c, vm_eval.c: catch up these changes.
* compile.c (new_callinfo): callinfo requires kw_arg parameter.
* compile.c (compile_array_): check the last argument Hash object or
not. If Hash object and all keys are Symbol literals, they are
compiled to keyword arguments.
* insns.def (checkkeyword): add new instruction.
This instruction check the availability of corresponding keyword.
For example, a method "def foo k1: 'v1'; end" is cimpiled to the
following instructions.
0000 checkkeyword 2, 0 # check k1 is given.
0003 branchif 9 # if given, jump to address #9
0005 putstring "v1"
0007 setlocal_OP__WC__0 3 # k1 = 'v1'
0009 trace 8
0011 putnil
0012 trace 16
0014 leave
* insns.def (opt_send_simple): removed and add new instruction
"opt_send_without_block".
* parse.y (new_args_tail_gen): reorder variables.
Before this patch, a method "def foo(k1: 1, kr1:, k2: 2, **krest, &b)"
has parameter variables "k1, kr1, k2, &b, internal_id, krest",
but this patch reorders to "kr1, k1, k2, internal_id, krest, &b".
(locate a block variable at last)
* parse.y (vtable_pop): added.
This function remove latest `n' variables from vtable.
* iseq.c: catch up iseq data changes.
* proc.c: ditto.
* class.c (keyword_error): export as rb_keyword_error().
* common.mk: depend vm_args.c for vm.o.
* hash.c (rb_hash_has_key): export.
* internal.h: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@48239 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2014-11-02 13:02:55 -05:00
|
|
|
return i;
|
2012-12-29 21:06:28 -05:00
|
|
|
}
|
|
|
|
|
2014-11-02 18:14:21 -05:00
|
|
|
static inline int
|
|
|
|
simple_iseq_p(const rb_iseq_t *iseq)
|
|
|
|
{
|
2015-07-21 18:52:59 -04:00
|
|
|
return iseq->body->param.flags.has_opt == FALSE &&
|
|
|
|
iseq->body->param.flags.has_rest == FALSE &&
|
|
|
|
iseq->body->param.flags.has_post == FALSE &&
|
|
|
|
iseq->body->param.flags.has_kw == FALSE &&
|
|
|
|
iseq->body->param.flags.has_kwrest == FALSE &&
|
|
|
|
iseq->body->param.flags.has_block == FALSE;
|
2014-11-02 18:14:21 -05:00
|
|
|
}
|
|
|
|
|
* rewrite method/block parameter fitting logic to optimize
keyword arguments/parameters and a splat argument.
[Feature #10440] (Details are described in this ticket)
Most of complex part is moved to vm_args.c.
Now, ISeq#to_a does not catch up new instruction format.
* vm_core.h: change iseq data structures.
* introduce rb_call_info_kw_arg_t to represent keyword arguments.
* add rb_call_info_t::kw_arg.
* rename rb_iseq_t::arg_post_len to rb_iseq_t::arg_post_num.
* rename rb_iseq_t::arg_keywords to arg_keyword_num.
* rename rb_iseq_t::arg_keyword to rb_iseq_t::arg_keyword_bits.
to represent keyword bitmap parameter index.
This bitmap parameter shows that which keyword parameters are given
or not given (0 for given).
It is refered by `checkkeyword' instruction described bellow.
* rename rb_iseq_t::arg_keyword_check to rb_iseq_t::arg_keyword_rest
to represent keyword rest parameter index.
* add rb_iseq_t::arg_keyword_default_values to represent default
keyword values.
* rename VM_CALL_ARGS_SKIP_SETUP to VM_CALL_ARGS_SIMPLE
to represent
(ci->flag & (SPLAT|BLOCKARG)) &&
ci->blockiseq == NULL &&
ci->kw_arg == NULL.
* vm_insnhelper.c, vm_args.c: rewrite with refactoring.
* rewrite splat argument code.
* rewrite keyword arguments/parameters code.
* merge method and block parameter fitting code into one code base.
* vm.c, vm_eval.c: catch up these changes.
* compile.c (new_callinfo): callinfo requires kw_arg parameter.
* compile.c (compile_array_): check the last argument Hash object or
not. If Hash object and all keys are Symbol literals, they are
compiled to keyword arguments.
* insns.def (checkkeyword): add new instruction.
This instruction check the availability of corresponding keyword.
For example, a method "def foo k1: 'v1'; end" is cimpiled to the
following instructions.
0000 checkkeyword 2, 0 # check k1 is given.
0003 branchif 9 # if given, jump to address #9
0005 putstring "v1"
0007 setlocal_OP__WC__0 3 # k1 = 'v1'
0009 trace 8
0011 putnil
0012 trace 16
0014 leave
* insns.def (opt_send_simple): removed and add new instruction
"opt_send_without_block".
* parse.y (new_args_tail_gen): reorder variables.
Before this patch, a method "def foo(k1: 1, kr1:, k2: 2, **krest, &b)"
has parameter variables "k1, kr1, k2, &b, internal_id, krest",
but this patch reorders to "kr1, k1, k2, internal_id, krest, &b".
(locate a block variable at last)
* parse.y (vtable_pop): added.
This function remove latest `n' variables from vtable.
* iseq.c: catch up iseq data changes.
* proc.c: ditto.
* class.c (keyword_error): export as rb_keyword_error().
* common.mk: depend vm_args.c for vm.o.
* hash.c (rb_hash_has_key): export.
* internal.h: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@48239 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2014-11-02 13:02:55 -05:00
|
|
|
static inline void
|
|
|
|
vm_callee_setup_block_arg(rb_thread_t *th, rb_call_info_t *ci, const rb_iseq_t *iseq, VALUE *argv, const enum arg_setup_type arg_setup_type)
|
2012-10-14 15:58:59 -04:00
|
|
|
{
|
2014-11-02 18:14:21 -05:00
|
|
|
if (LIKELY(simple_iseq_p(iseq))) {
|
* rewrite method/block parameter fitting logic to optimize
keyword arguments/parameters and a splat argument.
[Feature #10440] (Details are described in this ticket)
Most of complex part is moved to vm_args.c.
Now, ISeq#to_a does not catch up new instruction format.
* vm_core.h: change iseq data structures.
* introduce rb_call_info_kw_arg_t to represent keyword arguments.
* add rb_call_info_t::kw_arg.
* rename rb_iseq_t::arg_post_len to rb_iseq_t::arg_post_num.
* rename rb_iseq_t::arg_keywords to arg_keyword_num.
* rename rb_iseq_t::arg_keyword to rb_iseq_t::arg_keyword_bits.
to represent keyword bitmap parameter index.
This bitmap parameter shows that which keyword parameters are given
or not given (0 for given).
It is refered by `checkkeyword' instruction described bellow.
* rename rb_iseq_t::arg_keyword_check to rb_iseq_t::arg_keyword_rest
to represent keyword rest parameter index.
* add rb_iseq_t::arg_keyword_default_values to represent default
keyword values.
* rename VM_CALL_ARGS_SKIP_SETUP to VM_CALL_ARGS_SIMPLE
to represent
(ci->flag & (SPLAT|BLOCKARG)) &&
ci->blockiseq == NULL &&
ci->kw_arg == NULL.
* vm_insnhelper.c, vm_args.c: rewrite with refactoring.
* rewrite splat argument code.
* rewrite keyword arguments/parameters code.
* merge method and block parameter fitting code into one code base.
* vm.c, vm_eval.c: catch up these changes.
* compile.c (new_callinfo): callinfo requires kw_arg parameter.
* compile.c (compile_array_): check the last argument Hash object or
not. If Hash object and all keys are Symbol literals, they are
compiled to keyword arguments.
* insns.def (checkkeyword): add new instruction.
This instruction check the availability of corresponding keyword.
For example, a method "def foo k1: 'v1'; end" is cimpiled to the
following instructions.
0000 checkkeyword 2, 0 # check k1 is given.
0003 branchif 9 # if given, jump to address #9
0005 putstring "v1"
0007 setlocal_OP__WC__0 3 # k1 = 'v1'
0009 trace 8
0011 putnil
0012 trace 16
0014 leave
* insns.def (opt_send_simple): removed and add new instruction
"opt_send_without_block".
* parse.y (new_args_tail_gen): reorder variables.
Before this patch, a method "def foo(k1: 1, kr1:, k2: 2, **krest, &b)"
has parameter variables "k1, kr1, k2, &b, internal_id, krest",
but this patch reorders to "kr1, k1, k2, internal_id, krest, &b".
(locate a block variable at last)
* parse.y (vtable_pop): added.
This function remove latest `n' variables from vtable.
* iseq.c: catch up iseq data changes.
* proc.c: ditto.
* class.c (keyword_error): export as rb_keyword_error().
* common.mk: depend vm_args.c for vm.o.
* hash.c (rb_hash_has_key): export.
* internal.h: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@48239 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2014-11-02 13:02:55 -05:00
|
|
|
rb_control_frame_t *cfp = th->cfp;
|
2014-03-13 12:18:45 -04:00
|
|
|
VALUE arg0;
|
2012-10-14 15:58:59 -04:00
|
|
|
|
* rewrite method/block parameter fitting logic to optimize
keyword arguments/parameters and a splat argument.
[Feature #10440] (Details are described in this ticket)
Most of complex part is moved to vm_args.c.
Now, ISeq#to_a does not catch up new instruction format.
* vm_core.h: change iseq data structures.
* introduce rb_call_info_kw_arg_t to represent keyword arguments.
* add rb_call_info_t::kw_arg.
* rename rb_iseq_t::arg_post_len to rb_iseq_t::arg_post_num.
* rename rb_iseq_t::arg_keywords to arg_keyword_num.
* rename rb_iseq_t::arg_keyword to rb_iseq_t::arg_keyword_bits.
to represent keyword bitmap parameter index.
This bitmap parameter shows that which keyword parameters are given
or not given (0 for given).
It is refered by `checkkeyword' instruction described bellow.
* rename rb_iseq_t::arg_keyword_check to rb_iseq_t::arg_keyword_rest
to represent keyword rest parameter index.
* add rb_iseq_t::arg_keyword_default_values to represent default
keyword values.
* rename VM_CALL_ARGS_SKIP_SETUP to VM_CALL_ARGS_SIMPLE
to represent
(ci->flag & (SPLAT|BLOCKARG)) &&
ci->blockiseq == NULL &&
ci->kw_arg == NULL.
* vm_insnhelper.c, vm_args.c: rewrite with refactoring.
* rewrite splat argument code.
* rewrite keyword arguments/parameters code.
* merge method and block parameter fitting code into one code base.
* vm.c, vm_eval.c: catch up these changes.
* compile.c (new_callinfo): callinfo requires kw_arg parameter.
* compile.c (compile_array_): check the last argument Hash object or
not. If Hash object and all keys are Symbol literals, they are
compiled to keyword arguments.
* insns.def (checkkeyword): add new instruction.
This instruction check the availability of corresponding keyword.
For example, a method "def foo k1: 'v1'; end" is cimpiled to the
following instructions.
0000 checkkeyword 2, 0 # check k1 is given.
0003 branchif 9 # if given, jump to address #9
0005 putstring "v1"
0007 setlocal_OP__WC__0 3 # k1 = 'v1'
0009 trace 8
0011 putnil
0012 trace 16
0014 leave
* insns.def (opt_send_simple): removed and add new instruction
"opt_send_without_block".
* parse.y (new_args_tail_gen): reorder variables.
Before this patch, a method "def foo(k1: 1, kr1:, k2: 2, **krest, &b)"
has parameter variables "k1, kr1, k2, &b, internal_id, krest",
but this patch reorders to "kr1, k1, k2, internal_id, krest, &b".
(locate a block variable at last)
* parse.y (vtable_pop): added.
This function remove latest `n' variables from vtable.
* iseq.c: catch up iseq data changes.
* proc.c: ditto.
* class.c (keyword_error): export as rb_keyword_error().
* common.mk: depend vm_args.c for vm.o.
* hash.c (rb_hash_has_key): export.
* internal.h: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@48239 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2014-11-02 13:02:55 -05:00
|
|
|
CALLER_SETUP_ARG(cfp, ci); /* splat arg */
|
2012-10-14 15:58:59 -04:00
|
|
|
|
* rewrite method/block parameter fitting logic to optimize
keyword arguments/parameters and a splat argument.
[Feature #10440] (Details are described in this ticket)
Most of complex part is moved to vm_args.c.
Now, ISeq#to_a does not catch up new instruction format.
* vm_core.h: change iseq data structures.
* introduce rb_call_info_kw_arg_t to represent keyword arguments.
* add rb_call_info_t::kw_arg.
* rename rb_iseq_t::arg_post_len to rb_iseq_t::arg_post_num.
* rename rb_iseq_t::arg_keywords to arg_keyword_num.
* rename rb_iseq_t::arg_keyword to rb_iseq_t::arg_keyword_bits.
to represent keyword bitmap parameter index.
This bitmap parameter shows that which keyword parameters are given
or not given (0 for given).
It is refered by `checkkeyword' instruction described bellow.
* rename rb_iseq_t::arg_keyword_check to rb_iseq_t::arg_keyword_rest
to represent keyword rest parameter index.
* add rb_iseq_t::arg_keyword_default_values to represent default
keyword values.
* rename VM_CALL_ARGS_SKIP_SETUP to VM_CALL_ARGS_SIMPLE
to represent
(ci->flag & (SPLAT|BLOCKARG)) &&
ci->blockiseq == NULL &&
ci->kw_arg == NULL.
* vm_insnhelper.c, vm_args.c: rewrite with refactoring.
* rewrite splat argument code.
* rewrite keyword arguments/parameters code.
* merge method and block parameter fitting code into one code base.
* vm.c, vm_eval.c: catch up these changes.
* compile.c (new_callinfo): callinfo requires kw_arg parameter.
* compile.c (compile_array_): check the last argument Hash object or
not. If Hash object and all keys are Symbol literals, they are
compiled to keyword arguments.
* insns.def (checkkeyword): add new instruction.
This instruction check the availability of corresponding keyword.
For example, a method "def foo k1: 'v1'; end" is cimpiled to the
following instructions.
0000 checkkeyword 2, 0 # check k1 is given.
0003 branchif 9 # if given, jump to address #9
0005 putstring "v1"
0007 setlocal_OP__WC__0 3 # k1 = 'v1'
0009 trace 8
0011 putnil
0012 trace 16
0014 leave
* insns.def (opt_send_simple): removed and add new instruction
"opt_send_without_block".
* parse.y (new_args_tail_gen): reorder variables.
Before this patch, a method "def foo(k1: 1, kr1:, k2: 2, **krest, &b)"
has parameter variables "k1, kr1, k2, &b, internal_id, krest",
but this patch reorders to "kr1, k1, k2, internal_id, krest, &b".
(locate a block variable at last)
* parse.y (vtable_pop): added.
This function remove latest `n' variables from vtable.
* iseq.c: catch up iseq data changes.
* proc.c: ditto.
* class.c (keyword_error): export as rb_keyword_error().
* common.mk: depend vm_args.c for vm.o.
* hash.c (rb_hash_has_key): export.
* internal.h: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@48239 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2014-11-02 13:02:55 -05:00
|
|
|
if (arg_setup_type == arg_setup_block &&
|
|
|
|
ci->argc == 1 &&
|
2015-07-21 18:52:59 -04:00
|
|
|
iseq->body->param.flags.has_lead &&
|
|
|
|
!iseq->body->param.flags.ambiguous_param0 &&
|
* rewrite method/block parameter fitting logic to optimize
keyword arguments/parameters and a splat argument.
[Feature #10440] (Details are described in this ticket)
Most of complex part is moved to vm_args.c.
Now, ISeq#to_a does not catch up new instruction format.
* vm_core.h: change iseq data structures.
* introduce rb_call_info_kw_arg_t to represent keyword arguments.
* add rb_call_info_t::kw_arg.
* rename rb_iseq_t::arg_post_len to rb_iseq_t::arg_post_num.
* rename rb_iseq_t::arg_keywords to arg_keyword_num.
* rename rb_iseq_t::arg_keyword to rb_iseq_t::arg_keyword_bits.
to represent keyword bitmap parameter index.
This bitmap parameter shows that which keyword parameters are given
or not given (0 for given).
It is refered by `checkkeyword' instruction described bellow.
* rename rb_iseq_t::arg_keyword_check to rb_iseq_t::arg_keyword_rest
to represent keyword rest parameter index.
* add rb_iseq_t::arg_keyword_default_values to represent default
keyword values.
* rename VM_CALL_ARGS_SKIP_SETUP to VM_CALL_ARGS_SIMPLE
to represent
(ci->flag & (SPLAT|BLOCKARG)) &&
ci->blockiseq == NULL &&
ci->kw_arg == NULL.
* vm_insnhelper.c, vm_args.c: rewrite with refactoring.
* rewrite splat argument code.
* rewrite keyword arguments/parameters code.
* merge method and block parameter fitting code into one code base.
* vm.c, vm_eval.c: catch up these changes.
* compile.c (new_callinfo): callinfo requires kw_arg parameter.
* compile.c (compile_array_): check the last argument Hash object or
not. If Hash object and all keys are Symbol literals, they are
compiled to keyword arguments.
* insns.def (checkkeyword): add new instruction.
This instruction check the availability of corresponding keyword.
For example, a method "def foo k1: 'v1'; end" is cimpiled to the
following instructions.
0000 checkkeyword 2, 0 # check k1 is given.
0003 branchif 9 # if given, jump to address #9
0005 putstring "v1"
0007 setlocal_OP__WC__0 3 # k1 = 'v1'
0009 trace 8
0011 putnil
0012 trace 16
0014 leave
* insns.def (opt_send_simple): removed and add new instruction
"opt_send_without_block".
* parse.y (new_args_tail_gen): reorder variables.
Before this patch, a method "def foo(k1: 1, kr1:, k2: 2, **krest, &b)"
has parameter variables "k1, kr1, k2, &b, internal_id, krest",
but this patch reorders to "kr1, k1, k2, internal_id, krest, &b".
(locate a block variable at last)
* parse.y (vtable_pop): added.
This function remove latest `n' variables from vtable.
* iseq.c: catch up iseq data changes.
* proc.c: ditto.
* class.c (keyword_error): export as rb_keyword_error().
* common.mk: depend vm_args.c for vm.o.
* hash.c (rb_hash_has_key): export.
* internal.h: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@48239 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2014-11-02 13:02:55 -05:00
|
|
|
!NIL_P(arg0 = vm_callee_setup_block_arg_arg0_check(argv))) {
|
|
|
|
ci->argc = vm_callee_setup_block_arg_arg0_splat(cfp, iseq, argv, arg0);
|
2007-08-23 03:10:56 -04:00
|
|
|
}
|
2012-10-14 15:58:59 -04:00
|
|
|
|
2015-07-21 18:52:59 -04:00
|
|
|
if (ci->argc != iseq->body->param.lead_num) {
|
* rewrite method/block parameter fitting logic to optimize
keyword arguments/parameters and a splat argument.
[Feature #10440] (Details are described in this ticket)
Most of complex part is moved to vm_args.c.
Now, ISeq#to_a does not catch up new instruction format.
* vm_core.h: change iseq data structures.
* introduce rb_call_info_kw_arg_t to represent keyword arguments.
* add rb_call_info_t::kw_arg.
* rename rb_iseq_t::arg_post_len to rb_iseq_t::arg_post_num.
* rename rb_iseq_t::arg_keywords to arg_keyword_num.
* rename rb_iseq_t::arg_keyword to rb_iseq_t::arg_keyword_bits.
to represent keyword bitmap parameter index.
This bitmap parameter shows that which keyword parameters are given
or not given (0 for given).
It is refered by `checkkeyword' instruction described bellow.
* rename rb_iseq_t::arg_keyword_check to rb_iseq_t::arg_keyword_rest
to represent keyword rest parameter index.
* add rb_iseq_t::arg_keyword_default_values to represent default
keyword values.
* rename VM_CALL_ARGS_SKIP_SETUP to VM_CALL_ARGS_SIMPLE
to represent
(ci->flag & (SPLAT|BLOCKARG)) &&
ci->blockiseq == NULL &&
ci->kw_arg == NULL.
* vm_insnhelper.c, vm_args.c: rewrite with refactoring.
* rewrite splat argument code.
* rewrite keyword arguments/parameters code.
* merge method and block parameter fitting code into one code base.
* vm.c, vm_eval.c: catch up these changes.
* compile.c (new_callinfo): callinfo requires kw_arg parameter.
* compile.c (compile_array_): check the last argument Hash object or
not. If Hash object and all keys are Symbol literals, they are
compiled to keyword arguments.
* insns.def (checkkeyword): add new instruction.
This instruction check the availability of corresponding keyword.
For example, a method "def foo k1: 'v1'; end" is cimpiled to the
following instructions.
0000 checkkeyword 2, 0 # check k1 is given.
0003 branchif 9 # if given, jump to address #9
0005 putstring "v1"
0007 setlocal_OP__WC__0 3 # k1 = 'v1'
0009 trace 8
0011 putnil
0012 trace 16
0014 leave
* insns.def (opt_send_simple): removed and add new instruction
"opt_send_without_block".
* parse.y (new_args_tail_gen): reorder variables.
Before this patch, a method "def foo(k1: 1, kr1:, k2: 2, **krest, &b)"
has parameter variables "k1, kr1, k2, &b, internal_id, krest",
but this patch reorders to "kr1, k1, k2, internal_id, krest, &b".
(locate a block variable at last)
* parse.y (vtable_pop): added.
This function remove latest `n' variables from vtable.
* iseq.c: catch up iseq data changes.
* proc.c: ditto.
* class.c (keyword_error): export as rb_keyword_error().
* common.mk: depend vm_args.c for vm.o.
* hash.c (rb_hash_has_key): export.
* internal.h: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@48239 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2014-11-02 13:02:55 -05:00
|
|
|
if (arg_setup_type == arg_setup_block) {
|
2015-07-21 18:52:59 -04:00
|
|
|
if (ci->argc < iseq->body->param.lead_num) {
|
* rewrite method/block parameter fitting logic to optimize
keyword arguments/parameters and a splat argument.
[Feature #10440] (Details are described in this ticket)
Most of complex part is moved to vm_args.c.
Now, ISeq#to_a does not catch up new instruction format.
* vm_core.h: change iseq data structures.
* introduce rb_call_info_kw_arg_t to represent keyword arguments.
* add rb_call_info_t::kw_arg.
* rename rb_iseq_t::arg_post_len to rb_iseq_t::arg_post_num.
* rename rb_iseq_t::arg_keywords to arg_keyword_num.
* rename rb_iseq_t::arg_keyword to rb_iseq_t::arg_keyword_bits.
to represent keyword bitmap parameter index.
This bitmap parameter shows that which keyword parameters are given
or not given (0 for given).
It is refered by `checkkeyword' instruction described bellow.
* rename rb_iseq_t::arg_keyword_check to rb_iseq_t::arg_keyword_rest
to represent keyword rest parameter index.
* add rb_iseq_t::arg_keyword_default_values to represent default
keyword values.
* rename VM_CALL_ARGS_SKIP_SETUP to VM_CALL_ARGS_SIMPLE
to represent
(ci->flag & (SPLAT|BLOCKARG)) &&
ci->blockiseq == NULL &&
ci->kw_arg == NULL.
* vm_insnhelper.c, vm_args.c: rewrite with refactoring.
* rewrite splat argument code.
* rewrite keyword arguments/parameters code.
* merge method and block parameter fitting code into one code base.
* vm.c, vm_eval.c: catch up these changes.
* compile.c (new_callinfo): callinfo requires kw_arg parameter.
* compile.c (compile_array_): check the last argument Hash object or
not. If Hash object and all keys are Symbol literals, they are
compiled to keyword arguments.
* insns.def (checkkeyword): add new instruction.
This instruction check the availability of corresponding keyword.
For example, a method "def foo k1: 'v1'; end" is cimpiled to the
following instructions.
0000 checkkeyword 2, 0 # check k1 is given.
0003 branchif 9 # if given, jump to address #9
0005 putstring "v1"
0007 setlocal_OP__WC__0 3 # k1 = 'v1'
0009 trace 8
0011 putnil
0012 trace 16
0014 leave
* insns.def (opt_send_simple): removed and add new instruction
"opt_send_without_block".
* parse.y (new_args_tail_gen): reorder variables.
Before this patch, a method "def foo(k1: 1, kr1:, k2: 2, **krest, &b)"
has parameter variables "k1, kr1, k2, &b, internal_id, krest",
but this patch reorders to "kr1, k1, k2, internal_id, krest, &b".
(locate a block variable at last)
* parse.y (vtable_pop): added.
This function remove latest `n' variables from vtable.
* iseq.c: catch up iseq data changes.
* proc.c: ditto.
* class.c (keyword_error): export as rb_keyword_error().
* common.mk: depend vm_args.c for vm.o.
* hash.c (rb_hash_has_key): export.
* internal.h: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@48239 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2014-11-02 13:02:55 -05:00
|
|
|
int i;
|
2015-07-21 18:52:59 -04:00
|
|
|
CHECK_VM_STACK_OVERFLOW(cfp, iseq->body->param.lead_num);
|
|
|
|
for (i=ci->argc; i<iseq->body->param.lead_num; i++) argv[i] = Qnil;
|
|
|
|
ci->argc = iseq->body->param.lead_num; /* fill rest parameters */
|
* rewrite method/block parameter fitting logic to optimize
keyword arguments/parameters and a splat argument.
[Feature #10440] (Details are described in this ticket)
Most of complex part is moved to vm_args.c.
Now, ISeq#to_a does not catch up new instruction format.
* vm_core.h: change iseq data structures.
* introduce rb_call_info_kw_arg_t to represent keyword arguments.
* add rb_call_info_t::kw_arg.
* rename rb_iseq_t::arg_post_len to rb_iseq_t::arg_post_num.
* rename rb_iseq_t::arg_keywords to arg_keyword_num.
* rename rb_iseq_t::arg_keyword to rb_iseq_t::arg_keyword_bits.
to represent keyword bitmap parameter index.
This bitmap parameter shows that which keyword parameters are given
or not given (0 for given).
It is refered by `checkkeyword' instruction described bellow.
* rename rb_iseq_t::arg_keyword_check to rb_iseq_t::arg_keyword_rest
to represent keyword rest parameter index.
* add rb_iseq_t::arg_keyword_default_values to represent default
keyword values.
* rename VM_CALL_ARGS_SKIP_SETUP to VM_CALL_ARGS_SIMPLE
to represent
(ci->flag & (SPLAT|BLOCKARG)) &&
ci->blockiseq == NULL &&
ci->kw_arg == NULL.
* vm_insnhelper.c, vm_args.c: rewrite with refactoring.
* rewrite splat argument code.
* rewrite keyword arguments/parameters code.
* merge method and block parameter fitting code into one code base.
* vm.c, vm_eval.c: catch up these changes.
* compile.c (new_callinfo): callinfo requires kw_arg parameter.
* compile.c (compile_array_): check the last argument Hash object or
not. If Hash object and all keys are Symbol literals, they are
compiled to keyword arguments.
* insns.def (checkkeyword): add new instruction.
This instruction check the availability of corresponding keyword.
For example, a method "def foo k1: 'v1'; end" is cimpiled to the
following instructions.
0000 checkkeyword 2, 0 # check k1 is given.
0003 branchif 9 # if given, jump to address #9
0005 putstring "v1"
0007 setlocal_OP__WC__0 3 # k1 = 'v1'
0009 trace 8
0011 putnil
0012 trace 16
0014 leave
* insns.def (opt_send_simple): removed and add new instruction
"opt_send_without_block".
* parse.y (new_args_tail_gen): reorder variables.
Before this patch, a method "def foo(k1: 1, kr1:, k2: 2, **krest, &b)"
has parameter variables "k1, kr1, k2, &b, internal_id, krest",
but this patch reorders to "kr1, k1, k2, internal_id, krest, &b".
(locate a block variable at last)
* parse.y (vtable_pop): added.
This function remove latest `n' variables from vtable.
* iseq.c: catch up iseq data changes.
* proc.c: ditto.
* class.c (keyword_error): export as rb_keyword_error().
* common.mk: depend vm_args.c for vm.o.
* hash.c (rb_hash_has_key): export.
* internal.h: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@48239 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2014-11-02 13:02:55 -05:00
|
|
|
}
|
2015-07-21 18:52:59 -04:00
|
|
|
else if (ci->argc > iseq->body->param.lead_num) {
|
|
|
|
ci->argc = iseq->body->param.lead_num; /* simply truncate arguments */
|
* rewrite method/block parameter fitting logic to optimize
keyword arguments/parameters and a splat argument.
[Feature #10440] (Details are described in this ticket)
Most of complex part is moved to vm_args.c.
Now, ISeq#to_a does not catch up new instruction format.
* vm_core.h: change iseq data structures.
* introduce rb_call_info_kw_arg_t to represent keyword arguments.
* add rb_call_info_t::kw_arg.
* rename rb_iseq_t::arg_post_len to rb_iseq_t::arg_post_num.
* rename rb_iseq_t::arg_keywords to arg_keyword_num.
* rename rb_iseq_t::arg_keyword to rb_iseq_t::arg_keyword_bits.
to represent keyword bitmap parameter index.
This bitmap parameter shows that which keyword parameters are given
or not given (0 for given).
It is refered by `checkkeyword' instruction described bellow.
* rename rb_iseq_t::arg_keyword_check to rb_iseq_t::arg_keyword_rest
to represent keyword rest parameter index.
* add rb_iseq_t::arg_keyword_default_values to represent default
keyword values.
* rename VM_CALL_ARGS_SKIP_SETUP to VM_CALL_ARGS_SIMPLE
to represent
(ci->flag & (SPLAT|BLOCKARG)) &&
ci->blockiseq == NULL &&
ci->kw_arg == NULL.
* vm_insnhelper.c, vm_args.c: rewrite with refactoring.
* rewrite splat argument code.
* rewrite keyword arguments/parameters code.
* merge method and block parameter fitting code into one code base.
* vm.c, vm_eval.c: catch up these changes.
* compile.c (new_callinfo): callinfo requires kw_arg parameter.
* compile.c (compile_array_): check the last argument Hash object or
not. If Hash object and all keys are Symbol literals, they are
compiled to keyword arguments.
* insns.def (checkkeyword): add new instruction.
This instruction check the availability of corresponding keyword.
For example, a method "def foo k1: 'v1'; end" is cimpiled to the
following instructions.
0000 checkkeyword 2, 0 # check k1 is given.
0003 branchif 9 # if given, jump to address #9
0005 putstring "v1"
0007 setlocal_OP__WC__0 3 # k1 = 'v1'
0009 trace 8
0011 putnil
0012 trace 16
0014 leave
* insns.def (opt_send_simple): removed and add new instruction
"opt_send_without_block".
* parse.y (new_args_tail_gen): reorder variables.
Before this patch, a method "def foo(k1: 1, kr1:, k2: 2, **krest, &b)"
has parameter variables "k1, kr1, k2, &b, internal_id, krest",
but this patch reorders to "kr1, k1, k2, internal_id, krest, &b".
(locate a block variable at last)
* parse.y (vtable_pop): added.
This function remove latest `n' variables from vtable.
* iseq.c: catch up iseq data changes.
* proc.c: ditto.
* class.c (keyword_error): export as rb_keyword_error().
* common.mk: depend vm_args.c for vm.o.
* hash.c (rb_hash_has_key): export.
* internal.h: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@48239 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2014-11-02 13:02:55 -05:00
|
|
|
}
|
2007-08-23 03:10:56 -04:00
|
|
|
}
|
* rewrite method/block parameter fitting logic to optimize
keyword arguments/parameters and a splat argument.
[Feature #10440] (Details are described in this ticket)
Most of complex part is moved to vm_args.c.
Now, ISeq#to_a does not catch up new instruction format.
* vm_core.h: change iseq data structures.
* introduce rb_call_info_kw_arg_t to represent keyword arguments.
* add rb_call_info_t::kw_arg.
* rename rb_iseq_t::arg_post_len to rb_iseq_t::arg_post_num.
* rename rb_iseq_t::arg_keywords to arg_keyword_num.
* rename rb_iseq_t::arg_keyword to rb_iseq_t::arg_keyword_bits.
to represent keyword bitmap parameter index.
This bitmap parameter shows that which keyword parameters are given
or not given (0 for given).
It is refered by `checkkeyword' instruction described bellow.
* rename rb_iseq_t::arg_keyword_check to rb_iseq_t::arg_keyword_rest
to represent keyword rest parameter index.
* add rb_iseq_t::arg_keyword_default_values to represent default
keyword values.
* rename VM_CALL_ARGS_SKIP_SETUP to VM_CALL_ARGS_SIMPLE
to represent
(ci->flag & (SPLAT|BLOCKARG)) &&
ci->blockiseq == NULL &&
ci->kw_arg == NULL.
* vm_insnhelper.c, vm_args.c: rewrite with refactoring.
* rewrite splat argument code.
* rewrite keyword arguments/parameters code.
* merge method and block parameter fitting code into one code base.
* vm.c, vm_eval.c: catch up these changes.
* compile.c (new_callinfo): callinfo requires kw_arg parameter.
* compile.c (compile_array_): check the last argument Hash object or
not. If Hash object and all keys are Symbol literals, they are
compiled to keyword arguments.
* insns.def (checkkeyword): add new instruction.
This instruction check the availability of corresponding keyword.
For example, a method "def foo k1: 'v1'; end" is cimpiled to the
following instructions.
0000 checkkeyword 2, 0 # check k1 is given.
0003 branchif 9 # if given, jump to address #9
0005 putstring "v1"
0007 setlocal_OP__WC__0 3 # k1 = 'v1'
0009 trace 8
0011 putnil
0012 trace 16
0014 leave
* insns.def (opt_send_simple): removed and add new instruction
"opt_send_without_block".
* parse.y (new_args_tail_gen): reorder variables.
Before this patch, a method "def foo(k1: 1, kr1:, k2: 2, **krest, &b)"
has parameter variables "k1, kr1, k2, &b, internal_id, krest",
but this patch reorders to "kr1, k1, k2, internal_id, krest, &b".
(locate a block variable at last)
* parse.y (vtable_pop): added.
This function remove latest `n' variables from vtable.
* iseq.c: catch up iseq data changes.
* proc.c: ditto.
* class.c (keyword_error): export as rb_keyword_error().
* common.mk: depend vm_args.c for vm.o.
* hash.c (rb_hash_has_key): export.
* internal.h: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@48239 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2014-11-02 13:02:55 -05:00
|
|
|
else if (arg_setup_type == arg_setup_lambda &&
|
|
|
|
ci->argc == 1 &&
|
|
|
|
!NIL_P(arg0 = vm_callee_setup_block_arg_arg0_check(argv)) &&
|
2015-07-21 18:52:59 -04:00
|
|
|
RARRAY_LEN(arg0) == iseq->body->param.lead_num) {
|
* rewrite method/block parameter fitting logic to optimize
keyword arguments/parameters and a splat argument.
[Feature #10440] (Details are described in this ticket)
Most of complex part is moved to vm_args.c.
Now, ISeq#to_a does not catch up new instruction format.
* vm_core.h: change iseq data structures.
* introduce rb_call_info_kw_arg_t to represent keyword arguments.
* add rb_call_info_t::kw_arg.
* rename rb_iseq_t::arg_post_len to rb_iseq_t::arg_post_num.
* rename rb_iseq_t::arg_keywords to arg_keyword_num.
* rename rb_iseq_t::arg_keyword to rb_iseq_t::arg_keyword_bits.
to represent keyword bitmap parameter index.
This bitmap parameter shows that which keyword parameters are given
or not given (0 for given).
It is refered by `checkkeyword' instruction described bellow.
* rename rb_iseq_t::arg_keyword_check to rb_iseq_t::arg_keyword_rest
to represent keyword rest parameter index.
* add rb_iseq_t::arg_keyword_default_values to represent default
keyword values.
* rename VM_CALL_ARGS_SKIP_SETUP to VM_CALL_ARGS_SIMPLE
to represent
(ci->flag & (SPLAT|BLOCKARG)) &&
ci->blockiseq == NULL &&
ci->kw_arg == NULL.
* vm_insnhelper.c, vm_args.c: rewrite with refactoring.
* rewrite splat argument code.
* rewrite keyword arguments/parameters code.
* merge method and block parameter fitting code into one code base.
* vm.c, vm_eval.c: catch up these changes.
* compile.c (new_callinfo): callinfo requires kw_arg parameter.
* compile.c (compile_array_): check the last argument Hash object or
not. If Hash object and all keys are Symbol literals, they are
compiled to keyword arguments.
* insns.def (checkkeyword): add new instruction.
This instruction check the availability of corresponding keyword.
For example, a method "def foo k1: 'v1'; end" is cimpiled to the
following instructions.
0000 checkkeyword 2, 0 # check k1 is given.
0003 branchif 9 # if given, jump to address #9
0005 putstring "v1"
0007 setlocal_OP__WC__0 3 # k1 = 'v1'
0009 trace 8
0011 putnil
0012 trace 16
0014 leave
* insns.def (opt_send_simple): removed and add new instruction
"opt_send_without_block".
* parse.y (new_args_tail_gen): reorder variables.
Before this patch, a method "def foo(k1: 1, kr1:, k2: 2, **krest, &b)"
has parameter variables "k1, kr1, k2, &b, internal_id, krest",
but this patch reorders to "kr1, k1, k2, internal_id, krest, &b".
(locate a block variable at last)
* parse.y (vtable_pop): added.
This function remove latest `n' variables from vtable.
* iseq.c: catch up iseq data changes.
* proc.c: ditto.
* class.c (keyword_error): export as rb_keyword_error().
* common.mk: depend vm_args.c for vm.o.
* hash.c (rb_hash_has_key): export.
* internal.h: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@48239 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2014-11-02 13:02:55 -05:00
|
|
|
ci->argc = vm_callee_setup_block_arg_arg0_splat(cfp, iseq, argv, arg0);
|
2012-10-14 15:58:59 -04:00
|
|
|
}
|
|
|
|
else {
|
2015-07-21 18:52:59 -04:00
|
|
|
argument_arity_error(th, iseq, ci->argc, iseq->body->param.lead_num, iseq->body->param.lead_num);
|
2012-10-14 15:58:59 -04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
* rewrite method/block parameter fitting logic to optimize
keyword arguments/parameters and a splat argument.
[Feature #10440] (Details are described in this ticket)
Most of complex part is moved to vm_args.c.
Now, ISeq#to_a does not catch up new instruction format.
* vm_core.h: change iseq data structures.
* introduce rb_call_info_kw_arg_t to represent keyword arguments.
* add rb_call_info_t::kw_arg.
* rename rb_iseq_t::arg_post_len to rb_iseq_t::arg_post_num.
* rename rb_iseq_t::arg_keywords to arg_keyword_num.
* rename rb_iseq_t::arg_keyword to rb_iseq_t::arg_keyword_bits.
to represent keyword bitmap parameter index.
This bitmap parameter shows that which keyword parameters are given
or not given (0 for given).
It is refered by `checkkeyword' instruction described bellow.
* rename rb_iseq_t::arg_keyword_check to rb_iseq_t::arg_keyword_rest
to represent keyword rest parameter index.
* add rb_iseq_t::arg_keyword_default_values to represent default
keyword values.
* rename VM_CALL_ARGS_SKIP_SETUP to VM_CALL_ARGS_SIMPLE
to represent
(ci->flag & (SPLAT|BLOCKARG)) &&
ci->blockiseq == NULL &&
ci->kw_arg == NULL.
* vm_insnhelper.c, vm_args.c: rewrite with refactoring.
* rewrite splat argument code.
* rewrite keyword arguments/parameters code.
* merge method and block parameter fitting code into one code base.
* vm.c, vm_eval.c: catch up these changes.
* compile.c (new_callinfo): callinfo requires kw_arg parameter.
* compile.c (compile_array_): check the last argument Hash object or
not. If Hash object and all keys are Symbol literals, they are
compiled to keyword arguments.
* insns.def (checkkeyword): add new instruction.
This instruction check the availability of corresponding keyword.
For example, a method "def foo k1: 'v1'; end" is cimpiled to the
following instructions.
0000 checkkeyword 2, 0 # check k1 is given.
0003 branchif 9 # if given, jump to address #9
0005 putstring "v1"
0007 setlocal_OP__WC__0 3 # k1 = 'v1'
0009 trace 8
0011 putnil
0012 trace 16
0014 leave
* insns.def (opt_send_simple): removed and add new instruction
"opt_send_without_block".
* parse.y (new_args_tail_gen): reorder variables.
Before this patch, a method "def foo(k1: 1, kr1:, k2: 2, **krest, &b)"
has parameter variables "k1, kr1, k2, &b, internal_id, krest",
but this patch reorders to "kr1, k1, k2, internal_id, krest, &b".
(locate a block variable at last)
* parse.y (vtable_pop): added.
This function remove latest `n' variables from vtable.
* iseq.c: catch up iseq data changes.
* proc.c: ditto.
* class.c (keyword_error): export as rb_keyword_error().
* common.mk: depend vm_args.c for vm.o.
* hash.c (rb_hash_has_key): export.
* internal.h: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@48239 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2014-11-02 13:02:55 -05:00
|
|
|
ci->aux.opt_pc = 0;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
ci->aux.opt_pc = setup_parameters_complex(th, iseq, ci, argv, arg_setup_type);
|
* insns.def (send, invokesuper, invokeblock, opt_*), vm_core.h:
use only a `ci' (rb_call_info_t) parameter instead of using
parameters such as `op_id', 'op_argc', `blockiseq' and flag.
These information are stored in rb_call_info_t at the compile
time.
This technique simplifies parameter passings at related
function calls (~10% speedups for simple mehtod invocation at
my machine).
`rb_call_info_t' also has new function pointer variable `call'.
This `call' variable enables to customize method (block)
invocation process for each place. However, it always call
`vm_call_general()' at this changes.
`rb_call_info_t' also has temporary variables for method
(block) invocation.
* vm_core.h, compile.c, insns.def: introduce VM_CALL_ARGS_SKIP_SETUP
VM_CALL macro. This flag indicates that this call can skip
caller_setup (block arg and splat arg).
* compile.c: catch up above changes.
* iseq.c: catch up above changes (especially for TS_CALLINFO).
* tool/instruction.rb: catch up above chagnes.
* vm_insnhelper.c, vm_insnhelper.h: ditto. Macros and functions
parameters are changed.
* vm_eval.c (vm_call0): ditto (it will be rewriten soon).
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@37180 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-10-14 12:59:05 -04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2014-03-11 22:18:50 -04:00
|
|
|
static inline void
|
* rewrite method/block parameter fitting logic to optimize
keyword arguments/parameters and a splat argument.
[Feature #10440] (Details are described in this ticket)
Most of complex part is moved to vm_args.c.
Now, ISeq#to_a does not catch up new instruction format.
* vm_core.h: change iseq data structures.
* introduce rb_call_info_kw_arg_t to represent keyword arguments.
* add rb_call_info_t::kw_arg.
* rename rb_iseq_t::arg_post_len to rb_iseq_t::arg_post_num.
* rename rb_iseq_t::arg_keywords to arg_keyword_num.
* rename rb_iseq_t::arg_keyword to rb_iseq_t::arg_keyword_bits.
to represent keyword bitmap parameter index.
This bitmap parameter shows that which keyword parameters are given
or not given (0 for given).
It is refered by `checkkeyword' instruction described bellow.
* rename rb_iseq_t::arg_keyword_check to rb_iseq_t::arg_keyword_rest
to represent keyword rest parameter index.
* add rb_iseq_t::arg_keyword_default_values to represent default
keyword values.
* rename VM_CALL_ARGS_SKIP_SETUP to VM_CALL_ARGS_SIMPLE
to represent
(ci->flag & (SPLAT|BLOCKARG)) &&
ci->blockiseq == NULL &&
ci->kw_arg == NULL.
* vm_insnhelper.c, vm_args.c: rewrite with refactoring.
* rewrite splat argument code.
* rewrite keyword arguments/parameters code.
* merge method and block parameter fitting code into one code base.
* vm.c, vm_eval.c: catch up these changes.
* compile.c (new_callinfo): callinfo requires kw_arg parameter.
* compile.c (compile_array_): check the last argument Hash object or
not. If Hash object and all keys are Symbol literals, they are
compiled to keyword arguments.
* insns.def (checkkeyword): add new instruction.
This instruction check the availability of corresponding keyword.
For example, a method "def foo k1: 'v1'; end" is cimpiled to the
following instructions.
0000 checkkeyword 2, 0 # check k1 is given.
0003 branchif 9 # if given, jump to address #9
0005 putstring "v1"
0007 setlocal_OP__WC__0 3 # k1 = 'v1'
0009 trace 8
0011 putnil
0012 trace 16
0014 leave
* insns.def (opt_send_simple): removed and add new instruction
"opt_send_without_block".
* parse.y (new_args_tail_gen): reorder variables.
Before this patch, a method "def foo(k1: 1, kr1:, k2: 2, **krest, &b)"
has parameter variables "k1, kr1, k2, &b, internal_id, krest",
but this patch reorders to "kr1, k1, k2, internal_id, krest, &b".
(locate a block variable at last)
* parse.y (vtable_pop): added.
This function remove latest `n' variables from vtable.
* iseq.c: catch up iseq data changes.
* proc.c: ditto.
* class.c (keyword_error): export as rb_keyword_error().
* common.mk: depend vm_args.c for vm.o.
* hash.c (rb_hash_has_key): export.
* internal.h: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@48239 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2014-11-02 13:02:55 -05:00
|
|
|
vm_callee_setup_arg(rb_thread_t *th, rb_call_info_t *ci, const rb_iseq_t *iseq, VALUE *argv)
|
2014-03-11 22:18:50 -04:00
|
|
|
{
|
2014-11-02 18:14:21 -05:00
|
|
|
if (LIKELY(simple_iseq_p(iseq))) {
|
* rewrite method/block parameter fitting logic to optimize
keyword arguments/parameters and a splat argument.
[Feature #10440] (Details are described in this ticket)
Most of complex part is moved to vm_args.c.
Now, ISeq#to_a does not catch up new instruction format.
* vm_core.h: change iseq data structures.
* introduce rb_call_info_kw_arg_t to represent keyword arguments.
* add rb_call_info_t::kw_arg.
* rename rb_iseq_t::arg_post_len to rb_iseq_t::arg_post_num.
* rename rb_iseq_t::arg_keywords to arg_keyword_num.
* rename rb_iseq_t::arg_keyword to rb_iseq_t::arg_keyword_bits.
to represent keyword bitmap parameter index.
This bitmap parameter shows that which keyword parameters are given
or not given (0 for given).
It is refered by `checkkeyword' instruction described bellow.
* rename rb_iseq_t::arg_keyword_check to rb_iseq_t::arg_keyword_rest
to represent keyword rest parameter index.
* add rb_iseq_t::arg_keyword_default_values to represent default
keyword values.
* rename VM_CALL_ARGS_SKIP_SETUP to VM_CALL_ARGS_SIMPLE
to represent
(ci->flag & (SPLAT|BLOCKARG)) &&
ci->blockiseq == NULL &&
ci->kw_arg == NULL.
* vm_insnhelper.c, vm_args.c: rewrite with refactoring.
* rewrite splat argument code.
* rewrite keyword arguments/parameters code.
* merge method and block parameter fitting code into one code base.
* vm.c, vm_eval.c: catch up these changes.
* compile.c (new_callinfo): callinfo requires kw_arg parameter.
* compile.c (compile_array_): check the last argument Hash object or
not. If Hash object and all keys are Symbol literals, they are
compiled to keyword arguments.
* insns.def (checkkeyword): add new instruction.
This instruction check the availability of corresponding keyword.
For example, a method "def foo k1: 'v1'; end" is cimpiled to the
following instructions.
0000 checkkeyword 2, 0 # check k1 is given.
0003 branchif 9 # if given, jump to address #9
0005 putstring "v1"
0007 setlocal_OP__WC__0 3 # k1 = 'v1'
0009 trace 8
0011 putnil
0012 trace 16
0014 leave
* insns.def (opt_send_simple): removed and add new instruction
"opt_send_without_block".
* parse.y (new_args_tail_gen): reorder variables.
Before this patch, a method "def foo(k1: 1, kr1:, k2: 2, **krest, &b)"
has parameter variables "k1, kr1, k2, &b, internal_id, krest",
but this patch reorders to "kr1, k1, k2, internal_id, krest, &b".
(locate a block variable at last)
* parse.y (vtable_pop): added.
This function remove latest `n' variables from vtable.
* iseq.c: catch up iseq data changes.
* proc.c: ditto.
* class.c (keyword_error): export as rb_keyword_error().
* common.mk: depend vm_args.c for vm.o.
* hash.c (rb_hash_has_key): export.
* internal.h: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@48239 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2014-11-02 13:02:55 -05:00
|
|
|
rb_control_frame_t *cfp = th->cfp;
|
|
|
|
|
|
|
|
CALLER_SETUP_ARG(cfp, ci); /* splat arg */
|
|
|
|
|
2015-07-21 18:52:59 -04:00
|
|
|
if (ci->argc != iseq->body->param.lead_num) {
|
|
|
|
argument_arity_error(th, iseq, ci->argc, iseq->body->param.lead_num, iseq->body->param.lead_num);
|
2014-03-11 22:18:50 -04:00
|
|
|
}
|
* rewrite method/block parameter fitting logic to optimize
keyword arguments/parameters and a splat argument.
[Feature #10440] (Details are described in this ticket)
Most of complex part is moved to vm_args.c.
Now, ISeq#to_a does not catch up new instruction format.
* vm_core.h: change iseq data structures.
* introduce rb_call_info_kw_arg_t to represent keyword arguments.
* add rb_call_info_t::kw_arg.
* rename rb_iseq_t::arg_post_len to rb_iseq_t::arg_post_num.
* rename rb_iseq_t::arg_keywords to arg_keyword_num.
* rename rb_iseq_t::arg_keyword to rb_iseq_t::arg_keyword_bits.
to represent keyword bitmap parameter index.
This bitmap parameter shows that which keyword parameters are given
or not given (0 for given).
It is refered by `checkkeyword' instruction described bellow.
* rename rb_iseq_t::arg_keyword_check to rb_iseq_t::arg_keyword_rest
to represent keyword rest parameter index.
* add rb_iseq_t::arg_keyword_default_values to represent default
keyword values.
* rename VM_CALL_ARGS_SKIP_SETUP to VM_CALL_ARGS_SIMPLE
to represent
(ci->flag & (SPLAT|BLOCKARG)) &&
ci->blockiseq == NULL &&
ci->kw_arg == NULL.
* vm_insnhelper.c, vm_args.c: rewrite with refactoring.
* rewrite splat argument code.
* rewrite keyword arguments/parameters code.
* merge method and block parameter fitting code into one code base.
* vm.c, vm_eval.c: catch up these changes.
* compile.c (new_callinfo): callinfo requires kw_arg parameter.
* compile.c (compile_array_): check the last argument Hash object or
not. If Hash object and all keys are Symbol literals, they are
compiled to keyword arguments.
* insns.def (checkkeyword): add new instruction.
This instruction check the availability of corresponding keyword.
For example, a method "def foo k1: 'v1'; end" is cimpiled to the
following instructions.
0000 checkkeyword 2, 0 # check k1 is given.
0003 branchif 9 # if given, jump to address #9
0005 putstring "v1"
0007 setlocal_OP__WC__0 3 # k1 = 'v1'
0009 trace 8
0011 putnil
0012 trace 16
0014 leave
* insns.def (opt_send_simple): removed and add new instruction
"opt_send_without_block".
* parse.y (new_args_tail_gen): reorder variables.
Before this patch, a method "def foo(k1: 1, kr1:, k2: 2, **krest, &b)"
has parameter variables "k1, kr1, k2, &b, internal_id, krest",
but this patch reorders to "kr1, k1, k2, internal_id, krest, &b".
(locate a block variable at last)
* parse.y (vtable_pop): added.
This function remove latest `n' variables from vtable.
* iseq.c: catch up iseq data changes.
* proc.c: ditto.
* class.c (keyword_error): export as rb_keyword_error().
* common.mk: depend vm_args.c for vm.o.
* hash.c (rb_hash_has_key): export.
* internal.h: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@48239 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2014-11-02 13:02:55 -05:00
|
|
|
|
2014-03-11 22:18:50 -04:00
|
|
|
ci->aux.opt_pc = 0;
|
* rewrite method/block parameter fitting logic to optimize
keyword arguments/parameters and a splat argument.
[Feature #10440] (Details are described in this ticket)
Most of complex part is moved to vm_args.c.
Now, ISeq#to_a does not catch up new instruction format.
* vm_core.h: change iseq data structures.
* introduce rb_call_info_kw_arg_t to represent keyword arguments.
* add rb_call_info_t::kw_arg.
* rename rb_iseq_t::arg_post_len to rb_iseq_t::arg_post_num.
* rename rb_iseq_t::arg_keywords to arg_keyword_num.
* rename rb_iseq_t::arg_keyword to rb_iseq_t::arg_keyword_bits.
to represent keyword bitmap parameter index.
This bitmap parameter shows that which keyword parameters are given
or not given (0 for given).
It is refered by `checkkeyword' instruction described bellow.
* rename rb_iseq_t::arg_keyword_check to rb_iseq_t::arg_keyword_rest
to represent keyword rest parameter index.
* add rb_iseq_t::arg_keyword_default_values to represent default
keyword values.
* rename VM_CALL_ARGS_SKIP_SETUP to VM_CALL_ARGS_SIMPLE
to represent
(ci->flag & (SPLAT|BLOCKARG)) &&
ci->blockiseq == NULL &&
ci->kw_arg == NULL.
* vm_insnhelper.c, vm_args.c: rewrite with refactoring.
* rewrite splat argument code.
* rewrite keyword arguments/parameters code.
* merge method and block parameter fitting code into one code base.
* vm.c, vm_eval.c: catch up these changes.
* compile.c (new_callinfo): callinfo requires kw_arg parameter.
* compile.c (compile_array_): check the last argument Hash object or
not. If Hash object and all keys are Symbol literals, they are
compiled to keyword arguments.
* insns.def (checkkeyword): add new instruction.
This instruction check the availability of corresponding keyword.
For example, a method "def foo k1: 'v1'; end" is cimpiled to the
following instructions.
0000 checkkeyword 2, 0 # check k1 is given.
0003 branchif 9 # if given, jump to address #9
0005 putstring "v1"
0007 setlocal_OP__WC__0 3 # k1 = 'v1'
0009 trace 8
0011 putnil
0012 trace 16
0014 leave
* insns.def (opt_send_simple): removed and add new instruction
"opt_send_without_block".
* parse.y (new_args_tail_gen): reorder variables.
Before this patch, a method "def foo(k1: 1, kr1:, k2: 2, **krest, &b)"
has parameter variables "k1, kr1, k2, &b, internal_id, krest",
but this patch reorders to "kr1, k1, k2, internal_id, krest, &b".
(locate a block variable at last)
* parse.y (vtable_pop): added.
This function remove latest `n' variables from vtable.
* iseq.c: catch up iseq data changes.
* proc.c: ditto.
* class.c (keyword_error): export as rb_keyword_error().
* common.mk: depend vm_args.c for vm.o.
* hash.c (rb_hash_has_key): export.
* internal.h: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@48239 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2014-11-02 13:02:55 -05:00
|
|
|
|
2014-03-11 22:18:50 -04:00
|
|
|
CI_SET_FASTPATH(ci,
|
* rewrite method/block parameter fitting logic to optimize
keyword arguments/parameters and a splat argument.
[Feature #10440] (Details are described in this ticket)
Most of complex part is moved to vm_args.c.
Now, ISeq#to_a does not catch up new instruction format.
* vm_core.h: change iseq data structures.
* introduce rb_call_info_kw_arg_t to represent keyword arguments.
* add rb_call_info_t::kw_arg.
* rename rb_iseq_t::arg_post_len to rb_iseq_t::arg_post_num.
* rename rb_iseq_t::arg_keywords to arg_keyword_num.
* rename rb_iseq_t::arg_keyword to rb_iseq_t::arg_keyword_bits.
to represent keyword bitmap parameter index.
This bitmap parameter shows that which keyword parameters are given
or not given (0 for given).
It is refered by `checkkeyword' instruction described bellow.
* rename rb_iseq_t::arg_keyword_check to rb_iseq_t::arg_keyword_rest
to represent keyword rest parameter index.
* add rb_iseq_t::arg_keyword_default_values to represent default
keyword values.
* rename VM_CALL_ARGS_SKIP_SETUP to VM_CALL_ARGS_SIMPLE
to represent
(ci->flag & (SPLAT|BLOCKARG)) &&
ci->blockiseq == NULL &&
ci->kw_arg == NULL.
* vm_insnhelper.c, vm_args.c: rewrite with refactoring.
* rewrite splat argument code.
* rewrite keyword arguments/parameters code.
* merge method and block parameter fitting code into one code base.
* vm.c, vm_eval.c: catch up these changes.
* compile.c (new_callinfo): callinfo requires kw_arg parameter.
* compile.c (compile_array_): check the last argument Hash object or
not. If Hash object and all keys are Symbol literals, they are
compiled to keyword arguments.
* insns.def (checkkeyword): add new instruction.
This instruction check the availability of corresponding keyword.
For example, a method "def foo k1: 'v1'; end" is cimpiled to the
following instructions.
0000 checkkeyword 2, 0 # check k1 is given.
0003 branchif 9 # if given, jump to address #9
0005 putstring "v1"
0007 setlocal_OP__WC__0 3 # k1 = 'v1'
0009 trace 8
0011 putnil
0012 trace 16
0014 leave
* insns.def (opt_send_simple): removed and add new instruction
"opt_send_without_block".
* parse.y (new_args_tail_gen): reorder variables.
Before this patch, a method "def foo(k1: 1, kr1:, k2: 2, **krest, &b)"
has parameter variables "k1, kr1, k2, &b, internal_id, krest",
but this patch reorders to "kr1, k1, k2, internal_id, krest, &b".
(locate a block variable at last)
* parse.y (vtable_pop): added.
This function remove latest `n' variables from vtable.
* iseq.c: catch up iseq data changes.
* proc.c: ditto.
* class.c (keyword_error): export as rb_keyword_error().
* common.mk: depend vm_args.c for vm.o.
* hash.c (rb_hash_has_key): export.
* internal.h: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@48239 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2014-11-02 13:02:55 -05:00
|
|
|
(UNLIKELY(ci->flag & VM_CALL_TAILCALL) ? vm_call_iseq_setup_tailcall : vm_call_iseq_setup_normal),
|
2015-06-06 06:19:48 -04:00
|
|
|
(!IS_ARGS_SPLAT(ci) && !IS_ARGS_KEYWORD(ci) && !(METHOD_ENTRY_VISI(ci->me) == METHOD_VISI_PROTECTED)));
|
2012-10-14 16:59:21 -04:00
|
|
|
}
|
2014-03-11 22:18:50 -04:00
|
|
|
else {
|
* rewrite method/block parameter fitting logic to optimize
keyword arguments/parameters and a splat argument.
[Feature #10440] (Details are described in this ticket)
Most of complex part is moved to vm_args.c.
Now, ISeq#to_a does not catch up new instruction format.
* vm_core.h: change iseq data structures.
* introduce rb_call_info_kw_arg_t to represent keyword arguments.
* add rb_call_info_t::kw_arg.
* rename rb_iseq_t::arg_post_len to rb_iseq_t::arg_post_num.
* rename rb_iseq_t::arg_keywords to arg_keyword_num.
* rename rb_iseq_t::arg_keyword to rb_iseq_t::arg_keyword_bits.
to represent keyword bitmap parameter index.
This bitmap parameter shows that which keyword parameters are given
or not given (0 for given).
It is refered by `checkkeyword' instruction described bellow.
* rename rb_iseq_t::arg_keyword_check to rb_iseq_t::arg_keyword_rest
to represent keyword rest parameter index.
* add rb_iseq_t::arg_keyword_default_values to represent default
keyword values.
* rename VM_CALL_ARGS_SKIP_SETUP to VM_CALL_ARGS_SIMPLE
to represent
(ci->flag & (SPLAT|BLOCKARG)) &&
ci->blockiseq == NULL &&
ci->kw_arg == NULL.
* vm_insnhelper.c, vm_args.c: rewrite with refactoring.
* rewrite splat argument code.
* rewrite keyword arguments/parameters code.
* merge method and block parameter fitting code into one code base.
* vm.c, vm_eval.c: catch up these changes.
* compile.c (new_callinfo): callinfo requires kw_arg parameter.
* compile.c (compile_array_): check the last argument Hash object or
not. If Hash object and all keys are Symbol literals, they are
compiled to keyword arguments.
* insns.def (checkkeyword): add new instruction.
This instruction check the availability of corresponding keyword.
For example, a method "def foo k1: 'v1'; end" is cimpiled to the
following instructions.
0000 checkkeyword 2, 0 # check k1 is given.
0003 branchif 9 # if given, jump to address #9
0005 putstring "v1"
0007 setlocal_OP__WC__0 3 # k1 = 'v1'
0009 trace 8
0011 putnil
0012 trace 16
0014 leave
* insns.def (opt_send_simple): removed and add new instruction
"opt_send_without_block".
* parse.y (new_args_tail_gen): reorder variables.
Before this patch, a method "def foo(k1: 1, kr1:, k2: 2, **krest, &b)"
has parameter variables "k1, kr1, k2, &b, internal_id, krest",
but this patch reorders to "kr1, k1, k2, internal_id, krest, &b".
(locate a block variable at last)
* parse.y (vtable_pop): added.
This function remove latest `n' variables from vtable.
* iseq.c: catch up iseq data changes.
* proc.c: ditto.
* class.c (keyword_error): export as rb_keyword_error().
* common.mk: depend vm_args.c for vm.o.
* hash.c (rb_hash_has_key): export.
* internal.h: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@48239 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2014-11-02 13:02:55 -05:00
|
|
|
ci->aux.opt_pc = setup_parameters_complex(th, iseq, ci, argv, arg_setup_method);
|
2014-03-11 22:18:50 -04:00
|
|
|
}
|
|
|
|
}
|
2012-10-14 16:59:21 -04:00
|
|
|
|
2015-07-21 17:19:02 -04:00
|
|
|
static const rb_iseq_t *
|
2015-06-02 00:20:30 -04:00
|
|
|
def_iseq_ptr(rb_method_definition_t *def)
|
|
|
|
{
|
|
|
|
#if VM_CHECK_MODE > 0
|
|
|
|
if (def->type != VM_METHOD_TYPE_ISEQ) rb_bug("def_iseq_ptr: not iseq (%d)", def->type);
|
|
|
|
#endif
|
|
|
|
return def->body.iseq.iseqptr;
|
|
|
|
}
|
|
|
|
|
2012-10-14 15:58:59 -04:00
|
|
|
static VALUE
|
|
|
|
vm_call_iseq_setup(rb_thread_t *th, rb_control_frame_t *cfp, rb_call_info_t *ci)
|
2007-12-18 07:07:51 -05:00
|
|
|
{
|
2015-06-02 00:20:30 -04:00
|
|
|
vm_callee_setup_arg(th, ci, def_iseq_ptr(ci->me->def), cfp->sp - ci->argc);
|
2012-10-14 15:58:59 -04:00
|
|
|
return vm_call_iseq_setup_2(th, cfp, ci);
|
2007-12-18 07:07:51 -05:00
|
|
|
}
|
|
|
|
|
2012-10-14 15:58:59 -04:00
|
|
|
static VALUE
|
|
|
|
vm_call_iseq_setup_2(rb_thread_t *th, rb_control_frame_t *cfp, rb_call_info_t *ci)
|
2012-10-16 17:20:11 -04:00
|
|
|
{
|
|
|
|
if (LIKELY(!(ci->flag & VM_CALL_TAILCALL))) {
|
|
|
|
return vm_call_iseq_setup_normal(th, cfp, ci);
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
return vm_call_iseq_setup_tailcall(th, cfp, ci);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2012-10-18 02:14:39 -04:00
|
|
|
static inline VALUE
|
2012-10-16 17:20:11 -04:00
|
|
|
vm_call_iseq_setup_normal(rb_thread_t *th, rb_control_frame_t *cfp, rb_call_info_t *ci)
|
2007-12-18 07:07:51 -05:00
|
|
|
{
|
2013-12-18 21:27:36 -05:00
|
|
|
int i, local_size;
|
2012-10-14 15:58:59 -04:00
|
|
|
VALUE *argv = cfp->sp - ci->argc;
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
const rb_callable_method_entry_t *me = ci->me;
|
2015-07-21 17:19:02 -04:00
|
|
|
const rb_iseq_t *iseq = def_iseq_ptr(me->def);
|
2015-07-21 18:52:59 -04:00
|
|
|
VALUE *sp = argv + iseq->body->param.size;
|
2007-12-18 07:07:51 -05:00
|
|
|
|
2013-12-18 21:27:36 -05:00
|
|
|
/* clear local variables (arg_size...local_size) */
|
2015-07-21 18:52:59 -04:00
|
|
|
for (i = iseq->body->param.size, local_size = iseq->body->local_size; i < local_size; i++) {
|
2012-10-16 17:20:11 -04:00
|
|
|
*sp++ = Qnil;
|
|
|
|
}
|
2012-10-14 15:58:59 -04:00
|
|
|
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
vm_push_frame(th, iseq, VM_FRAME_MAGIC_METHOD, ci->recv,
|
2015-06-02 00:20:30 -04:00
|
|
|
VM_ENVVAL_BLOCK_PTR(ci->blockptr), (VALUE)me,
|
2015-07-21 18:52:59 -04:00
|
|
|
iseq->body->iseq_encoded + ci->aux.opt_pc, sp, 0, iseq->body->stack_max);
|
2012-10-14 15:58:59 -04:00
|
|
|
|
2012-10-16 17:20:11 -04:00
|
|
|
cfp->sp = argv - 1 /* recv */;
|
|
|
|
return Qundef;
|
|
|
|
}
|
2012-10-14 15:58:59 -04:00
|
|
|
|
2012-10-18 02:14:39 -04:00
|
|
|
static inline VALUE
|
2012-10-16 17:20:11 -04:00
|
|
|
vm_call_iseq_setup_tailcall(rb_thread_t *th, rb_control_frame_t *cfp, rb_call_info_t *ci)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
VALUE *argv = cfp->sp - ci->argc;
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
const rb_callable_method_entry_t *me = ci->me;
|
2015-07-21 17:19:02 -04:00
|
|
|
const rb_iseq_t *iseq = def_iseq_ptr(me->def);
|
2012-10-16 17:20:11 -04:00
|
|
|
VALUE *src_argv = argv;
|
|
|
|
VALUE *sp_orig, *sp;
|
|
|
|
VALUE finish_flag = VM_FRAME_TYPE_FINISH_P(cfp) ? VM_FRAME_FLAG_FINISH : 0;
|
2007-12-18 07:07:51 -05:00
|
|
|
|
2012-10-16 17:20:11 -04:00
|
|
|
cfp = th->cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(th->cfp); /* pop cf */
|
2009-08-15 14:18:07 -04:00
|
|
|
|
2012-10-16 17:20:11 -04:00
|
|
|
RUBY_VM_CHECK_INTS(th);
|
2012-10-14 15:58:59 -04:00
|
|
|
|
2012-10-16 17:20:11 -04:00
|
|
|
sp_orig = sp = cfp->sp;
|
2007-12-18 07:07:51 -05:00
|
|
|
|
2012-10-16 17:20:11 -04:00
|
|
|
/* push self */
|
|
|
|
sp[0] = ci->recv;
|
|
|
|
sp++;
|
2009-08-12 01:55:06 -04:00
|
|
|
|
2012-10-16 17:20:11 -04:00
|
|
|
/* copy arguments */
|
2015-07-21 18:52:59 -04:00
|
|
|
for (i=0; i < iseq->body->param.size; i++) {
|
2012-10-16 17:20:11 -04:00
|
|
|
*sp++ = src_argv[i];
|
|
|
|
}
|
2012-08-02 07:34:19 -04:00
|
|
|
|
2012-10-16 17:20:11 -04:00
|
|
|
/* clear local variables */
|
2015-07-21 18:52:59 -04:00
|
|
|
for (i = 0; i < iseq->body->local_size - iseq->body->param.size; i++) {
|
2012-10-16 17:20:11 -04:00
|
|
|
*sp++ = Qnil;
|
2012-10-14 15:58:59 -04:00
|
|
|
}
|
2012-08-02 07:34:19 -04:00
|
|
|
|
2012-10-16 17:20:11 -04:00
|
|
|
vm_push_frame(th, iseq, VM_FRAME_MAGIC_METHOD | finish_flag,
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
ci->recv, VM_ENVVAL_BLOCK_PTR(ci->blockptr), (VALUE)me,
|
2015-07-21 18:52:59 -04:00
|
|
|
iseq->body->iseq_encoded + ci->aux.opt_pc, sp, 0, iseq->body->stack_max);
|
2012-10-16 17:20:11 -04:00
|
|
|
|
|
|
|
cfp->sp = sp_orig;
|
2012-10-14 15:58:59 -04:00
|
|
|
return Qundef;
|
2012-08-02 07:34:19 -04:00
|
|
|
}
|
|
|
|
|
2012-10-19 06:38:30 -04:00
|
|
|
static VALUE
|
2012-11-13 04:48:08 -05:00
|
|
|
call_cfunc_m2(VALUE (*func)(ANYARGS), VALUE recv, int argc, const VALUE *argv)
|
2012-08-02 07:34:19 -04:00
|
|
|
{
|
2012-11-13 04:48:08 -05:00
|
|
|
return (*func)(recv, rb_ary_new4(argc, argv));
|
2012-10-19 06:38:30 -04:00
|
|
|
}
|
2012-08-02 07:34:19 -04:00
|
|
|
|
2012-10-19 06:38:30 -04:00
|
|
|
static VALUE
|
2012-11-13 04:48:08 -05:00
|
|
|
call_cfunc_m1(VALUE (*func)(ANYARGS), VALUE recv, int argc, const VALUE *argv)
|
2012-10-19 06:38:30 -04:00
|
|
|
{
|
2012-11-13 04:48:08 -05:00
|
|
|
return (*func)(argc, argv, recv);
|
2012-10-19 06:38:30 -04:00
|
|
|
}
|
2012-10-14 15:58:59 -04:00
|
|
|
|
2012-10-19 06:38:30 -04:00
|
|
|
static VALUE
|
2012-11-13 04:48:08 -05:00
|
|
|
call_cfunc_0(VALUE (*func)(ANYARGS), VALUE recv, int argc, const VALUE *argv)
|
2012-10-19 06:38:30 -04:00
|
|
|
{
|
2012-11-13 04:48:08 -05:00
|
|
|
return (*func)(recv);
|
2012-10-19 06:38:30 -04:00
|
|
|
}
|
|
|
|
|
|
|
|
static VALUE
|
2012-11-13 04:48:08 -05:00
|
|
|
call_cfunc_1(VALUE (*func)(ANYARGS), VALUE recv, int argc, const VALUE *argv)
|
2012-10-19 06:38:30 -04:00
|
|
|
{
|
2012-11-13 04:48:08 -05:00
|
|
|
return (*func)(recv, argv[0]);
|
2012-10-19 06:38:30 -04:00
|
|
|
}
|
|
|
|
|
|
|
|
static VALUE
|
2012-11-13 04:48:08 -05:00
|
|
|
call_cfunc_2(VALUE (*func)(ANYARGS), VALUE recv, int argc, const VALUE *argv)
|
2012-10-19 06:38:30 -04:00
|
|
|
{
|
2012-11-13 04:48:08 -05:00
|
|
|
return (*func)(recv, argv[0], argv[1]);
|
2012-10-19 06:38:30 -04:00
|
|
|
}
|
|
|
|
|
|
|
|
static VALUE
|
2012-11-13 04:48:08 -05:00
|
|
|
call_cfunc_3(VALUE (*func)(ANYARGS), VALUE recv, int argc, const VALUE *argv)
|
2012-10-19 06:38:30 -04:00
|
|
|
{
|
2012-11-13 04:48:08 -05:00
|
|
|
return (*func)(recv, argv[0], argv[1], argv[2]);
|
2012-10-19 06:38:30 -04:00
|
|
|
}
|
|
|
|
|
|
|
|
static VALUE
|
2012-11-13 04:48:08 -05:00
|
|
|
call_cfunc_4(VALUE (*func)(ANYARGS), VALUE recv, int argc, const VALUE *argv)
|
2012-10-19 06:38:30 -04:00
|
|
|
{
|
2012-11-13 04:48:08 -05:00
|
|
|
return (*func)(recv, argv[0], argv[1], argv[2], argv[3]);
|
2012-10-19 06:38:30 -04:00
|
|
|
}
|
|
|
|
|
|
|
|
static VALUE
|
2012-11-13 04:48:08 -05:00
|
|
|
call_cfunc_5(VALUE (*func)(ANYARGS), VALUE recv, int argc, const VALUE *argv)
|
2012-10-19 06:38:30 -04:00
|
|
|
{
|
2012-11-13 04:48:08 -05:00
|
|
|
return (*func)(recv, argv[0], argv[1], argv[2], argv[3], argv[4]);
|
2012-10-19 06:38:30 -04:00
|
|
|
}
|
|
|
|
|
|
|
|
static VALUE
|
2012-11-13 04:48:08 -05:00
|
|
|
call_cfunc_6(VALUE (*func)(ANYARGS), VALUE recv, int argc, const VALUE *argv)
|
2012-10-19 06:38:30 -04:00
|
|
|
{
|
2012-11-13 04:48:08 -05:00
|
|
|
return (*func)(recv, argv[0], argv[1], argv[2], argv[3], argv[4], argv[5]);
|
2012-10-19 06:38:30 -04:00
|
|
|
}
|
|
|
|
|
|
|
|
static VALUE
|
2012-11-13 04:48:08 -05:00
|
|
|
call_cfunc_7(VALUE (*func)(ANYARGS), VALUE recv, int argc, const VALUE *argv)
|
2012-10-19 06:38:30 -04:00
|
|
|
{
|
2012-11-13 04:48:08 -05:00
|
|
|
return (*func)(recv, argv[0], argv[1], argv[2], argv[3], argv[4], argv[5], argv[6]);
|
2012-10-19 06:38:30 -04:00
|
|
|
}
|
|
|
|
|
|
|
|
static VALUE
|
2012-11-13 04:48:08 -05:00
|
|
|
call_cfunc_8(VALUE (*func)(ANYARGS), VALUE recv, int argc, const VALUE *argv)
|
2012-10-19 06:38:30 -04:00
|
|
|
{
|
2012-11-13 04:48:08 -05:00
|
|
|
return (*func)(recv, argv[0], argv[1], argv[2], argv[3], argv[4], argv[5], argv[6], argv[7]);
|
2012-10-19 06:38:30 -04:00
|
|
|
}
|
|
|
|
|
|
|
|
static VALUE
|
2012-11-13 04:48:08 -05:00
|
|
|
call_cfunc_9(VALUE (*func)(ANYARGS), VALUE recv, int argc, const VALUE *argv)
|
2012-10-19 06:38:30 -04:00
|
|
|
{
|
2012-11-13 04:48:08 -05:00
|
|
|
return (*func)(recv, argv[0], argv[1], argv[2], argv[3], argv[4], argv[5], argv[6], argv[7], argv[8]);
|
2012-10-19 06:38:30 -04:00
|
|
|
}
|
|
|
|
|
|
|
|
static VALUE
|
2012-11-13 04:48:08 -05:00
|
|
|
call_cfunc_10(VALUE (*func)(ANYARGS), VALUE recv, int argc, const VALUE *argv)
|
2012-10-19 06:38:30 -04:00
|
|
|
{
|
2012-11-13 04:48:08 -05:00
|
|
|
return (*func)(recv, argv[0], argv[1], argv[2], argv[3], argv[4], argv[5], argv[6], argv[7], argv[8], argv[9]);
|
2012-10-19 06:38:30 -04:00
|
|
|
}
|
|
|
|
|
|
|
|
static VALUE
|
2012-11-13 04:48:08 -05:00
|
|
|
call_cfunc_11(VALUE (*func)(ANYARGS), VALUE recv, int argc, const VALUE *argv)
|
2012-10-19 06:38:30 -04:00
|
|
|
{
|
2012-11-13 04:48:08 -05:00
|
|
|
return (*func)(recv, argv[0], argv[1], argv[2], argv[3], argv[4], argv[5], argv[6], argv[7], argv[8], argv[9], argv[10]);
|
2012-10-19 06:38:30 -04:00
|
|
|
}
|
|
|
|
|
|
|
|
static VALUE
|
2012-11-13 04:48:08 -05:00
|
|
|
call_cfunc_12(VALUE (*func)(ANYARGS), VALUE recv, int argc, const VALUE *argv)
|
2012-10-19 06:38:30 -04:00
|
|
|
{
|
2012-11-13 04:48:08 -05:00
|
|
|
return (*func)(recv, argv[0], argv[1], argv[2], argv[3], argv[4], argv[5], argv[6], argv[7], argv[8], argv[9], argv[10], argv[11]);
|
2012-10-19 06:38:30 -04:00
|
|
|
}
|
|
|
|
|
|
|
|
static VALUE
|
2012-11-13 04:48:08 -05:00
|
|
|
call_cfunc_13(VALUE (*func)(ANYARGS), VALUE recv, int argc, const VALUE *argv)
|
2012-10-19 06:38:30 -04:00
|
|
|
{
|
2012-11-13 04:48:08 -05:00
|
|
|
return (*func)(recv, argv[0], argv[1], argv[2], argv[3], argv[4], argv[5], argv[6], argv[7], argv[8], argv[9], argv[10], argv[11], argv[12]);
|
2012-10-19 06:38:30 -04:00
|
|
|
}
|
|
|
|
|
|
|
|
static VALUE
|
2012-11-13 04:48:08 -05:00
|
|
|
call_cfunc_14(VALUE (*func)(ANYARGS), VALUE recv, int argc, const VALUE *argv)
|
2012-10-19 06:38:30 -04:00
|
|
|
{
|
2012-11-13 04:48:08 -05:00
|
|
|
return (*func)(recv, argv[0], argv[1], argv[2], argv[3], argv[4], argv[5], argv[6], argv[7], argv[8], argv[9], argv[10], argv[11], argv[12], argv[13]);
|
2012-10-19 06:38:30 -04:00
|
|
|
}
|
|
|
|
|
|
|
|
static VALUE
|
2012-11-13 04:48:08 -05:00
|
|
|
call_cfunc_15(VALUE (*func)(ANYARGS), VALUE recv, int argc, const VALUE *argv)
|
2012-10-19 06:38:30 -04:00
|
|
|
{
|
2012-11-13 04:48:08 -05:00
|
|
|
return (*func)(recv, argv[0], argv[1], argv[2], argv[3], argv[4], argv[5], argv[6], argv[7], argv[8], argv[9], argv[10], argv[11], argv[12], argv[13], argv[14]);
|
2012-10-19 06:38:30 -04:00
|
|
|
}
|
|
|
|
|
* vm_core.h, vm_insnhelper.c, vm_eval.c (OPT_CALL_CFUNC_WITHOUT_FRAME):
add a new otpimization and its macro `OPT_CALL_CFUNC_WITHOUT_FRAME'.
This optimization makes all cfunc method calls `frameless', which
is fster than ordinal cfunc method call.
If `frame' is needed (for example, it calls another method with
`rb_funcall()'), then build a frame. In other words, this
optimization delays frame building.
However, to delay the frame building, we need additional overheads:
(1) Store the last call information.
(2) Check the delayed frame buidling before the frame is needed.
(3) Overhead to build a delayed frame.
rb_thread_t::passed_ci is storage of delayed cfunc call information.
(1) is lightweight because it is only 1 assignment to `passed_ci'.
To achieve (2), we modify GET_THREAD() to check `passed_ci' every
time. It causes 10% overhead on my envrionment.
This optimization only works for cfunc methods which do not need
their `frame'.
After evaluation on my environment, this optimization does not
effective every time. Because of this evaluation results, this
optimization is disabled at default.
* vm_insnhelper.c, vm.c: add VM_PROFILE* macros to measure behaviour
of VM internals. I will extend this feature.
* vm_method.c, method.h: change parameters of the `invoker' function.
Receive `func' pointer as the first parameter.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@37293 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-10-23 00:22:31 -04:00
|
|
|
#ifndef VM_PROFILE
|
|
|
|
#define VM_PROFILE 0
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if VM_PROFILE
|
|
|
|
static int vm_profile_counter[4];
|
|
|
|
#define VM_PROFILE_UP(x) (vm_profile_counter[x]++)
|
|
|
|
#define VM_PROFILE_ATEXIT() atexit(vm_profile_show_result)
|
2013-09-09 01:17:17 -04:00
|
|
|
static void
|
|
|
|
vm_profile_show_result(void)
|
2012-11-06 17:50:30 -05:00
|
|
|
{
|
* vm_core.h, vm_insnhelper.c, vm_eval.c (OPT_CALL_CFUNC_WITHOUT_FRAME):
add a new otpimization and its macro `OPT_CALL_CFUNC_WITHOUT_FRAME'.
This optimization makes all cfunc method calls `frameless', which
is fster than ordinal cfunc method call.
If `frame' is needed (for example, it calls another method with
`rb_funcall()'), then build a frame. In other words, this
optimization delays frame building.
However, to delay the frame building, we need additional overheads:
(1) Store the last call information.
(2) Check the delayed frame buidling before the frame is needed.
(3) Overhead to build a delayed frame.
rb_thread_t::passed_ci is storage of delayed cfunc call information.
(1) is lightweight because it is only 1 assignment to `passed_ci'.
To achieve (2), we modify GET_THREAD() to check `passed_ci' every
time. It causes 10% overhead on my envrionment.
This optimization only works for cfunc methods which do not need
their `frame'.
After evaluation on my environment, this optimization does not
effective every time. Because of this evaluation results, this
optimization is disabled at default.
* vm_insnhelper.c, vm.c: add VM_PROFILE* macros to measure behaviour
of VM internals. I will extend this feature.
* vm_method.c, method.h: change parameters of the `invoker' function.
Receive `func' pointer as the first parameter.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@37293 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-10-23 00:22:31 -04:00
|
|
|
fprintf(stderr, "VM Profile results: \n");
|
|
|
|
fprintf(stderr, "r->c call: %d\n", vm_profile_counter[0]);
|
|
|
|
fprintf(stderr, "r->c popf: %d\n", vm_profile_counter[1]);
|
|
|
|
fprintf(stderr, "c->c call: %d\n", vm_profile_counter[2]);
|
|
|
|
fprintf(stderr, "r->c popf: %d\n", vm_profile_counter[3]);
|
2012-08-02 07:34:19 -04:00
|
|
|
}
|
* vm_core.h, vm_insnhelper.c, vm_eval.c (OPT_CALL_CFUNC_WITHOUT_FRAME):
add a new otpimization and its macro `OPT_CALL_CFUNC_WITHOUT_FRAME'.
This optimization makes all cfunc method calls `frameless', which
is fster than ordinal cfunc method call.
If `frame' is needed (for example, it calls another method with
`rb_funcall()'), then build a frame. In other words, this
optimization delays frame building.
However, to delay the frame building, we need additional overheads:
(1) Store the last call information.
(2) Check the delayed frame buidling before the frame is needed.
(3) Overhead to build a delayed frame.
rb_thread_t::passed_ci is storage of delayed cfunc call information.
(1) is lightweight because it is only 1 assignment to `passed_ci'.
To achieve (2), we modify GET_THREAD() to check `passed_ci' every
time. It causes 10% overhead on my envrionment.
This optimization only works for cfunc methods which do not need
their `frame'.
After evaluation on my environment, this optimization does not
effective every time. Because of this evaluation results, this
optimization is disabled at default.
* vm_insnhelper.c, vm.c: add VM_PROFILE* macros to measure behaviour
of VM internals. I will extend this feature.
* vm_method.c, method.h: change parameters of the `invoker' function.
Receive `func' pointer as the first parameter.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@37293 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-10-23 00:22:31 -04:00
|
|
|
#else
|
|
|
|
#define VM_PROFILE_UP(x)
|
|
|
|
#define VM_PROFILE_ATEXIT()
|
|
|
|
#endif
|
2012-08-02 07:34:19 -04:00
|
|
|
|
2013-09-09 01:17:19 -04:00
|
|
|
static inline
|
|
|
|
const rb_method_cfunc_t *
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
vm_method_cfunc_entry(const rb_callable_method_entry_t *me)
|
2013-09-09 01:17:19 -04:00
|
|
|
{
|
|
|
|
#if VM_DEBUG_VERIFY_METHOD_CACHE
|
|
|
|
switch (me->def->type) {
|
|
|
|
case VM_METHOD_TYPE_CFUNC:
|
|
|
|
case VM_METHOD_TYPE_NOTIMPLEMENTED:
|
|
|
|
break;
|
|
|
|
# define METHOD_BUG(t) case VM_METHOD_TYPE_##t: rb_bug("wrong method type: " #t)
|
|
|
|
METHOD_BUG(ISEQ);
|
|
|
|
METHOD_BUG(ATTRSET);
|
|
|
|
METHOD_BUG(IVAR);
|
|
|
|
METHOD_BUG(BMETHOD);
|
|
|
|
METHOD_BUG(ZSUPER);
|
|
|
|
METHOD_BUG(UNDEF);
|
|
|
|
METHOD_BUG(OPTIMIZED);
|
|
|
|
METHOD_BUG(MISSING);
|
|
|
|
METHOD_BUG(REFINED);
|
2015-05-30 14:45:28 -04:00
|
|
|
METHOD_BUG(ALIAS);
|
2013-09-09 01:17:19 -04:00
|
|
|
# undef METHOD_BUG
|
|
|
|
default:
|
|
|
|
rb_bug("wrong method type: %d", me->def->type);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
return &me->def->body.cfunc;
|
|
|
|
}
|
|
|
|
|
2012-08-08 03:52:19 -04:00
|
|
|
static VALUE
|
* vm_core.h, vm_insnhelper.c, vm_eval.c (OPT_CALL_CFUNC_WITHOUT_FRAME):
add a new otpimization and its macro `OPT_CALL_CFUNC_WITHOUT_FRAME'.
This optimization makes all cfunc method calls `frameless', which
is fster than ordinal cfunc method call.
If `frame' is needed (for example, it calls another method with
`rb_funcall()'), then build a frame. In other words, this
optimization delays frame building.
However, to delay the frame building, we need additional overheads:
(1) Store the last call information.
(2) Check the delayed frame buidling before the frame is needed.
(3) Overhead to build a delayed frame.
rb_thread_t::passed_ci is storage of delayed cfunc call information.
(1) is lightweight because it is only 1 assignment to `passed_ci'.
To achieve (2), we modify GET_THREAD() to check `passed_ci' every
time. It causes 10% overhead on my envrionment.
This optimization only works for cfunc methods which do not need
their `frame'.
After evaluation on my environment, this optimization does not
effective every time. Because of this evaluation results, this
optimization is disabled at default.
* vm_insnhelper.c, vm.c: add VM_PROFILE* macros to measure behaviour
of VM internals. I will extend this feature.
* vm_method.c, method.h: change parameters of the `invoker' function.
Receive `func' pointer as the first parameter.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@37293 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-10-23 00:22:31 -04:00
|
|
|
vm_call_cfunc_with_frame(rb_thread_t *th, rb_control_frame_t *reg_cfp, rb_call_info_t *ci)
|
2012-08-08 03:52:19 -04:00
|
|
|
{
|
* vm_core.h, vm_insnhelper.c, vm_eval.c (OPT_CALL_CFUNC_WITHOUT_FRAME):
add a new otpimization and its macro `OPT_CALL_CFUNC_WITHOUT_FRAME'.
This optimization makes all cfunc method calls `frameless', which
is fster than ordinal cfunc method call.
If `frame' is needed (for example, it calls another method with
`rb_funcall()'), then build a frame. In other words, this
optimization delays frame building.
However, to delay the frame building, we need additional overheads:
(1) Store the last call information.
(2) Check the delayed frame buidling before the frame is needed.
(3) Overhead to build a delayed frame.
rb_thread_t::passed_ci is storage of delayed cfunc call information.
(1) is lightweight because it is only 1 assignment to `passed_ci'.
To achieve (2), we modify GET_THREAD() to check `passed_ci' every
time. It causes 10% overhead on my envrionment.
This optimization only works for cfunc methods which do not need
their `frame'.
After evaluation on my environment, this optimization does not
effective every time. Because of this evaluation results, this
optimization is disabled at default.
* vm_insnhelper.c, vm.c: add VM_PROFILE* macros to measure behaviour
of VM internals. I will extend this feature.
* vm_method.c, method.h: change parameters of the `invoker' function.
Receive `func' pointer as the first parameter.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@37293 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-10-23 00:22:31 -04:00
|
|
|
VALUE val;
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
const rb_callable_method_entry_t *me = ci->me;
|
2013-09-09 01:17:19 -04:00
|
|
|
const rb_method_cfunc_t *cfunc = vm_method_cfunc_entry(me);
|
* vm_core.h, vm_insnhelper.c, vm_eval.c (OPT_CALL_CFUNC_WITHOUT_FRAME):
add a new otpimization and its macro `OPT_CALL_CFUNC_WITHOUT_FRAME'.
This optimization makes all cfunc method calls `frameless', which
is fster than ordinal cfunc method call.
If `frame' is needed (for example, it calls another method with
`rb_funcall()'), then build a frame. In other words, this
optimization delays frame building.
However, to delay the frame building, we need additional overheads:
(1) Store the last call information.
(2) Check the delayed frame buidling before the frame is needed.
(3) Overhead to build a delayed frame.
rb_thread_t::passed_ci is storage of delayed cfunc call information.
(1) is lightweight because it is only 1 assignment to `passed_ci'.
To achieve (2), we modify GET_THREAD() to check `passed_ci' every
time. It causes 10% overhead on my envrionment.
This optimization only works for cfunc methods which do not need
their `frame'.
After evaluation on my environment, this optimization does not
effective every time. Because of this evaluation results, this
optimization is disabled at default.
* vm_insnhelper.c, vm.c: add VM_PROFILE* macros to measure behaviour
of VM internals. I will extend this feature.
* vm_method.c, method.h: change parameters of the `invoker' function.
Receive `func' pointer as the first parameter.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@37293 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-10-23 00:22:31 -04:00
|
|
|
int len = cfunc->argc;
|
2012-11-13 04:48:08 -05:00
|
|
|
|
|
|
|
/* don't use `ci' after EXEC_EVENT_HOOK because ci can be override */
|
* vm_core.h, vm_insnhelper.c, vm_eval.c (OPT_CALL_CFUNC_WITHOUT_FRAME):
add a new otpimization and its macro `OPT_CALL_CFUNC_WITHOUT_FRAME'.
This optimization makes all cfunc method calls `frameless', which
is fster than ordinal cfunc method call.
If `frame' is needed (for example, it calls another method with
`rb_funcall()'), then build a frame. In other words, this
optimization delays frame building.
However, to delay the frame building, we need additional overheads:
(1) Store the last call information.
(2) Check the delayed frame buidling before the frame is needed.
(3) Overhead to build a delayed frame.
rb_thread_t::passed_ci is storage of delayed cfunc call information.
(1) is lightweight because it is only 1 assignment to `passed_ci'.
To achieve (2), we modify GET_THREAD() to check `passed_ci' every
time. It causes 10% overhead on my envrionment.
This optimization only works for cfunc methods which do not need
their `frame'.
After evaluation on my environment, this optimization does not
effective every time. Because of this evaluation results, this
optimization is disabled at default.
* vm_insnhelper.c, vm.c: add VM_PROFILE* macros to measure behaviour
of VM internals. I will extend this feature.
* vm_method.c, method.h: change parameters of the `invoker' function.
Receive `func' pointer as the first parameter.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@37293 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-10-23 00:22:31 -04:00
|
|
|
VALUE recv = ci->recv;
|
2012-11-13 04:48:08 -05:00
|
|
|
rb_block_t *blockptr = ci->blockptr;
|
|
|
|
int argc = ci->argc;
|
2012-10-14 15:58:59 -04:00
|
|
|
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
RUBY_DTRACE_CMETHOD_ENTRY_HOOK(th, me->owner, me->called_id);
|
|
|
|
EXEC_EVENT_HOOK(th, RUBY_EVENT_C_CALL, recv, me->called_id, me->owner, Qundef);
|
2012-10-14 15:58:59 -04:00
|
|
|
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
vm_push_frame(th, NULL, VM_FRAME_MAGIC_CFUNC, recv,
|
2015-06-02 00:20:30 -04:00
|
|
|
VM_ENVVAL_BLOCK_PTR(blockptr), (VALUE)me,
|
|
|
|
0, th->cfp->sp, 1, 0);
|
2012-10-14 15:58:59 -04:00
|
|
|
|
2012-11-13 04:48:08 -05:00
|
|
|
if (len >= 0) rb_check_arity(argc, len, len);
|
2012-10-14 15:58:59 -04:00
|
|
|
|
2012-11-13 04:48:08 -05:00
|
|
|
reg_cfp->sp -= argc + 1;
|
* vm_core.h, vm_insnhelper.c, vm_eval.c (OPT_CALL_CFUNC_WITHOUT_FRAME):
add a new otpimization and its macro `OPT_CALL_CFUNC_WITHOUT_FRAME'.
This optimization makes all cfunc method calls `frameless', which
is fster than ordinal cfunc method call.
If `frame' is needed (for example, it calls another method with
`rb_funcall()'), then build a frame. In other words, this
optimization delays frame building.
However, to delay the frame building, we need additional overheads:
(1) Store the last call information.
(2) Check the delayed frame buidling before the frame is needed.
(3) Overhead to build a delayed frame.
rb_thread_t::passed_ci is storage of delayed cfunc call information.
(1) is lightweight because it is only 1 assignment to `passed_ci'.
To achieve (2), we modify GET_THREAD() to check `passed_ci' every
time. It causes 10% overhead on my envrionment.
This optimization only works for cfunc methods which do not need
their `frame'.
After evaluation on my environment, this optimization does not
effective every time. Because of this evaluation results, this
optimization is disabled at default.
* vm_insnhelper.c, vm.c: add VM_PROFILE* macros to measure behaviour
of VM internals. I will extend this feature.
* vm_method.c, method.h: change parameters of the `invoker' function.
Receive `func' pointer as the first parameter.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@37293 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-10-23 00:22:31 -04:00
|
|
|
VM_PROFILE_UP(0);
|
2012-11-13 04:48:08 -05:00
|
|
|
val = (*cfunc->invoker)(cfunc->func, recv, argc, reg_cfp->sp + 1);
|
2012-10-14 15:58:59 -04:00
|
|
|
|
|
|
|
if (reg_cfp != th->cfp + 1) {
|
2012-10-19 06:38:30 -04:00
|
|
|
rb_bug("vm_call_cfunc - cfp consistency error");
|
2012-08-08 03:52:19 -04:00
|
|
|
}
|
|
|
|
|
2012-10-14 15:58:59 -04:00
|
|
|
vm_pop_frame(th);
|
2012-08-23 03:22:40 -04:00
|
|
|
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
EXEC_EVENT_HOOK(th, RUBY_EVENT_C_RETURN, recv, me->called_id, me->owner, val);
|
|
|
|
RUBY_DTRACE_CMETHOD_RETURN_HOOK(th, me->owner, me->called_id);
|
* vm_core.h, vm_insnhelper.c, vm_eval.c (OPT_CALL_CFUNC_WITHOUT_FRAME):
add a new otpimization and its macro `OPT_CALL_CFUNC_WITHOUT_FRAME'.
This optimization makes all cfunc method calls `frameless', which
is fster than ordinal cfunc method call.
If `frame' is needed (for example, it calls another method with
`rb_funcall()'), then build a frame. In other words, this
optimization delays frame building.
However, to delay the frame building, we need additional overheads:
(1) Store the last call information.
(2) Check the delayed frame buidling before the frame is needed.
(3) Overhead to build a delayed frame.
rb_thread_t::passed_ci is storage of delayed cfunc call information.
(1) is lightweight because it is only 1 assignment to `passed_ci'.
To achieve (2), we modify GET_THREAD() to check `passed_ci' every
time. It causes 10% overhead on my envrionment.
This optimization only works for cfunc methods which do not need
their `frame'.
After evaluation on my environment, this optimization does not
effective every time. Because of this evaluation results, this
optimization is disabled at default.
* vm_insnhelper.c, vm.c: add VM_PROFILE* macros to measure behaviour
of VM internals. I will extend this feature.
* vm_method.c, method.h: change parameters of the `invoker' function.
Receive `func' pointer as the first parameter.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@37293 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-10-23 00:22:31 -04:00
|
|
|
|
|
|
|
return val;
|
|
|
|
}
|
|
|
|
|
|
|
|
#if OPT_CALL_CFUNC_WITHOUT_FRAME
|
|
|
|
static VALUE
|
|
|
|
vm_call_cfunc_latter(rb_thread_t *th, rb_control_frame_t *reg_cfp, rb_call_info_t *ci)
|
|
|
|
{
|
|
|
|
VALUE val;
|
|
|
|
int argc = ci->argc;
|
|
|
|
VALUE *argv = STACK_ADDR_FROM_TOP(argc);
|
2015-04-02 22:43:20 -04:00
|
|
|
VALUE recv = ci->recv;
|
2013-09-09 01:17:19 -04:00
|
|
|
const rb_method_cfunc_t *cfunc = vm_method_cfunc_entry(ci->me);
|
* vm_core.h, vm_insnhelper.c, vm_eval.c (OPT_CALL_CFUNC_WITHOUT_FRAME):
add a new otpimization and its macro `OPT_CALL_CFUNC_WITHOUT_FRAME'.
This optimization makes all cfunc method calls `frameless', which
is fster than ordinal cfunc method call.
If `frame' is needed (for example, it calls another method with
`rb_funcall()'), then build a frame. In other words, this
optimization delays frame building.
However, to delay the frame building, we need additional overheads:
(1) Store the last call information.
(2) Check the delayed frame buidling before the frame is needed.
(3) Overhead to build a delayed frame.
rb_thread_t::passed_ci is storage of delayed cfunc call information.
(1) is lightweight because it is only 1 assignment to `passed_ci'.
To achieve (2), we modify GET_THREAD() to check `passed_ci' every
time. It causes 10% overhead on my envrionment.
This optimization only works for cfunc methods which do not need
their `frame'.
After evaluation on my environment, this optimization does not
effective every time. Because of this evaluation results, this
optimization is disabled at default.
* vm_insnhelper.c, vm.c: add VM_PROFILE* macros to measure behaviour
of VM internals. I will extend this feature.
* vm_method.c, method.h: change parameters of the `invoker' function.
Receive `func' pointer as the first parameter.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@37293 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-10-23 00:22:31 -04:00
|
|
|
|
|
|
|
th->passed_ci = ci;
|
|
|
|
reg_cfp->sp -= argc + 1;
|
|
|
|
ci->aux.inc_sp = argc + 1;
|
|
|
|
VM_PROFILE_UP(0);
|
2015-04-02 22:43:20 -04:00
|
|
|
val = (*cfunc->invoker)(cfunc->func, recv, argc, argv);
|
* vm_core.h, vm_insnhelper.c, vm_eval.c (OPT_CALL_CFUNC_WITHOUT_FRAME):
add a new otpimization and its macro `OPT_CALL_CFUNC_WITHOUT_FRAME'.
This optimization makes all cfunc method calls `frameless', which
is fster than ordinal cfunc method call.
If `frame' is needed (for example, it calls another method with
`rb_funcall()'), then build a frame. In other words, this
optimization delays frame building.
However, to delay the frame building, we need additional overheads:
(1) Store the last call information.
(2) Check the delayed frame buidling before the frame is needed.
(3) Overhead to build a delayed frame.
rb_thread_t::passed_ci is storage of delayed cfunc call information.
(1) is lightweight because it is only 1 assignment to `passed_ci'.
To achieve (2), we modify GET_THREAD() to check `passed_ci' every
time. It causes 10% overhead on my envrionment.
This optimization only works for cfunc methods which do not need
their `frame'.
After evaluation on my environment, this optimization does not
effective every time. Because of this evaluation results, this
optimization is disabled at default.
* vm_insnhelper.c, vm.c: add VM_PROFILE* macros to measure behaviour
of VM internals. I will extend this feature.
* vm_method.c, method.h: change parameters of the `invoker' function.
Receive `func' pointer as the first parameter.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@37293 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-10-23 00:22:31 -04:00
|
|
|
|
|
|
|
/* check */
|
|
|
|
if (reg_cfp == th->cfp) { /* no frame push */
|
|
|
|
if (UNLIKELY(th->passed_ci != ci)) {
|
|
|
|
rb_bug("vm_call_cfunc_latter: passed_ci error (ci: %p, passed_ci: %p)", ci, th->passed_ci);
|
|
|
|
}
|
|
|
|
th->passed_ci = 0;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
if (UNLIKELY(reg_cfp != RUBY_VM_PREVIOUS_CONTROL_FRAME(th->cfp))) {
|
|
|
|
rb_bug("vm_call_cfunc_latter: cfp consistency error (%p, %p)", reg_cfp, th->cfp+1);
|
|
|
|
}
|
|
|
|
vm_pop_frame(th);
|
|
|
|
VM_PROFILE_UP(1);
|
|
|
|
}
|
|
|
|
|
|
|
|
return val;
|
|
|
|
}
|
|
|
|
|
|
|
|
static VALUE
|
|
|
|
vm_call_cfunc(rb_thread_t *th, rb_control_frame_t *reg_cfp, rb_call_info_t *ci)
|
|
|
|
{
|
|
|
|
VALUE val;
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
const rb_callable_method_entry_t *me = ci->me;
|
2013-09-09 01:17:19 -04:00
|
|
|
int len = vm_method_cfunc_entry(me)->argc;
|
* vm_core.h, vm_insnhelper.c, vm_eval.c (OPT_CALL_CFUNC_WITHOUT_FRAME):
add a new otpimization and its macro `OPT_CALL_CFUNC_WITHOUT_FRAME'.
This optimization makes all cfunc method calls `frameless', which
is fster than ordinal cfunc method call.
If `frame' is needed (for example, it calls another method with
`rb_funcall()'), then build a frame. In other words, this
optimization delays frame building.
However, to delay the frame building, we need additional overheads:
(1) Store the last call information.
(2) Check the delayed frame buidling before the frame is needed.
(3) Overhead to build a delayed frame.
rb_thread_t::passed_ci is storage of delayed cfunc call information.
(1) is lightweight because it is only 1 assignment to `passed_ci'.
To achieve (2), we modify GET_THREAD() to check `passed_ci' every
time. It causes 10% overhead on my envrionment.
This optimization only works for cfunc methods which do not need
their `frame'.
After evaluation on my environment, this optimization does not
effective every time. Because of this evaluation results, this
optimization is disabled at default.
* vm_insnhelper.c, vm.c: add VM_PROFILE* macros to measure behaviour
of VM internals. I will extend this feature.
* vm_method.c, method.h: change parameters of the `invoker' function.
Receive `func' pointer as the first parameter.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@37293 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-10-23 00:22:31 -04:00
|
|
|
VALUE recv = ci->recv;
|
|
|
|
|
* rewrite method/block parameter fitting logic to optimize
keyword arguments/parameters and a splat argument.
[Feature #10440] (Details are described in this ticket)
Most of complex part is moved to vm_args.c.
Now, ISeq#to_a does not catch up new instruction format.
* vm_core.h: change iseq data structures.
* introduce rb_call_info_kw_arg_t to represent keyword arguments.
* add rb_call_info_t::kw_arg.
* rename rb_iseq_t::arg_post_len to rb_iseq_t::arg_post_num.
* rename rb_iseq_t::arg_keywords to arg_keyword_num.
* rename rb_iseq_t::arg_keyword to rb_iseq_t::arg_keyword_bits.
to represent keyword bitmap parameter index.
This bitmap parameter shows that which keyword parameters are given
or not given (0 for given).
It is refered by `checkkeyword' instruction described bellow.
* rename rb_iseq_t::arg_keyword_check to rb_iseq_t::arg_keyword_rest
to represent keyword rest parameter index.
* add rb_iseq_t::arg_keyword_default_values to represent default
keyword values.
* rename VM_CALL_ARGS_SKIP_SETUP to VM_CALL_ARGS_SIMPLE
to represent
(ci->flag & (SPLAT|BLOCKARG)) &&
ci->blockiseq == NULL &&
ci->kw_arg == NULL.
* vm_insnhelper.c, vm_args.c: rewrite with refactoring.
* rewrite splat argument code.
* rewrite keyword arguments/parameters code.
* merge method and block parameter fitting code into one code base.
* vm.c, vm_eval.c: catch up these changes.
* compile.c (new_callinfo): callinfo requires kw_arg parameter.
* compile.c (compile_array_): check the last argument Hash object or
not. If Hash object and all keys are Symbol literals, they are
compiled to keyword arguments.
* insns.def (checkkeyword): add new instruction.
This instruction check the availability of corresponding keyword.
For example, a method "def foo k1: 'v1'; end" is cimpiled to the
following instructions.
0000 checkkeyword 2, 0 # check k1 is given.
0003 branchif 9 # if given, jump to address #9
0005 putstring "v1"
0007 setlocal_OP__WC__0 3 # k1 = 'v1'
0009 trace 8
0011 putnil
0012 trace 16
0014 leave
* insns.def (opt_send_simple): removed and add new instruction
"opt_send_without_block".
* parse.y (new_args_tail_gen): reorder variables.
Before this patch, a method "def foo(k1: 1, kr1:, k2: 2, **krest, &b)"
has parameter variables "k1, kr1, k2, &b, internal_id, krest",
but this patch reorders to "kr1, k1, k2, internal_id, krest, &b".
(locate a block variable at last)
* parse.y (vtable_pop): added.
This function remove latest `n' variables from vtable.
* iseq.c: catch up iseq data changes.
* proc.c: ditto.
* class.c (keyword_error): export as rb_keyword_error().
* common.mk: depend vm_args.c for vm.o.
* hash.c (rb_hash_has_key): export.
* internal.h: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@48239 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2014-11-02 13:02:55 -05:00
|
|
|
CALLER_SETUP_ARG(reg_cfp, ci);
|
* vm_core.h, vm_insnhelper.c, vm_eval.c (OPT_CALL_CFUNC_WITHOUT_FRAME):
add a new otpimization and its macro `OPT_CALL_CFUNC_WITHOUT_FRAME'.
This optimization makes all cfunc method calls `frameless', which
is fster than ordinal cfunc method call.
If `frame' is needed (for example, it calls another method with
`rb_funcall()'), then build a frame. In other words, this
optimization delays frame building.
However, to delay the frame building, we need additional overheads:
(1) Store the last call information.
(2) Check the delayed frame buidling before the frame is needed.
(3) Overhead to build a delayed frame.
rb_thread_t::passed_ci is storage of delayed cfunc call information.
(1) is lightweight because it is only 1 assignment to `passed_ci'.
To achieve (2), we modify GET_THREAD() to check `passed_ci' every
time. It causes 10% overhead on my envrionment.
This optimization only works for cfunc methods which do not need
their `frame'.
After evaluation on my environment, this optimization does not
effective every time. Because of this evaluation results, this
optimization is disabled at default.
* vm_insnhelper.c, vm.c: add VM_PROFILE* macros to measure behaviour
of VM internals. I will extend this feature.
* vm_method.c, method.h: change parameters of the `invoker' function.
Receive `func' pointer as the first parameter.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@37293 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-10-23 00:22:31 -04:00
|
|
|
if (len >= 0) rb_check_arity(ci->argc, len, len);
|
|
|
|
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
RUBY_DTRACE_CMETHOD_ENTRY_HOOK(th, me->owner, me->called_id);
|
|
|
|
EXEC_EVENT_HOOK(th, RUBY_EVENT_C_CALL, recv, me->called_id, me->owner, Qnil);
|
* vm_core.h, vm_insnhelper.c, vm_eval.c (OPT_CALL_CFUNC_WITHOUT_FRAME):
add a new otpimization and its macro `OPT_CALL_CFUNC_WITHOUT_FRAME'.
This optimization makes all cfunc method calls `frameless', which
is fster than ordinal cfunc method call.
If `frame' is needed (for example, it calls another method with
`rb_funcall()'), then build a frame. In other words, this
optimization delays frame building.
However, to delay the frame building, we need additional overheads:
(1) Store the last call information.
(2) Check the delayed frame buidling before the frame is needed.
(3) Overhead to build a delayed frame.
rb_thread_t::passed_ci is storage of delayed cfunc call information.
(1) is lightweight because it is only 1 assignment to `passed_ci'.
To achieve (2), we modify GET_THREAD() to check `passed_ci' every
time. It causes 10% overhead on my envrionment.
This optimization only works for cfunc methods which do not need
their `frame'.
After evaluation on my environment, this optimization does not
effective every time. Because of this evaluation results, this
optimization is disabled at default.
* vm_insnhelper.c, vm.c: add VM_PROFILE* macros to measure behaviour
of VM internals. I will extend this feature.
* vm_method.c, method.h: change parameters of the `invoker' function.
Receive `func' pointer as the first parameter.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@37293 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-10-23 00:22:31 -04:00
|
|
|
|
2015-06-02 21:39:16 -04:00
|
|
|
if (!(ci->me->def->flag & METHOD_VISI_PROTECTED) &&
|
* rewrite method/block parameter fitting logic to optimize
keyword arguments/parameters and a splat argument.
[Feature #10440] (Details are described in this ticket)
Most of complex part is moved to vm_args.c.
Now, ISeq#to_a does not catch up new instruction format.
* vm_core.h: change iseq data structures.
* introduce rb_call_info_kw_arg_t to represent keyword arguments.
* add rb_call_info_t::kw_arg.
* rename rb_iseq_t::arg_post_len to rb_iseq_t::arg_post_num.
* rename rb_iseq_t::arg_keywords to arg_keyword_num.
* rename rb_iseq_t::arg_keyword to rb_iseq_t::arg_keyword_bits.
to represent keyword bitmap parameter index.
This bitmap parameter shows that which keyword parameters are given
or not given (0 for given).
It is refered by `checkkeyword' instruction described bellow.
* rename rb_iseq_t::arg_keyword_check to rb_iseq_t::arg_keyword_rest
to represent keyword rest parameter index.
* add rb_iseq_t::arg_keyword_default_values to represent default
keyword values.
* rename VM_CALL_ARGS_SKIP_SETUP to VM_CALL_ARGS_SIMPLE
to represent
(ci->flag & (SPLAT|BLOCKARG)) &&
ci->blockiseq == NULL &&
ci->kw_arg == NULL.
* vm_insnhelper.c, vm_args.c: rewrite with refactoring.
* rewrite splat argument code.
* rewrite keyword arguments/parameters code.
* merge method and block parameter fitting code into one code base.
* vm.c, vm_eval.c: catch up these changes.
* compile.c (new_callinfo): callinfo requires kw_arg parameter.
* compile.c (compile_array_): check the last argument Hash object or
not. If Hash object and all keys are Symbol literals, they are
compiled to keyword arguments.
* insns.def (checkkeyword): add new instruction.
This instruction check the availability of corresponding keyword.
For example, a method "def foo k1: 'v1'; end" is cimpiled to the
following instructions.
0000 checkkeyword 2, 0 # check k1 is given.
0003 branchif 9 # if given, jump to address #9
0005 putstring "v1"
0007 setlocal_OP__WC__0 3 # k1 = 'v1'
0009 trace 8
0011 putnil
0012 trace 16
0014 leave
* insns.def (opt_send_simple): removed and add new instruction
"opt_send_without_block".
* parse.y (new_args_tail_gen): reorder variables.
Before this patch, a method "def foo(k1: 1, kr1:, k2: 2, **krest, &b)"
has parameter variables "k1, kr1, k2, &b, internal_id, krest",
but this patch reorders to "kr1, k1, k2, internal_id, krest, &b".
(locate a block variable at last)
* parse.y (vtable_pop): added.
This function remove latest `n' variables from vtable.
* iseq.c: catch up iseq data changes.
* proc.c: ditto.
* class.c (keyword_error): export as rb_keyword_error().
* common.mk: depend vm_args.c for vm.o.
* hash.c (rb_hash_has_key): export.
* internal.h: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@48239 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2014-11-02 13:02:55 -05:00
|
|
|
!(ci->flag & VM_CALL_ARGS_SPLAT) &&
|
|
|
|
!(ci->kw_arg != NULL)) {
|
* vm_core.h, vm_insnhelper.c, vm_eval.c (OPT_CALL_CFUNC_WITHOUT_FRAME):
add a new otpimization and its macro `OPT_CALL_CFUNC_WITHOUT_FRAME'.
This optimization makes all cfunc method calls `frameless', which
is fster than ordinal cfunc method call.
If `frame' is needed (for example, it calls another method with
`rb_funcall()'), then build a frame. In other words, this
optimization delays frame building.
However, to delay the frame building, we need additional overheads:
(1) Store the last call information.
(2) Check the delayed frame buidling before the frame is needed.
(3) Overhead to build a delayed frame.
rb_thread_t::passed_ci is storage of delayed cfunc call information.
(1) is lightweight because it is only 1 assignment to `passed_ci'.
To achieve (2), we modify GET_THREAD() to check `passed_ci' every
time. It causes 10% overhead on my envrionment.
This optimization only works for cfunc methods which do not need
their `frame'.
After evaluation on my environment, this optimization does not
effective every time. Because of this evaluation results, this
optimization is disabled at default.
* vm_insnhelper.c, vm.c: add VM_PROFILE* macros to measure behaviour
of VM internals. I will extend this feature.
* vm_method.c, method.h: change parameters of the `invoker' function.
Receive `func' pointer as the first parameter.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@37293 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-10-23 00:22:31 -04:00
|
|
|
CI_SET_FASTPATH(ci, vm_call_cfunc_latter, 1);
|
|
|
|
}
|
|
|
|
val = vm_call_cfunc_latter(th, reg_cfp, ci);
|
|
|
|
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
EXEC_EVENT_HOOK(th, RUBY_EVENT_C_RETURN, recv, me->called_id, me->owner, val);
|
|
|
|
RUBY_DTRACE_CMETHOD_RETURN_HOOK(th, me->owner, me->called_id);
|
2012-08-23 03:22:40 -04:00
|
|
|
|
2012-10-14 15:58:59 -04:00
|
|
|
return val;
|
2012-08-23 03:22:40 -04:00
|
|
|
}
|
|
|
|
|
* vm_core.h, vm_insnhelper.c, vm_eval.c (OPT_CALL_CFUNC_WITHOUT_FRAME):
add a new otpimization and its macro `OPT_CALL_CFUNC_WITHOUT_FRAME'.
This optimization makes all cfunc method calls `frameless', which
is fster than ordinal cfunc method call.
If `frame' is needed (for example, it calls another method with
`rb_funcall()'), then build a frame. In other words, this
optimization delays frame building.
However, to delay the frame building, we need additional overheads:
(1) Store the last call information.
(2) Check the delayed frame buidling before the frame is needed.
(3) Overhead to build a delayed frame.
rb_thread_t::passed_ci is storage of delayed cfunc call information.
(1) is lightweight because it is only 1 assignment to `passed_ci'.
To achieve (2), we modify GET_THREAD() to check `passed_ci' every
time. It causes 10% overhead on my envrionment.
This optimization only works for cfunc methods which do not need
their `frame'.
After evaluation on my environment, this optimization does not
effective every time. Because of this evaluation results, this
optimization is disabled at default.
* vm_insnhelper.c, vm.c: add VM_PROFILE* macros to measure behaviour
of VM internals. I will extend this feature.
* vm_method.c, method.h: change parameters of the `invoker' function.
Receive `func' pointer as the first parameter.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@37293 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-10-23 00:22:31 -04:00
|
|
|
void
|
2015-04-02 22:43:20 -04:00
|
|
|
rb_vm_call_cfunc_push_frame(rb_thread_t *th)
|
* vm_core.h, vm_insnhelper.c, vm_eval.c (OPT_CALL_CFUNC_WITHOUT_FRAME):
add a new otpimization and its macro `OPT_CALL_CFUNC_WITHOUT_FRAME'.
This optimization makes all cfunc method calls `frameless', which
is fster than ordinal cfunc method call.
If `frame' is needed (for example, it calls another method with
`rb_funcall()'), then build a frame. In other words, this
optimization delays frame building.
However, to delay the frame building, we need additional overheads:
(1) Store the last call information.
(2) Check the delayed frame buidling before the frame is needed.
(3) Overhead to build a delayed frame.
rb_thread_t::passed_ci is storage of delayed cfunc call information.
(1) is lightweight because it is only 1 assignment to `passed_ci'.
To achieve (2), we modify GET_THREAD() to check `passed_ci' every
time. It causes 10% overhead on my envrionment.
This optimization only works for cfunc methods which do not need
their `frame'.
After evaluation on my environment, this optimization does not
effective every time. Because of this evaluation results, this
optimization is disabled at default.
* vm_insnhelper.c, vm.c: add VM_PROFILE* macros to measure behaviour
of VM internals. I will extend this feature.
* vm_method.c, method.h: change parameters of the `invoker' function.
Receive `func' pointer as the first parameter.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@37293 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-10-23 00:22:31 -04:00
|
|
|
{
|
|
|
|
rb_call_info_t *ci = th->passed_ci;
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
const rb_callable_method_entry_t *me = ci->me;
|
* vm_core.h, vm_insnhelper.c, vm_eval.c (OPT_CALL_CFUNC_WITHOUT_FRAME):
add a new otpimization and its macro `OPT_CALL_CFUNC_WITHOUT_FRAME'.
This optimization makes all cfunc method calls `frameless', which
is fster than ordinal cfunc method call.
If `frame' is needed (for example, it calls another method with
`rb_funcall()'), then build a frame. In other words, this
optimization delays frame building.
However, to delay the frame building, we need additional overheads:
(1) Store the last call information.
(2) Check the delayed frame buidling before the frame is needed.
(3) Overhead to build a delayed frame.
rb_thread_t::passed_ci is storage of delayed cfunc call information.
(1) is lightweight because it is only 1 assignment to `passed_ci'.
To achieve (2), we modify GET_THREAD() to check `passed_ci' every
time. It causes 10% overhead on my envrionment.
This optimization only works for cfunc methods which do not need
their `frame'.
After evaluation on my environment, this optimization does not
effective every time. Because of this evaluation results, this
optimization is disabled at default.
* vm_insnhelper.c, vm.c: add VM_PROFILE* macros to measure behaviour
of VM internals. I will extend this feature.
* vm_method.c, method.h: change parameters of the `invoker' function.
Receive `func' pointer as the first parameter.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@37293 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-10-23 00:22:31 -04:00
|
|
|
th->passed_ci = 0;
|
|
|
|
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
vm_push_frame(th, 0, VM_FRAME_MAGIC_CFUNC,
|
|
|
|
ci->recv, VM_ENVVAL_BLOCK_PTR(ci->blockptr), (VALUE)me /* cref */,
|
2015-06-02 00:20:30 -04:00
|
|
|
0, th->cfp->sp + ci->aux.inc_sp, 1, 0);
|
* vm_core.h, vm_insnhelper.c, vm_eval.c (OPT_CALL_CFUNC_WITHOUT_FRAME):
add a new otpimization and its macro `OPT_CALL_CFUNC_WITHOUT_FRAME'.
This optimization makes all cfunc method calls `frameless', which
is fster than ordinal cfunc method call.
If `frame' is needed (for example, it calls another method with
`rb_funcall()'), then build a frame. In other words, this
optimization delays frame building.
However, to delay the frame building, we need additional overheads:
(1) Store the last call information.
(2) Check the delayed frame buidling before the frame is needed.
(3) Overhead to build a delayed frame.
rb_thread_t::passed_ci is storage of delayed cfunc call information.
(1) is lightweight because it is only 1 assignment to `passed_ci'.
To achieve (2), we modify GET_THREAD() to check `passed_ci' every
time. It causes 10% overhead on my envrionment.
This optimization only works for cfunc methods which do not need
their `frame'.
After evaluation on my environment, this optimization does not
effective every time. Because of this evaluation results, this
optimization is disabled at default.
* vm_insnhelper.c, vm.c: add VM_PROFILE* macros to measure behaviour
of VM internals. I will extend this feature.
* vm_method.c, method.h: change parameters of the `invoker' function.
Receive `func' pointer as the first parameter.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@37293 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-10-23 00:22:31 -04:00
|
|
|
|
|
|
|
if (ci->call != vm_call_general) {
|
|
|
|
ci->call = vm_call_cfunc_with_frame;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#else /* OPT_CALL_CFUNC_WITHOUT_FRAME */
|
|
|
|
static VALUE
|
|
|
|
vm_call_cfunc(rb_thread_t *th, rb_control_frame_t *reg_cfp, rb_call_info_t *ci)
|
|
|
|
{
|
* rewrite method/block parameter fitting logic to optimize
keyword arguments/parameters and a splat argument.
[Feature #10440] (Details are described in this ticket)
Most of complex part is moved to vm_args.c.
Now, ISeq#to_a does not catch up new instruction format.
* vm_core.h: change iseq data structures.
* introduce rb_call_info_kw_arg_t to represent keyword arguments.
* add rb_call_info_t::kw_arg.
* rename rb_iseq_t::arg_post_len to rb_iseq_t::arg_post_num.
* rename rb_iseq_t::arg_keywords to arg_keyword_num.
* rename rb_iseq_t::arg_keyword to rb_iseq_t::arg_keyword_bits.
to represent keyword bitmap parameter index.
This bitmap parameter shows that which keyword parameters are given
or not given (0 for given).
It is refered by `checkkeyword' instruction described bellow.
* rename rb_iseq_t::arg_keyword_check to rb_iseq_t::arg_keyword_rest
to represent keyword rest parameter index.
* add rb_iseq_t::arg_keyword_default_values to represent default
keyword values.
* rename VM_CALL_ARGS_SKIP_SETUP to VM_CALL_ARGS_SIMPLE
to represent
(ci->flag & (SPLAT|BLOCKARG)) &&
ci->blockiseq == NULL &&
ci->kw_arg == NULL.
* vm_insnhelper.c, vm_args.c: rewrite with refactoring.
* rewrite splat argument code.
* rewrite keyword arguments/parameters code.
* merge method and block parameter fitting code into one code base.
* vm.c, vm_eval.c: catch up these changes.
* compile.c (new_callinfo): callinfo requires kw_arg parameter.
* compile.c (compile_array_): check the last argument Hash object or
not. If Hash object and all keys are Symbol literals, they are
compiled to keyword arguments.
* insns.def (checkkeyword): add new instruction.
This instruction check the availability of corresponding keyword.
For example, a method "def foo k1: 'v1'; end" is cimpiled to the
following instructions.
0000 checkkeyword 2, 0 # check k1 is given.
0003 branchif 9 # if given, jump to address #9
0005 putstring "v1"
0007 setlocal_OP__WC__0 3 # k1 = 'v1'
0009 trace 8
0011 putnil
0012 trace 16
0014 leave
* insns.def (opt_send_simple): removed and add new instruction
"opt_send_without_block".
* parse.y (new_args_tail_gen): reorder variables.
Before this patch, a method "def foo(k1: 1, kr1:, k2: 2, **krest, &b)"
has parameter variables "k1, kr1, k2, &b, internal_id, krest",
but this patch reorders to "kr1, k1, k2, internal_id, krest, &b".
(locate a block variable at last)
* parse.y (vtable_pop): added.
This function remove latest `n' variables from vtable.
* iseq.c: catch up iseq data changes.
* proc.c: ditto.
* class.c (keyword_error): export as rb_keyword_error().
* common.mk: depend vm_args.c for vm.o.
* hash.c (rb_hash_has_key): export.
* internal.h: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@48239 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2014-11-02 13:02:55 -05:00
|
|
|
CALLER_SETUP_ARG(reg_cfp, ci);
|
* vm_core.h, vm_insnhelper.c, vm_eval.c (OPT_CALL_CFUNC_WITHOUT_FRAME):
add a new otpimization and its macro `OPT_CALL_CFUNC_WITHOUT_FRAME'.
This optimization makes all cfunc method calls `frameless', which
is fster than ordinal cfunc method call.
If `frame' is needed (for example, it calls another method with
`rb_funcall()'), then build a frame. In other words, this
optimization delays frame building.
However, to delay the frame building, we need additional overheads:
(1) Store the last call information.
(2) Check the delayed frame buidling before the frame is needed.
(3) Overhead to build a delayed frame.
rb_thread_t::passed_ci is storage of delayed cfunc call information.
(1) is lightweight because it is only 1 assignment to `passed_ci'.
To achieve (2), we modify GET_THREAD() to check `passed_ci' every
time. It causes 10% overhead on my envrionment.
This optimization only works for cfunc methods which do not need
their `frame'.
After evaluation on my environment, this optimization does not
effective every time. Because of this evaluation results, this
optimization is disabled at default.
* vm_insnhelper.c, vm.c: add VM_PROFILE* macros to measure behaviour
of VM internals. I will extend this feature.
* vm_method.c, method.h: change parameters of the `invoker' function.
Receive `func' pointer as the first parameter.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@37293 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-10-23 00:22:31 -04:00
|
|
|
return vm_call_cfunc_with_frame(th, reg_cfp, ci);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2012-10-14 15:58:59 -04:00
|
|
|
static VALUE
|
|
|
|
vm_call_ivar(rb_thread_t *th, rb_control_frame_t *cfp, rb_call_info_t *ci)
|
|
|
|
{
|
2012-10-16 13:07:23 -04:00
|
|
|
VALUE val = vm_getivar(ci->recv, ci->me->def->body.attr.id, 0, ci, 1);
|
2012-10-14 15:58:59 -04:00
|
|
|
cfp->sp -= 1;
|
|
|
|
return val;
|
|
|
|
}
|
|
|
|
|
|
|
|
static VALUE
|
|
|
|
vm_call_attrset(rb_thread_t *th, rb_control_frame_t *cfp, rb_call_info_t *ci)
|
2012-08-23 03:22:40 -04:00
|
|
|
{
|
2013-02-06 12:31:22 -05:00
|
|
|
VALUE val = vm_setivar(ci->recv, ci->me->def->body.attr.id, *(cfp->sp - 1), 0, ci, 1);
|
2012-10-14 15:58:59 -04:00
|
|
|
cfp->sp -= 2;
|
2013-02-06 12:31:22 -05:00
|
|
|
return val;
|
2012-08-23 03:22:40 -04:00
|
|
|
}
|
|
|
|
|
2012-10-18 02:14:39 -04:00
|
|
|
static inline VALUE
|
2012-10-14 15:58:59 -04:00
|
|
|
vm_call_bmethod_body(rb_thread_t *th, rb_call_info_t *ci, const VALUE *argv)
|
2012-08-23 03:22:40 -04:00
|
|
|
{
|
2012-10-14 15:58:59 -04:00
|
|
|
rb_proc_t *proc;
|
|
|
|
VALUE val;
|
|
|
|
|
|
|
|
/* control block frame */
|
2014-04-30 05:08:10 -04:00
|
|
|
th->passed_bmethod_me = ci->me;
|
2012-10-14 15:58:59 -04:00
|
|
|
GetProcPtr(ci->me->def->body.proc, proc);
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
val = vm_invoke_bmethod(th, proc, ci->recv, ci->argc, argv, ci->blockptr);
|
2012-10-14 15:58:59 -04:00
|
|
|
|
|
|
|
return val;
|
2012-08-23 03:22:40 -04:00
|
|
|
}
|
|
|
|
|
2012-10-14 15:58:59 -04:00
|
|
|
static VALUE
|
|
|
|
vm_call_bmethod(rb_thread_t *th, rb_control_frame_t *cfp, rb_call_info_t *ci)
|
2012-08-23 03:22:40 -04:00
|
|
|
{
|
* rewrite method/block parameter fitting logic to optimize
keyword arguments/parameters and a splat argument.
[Feature #10440] (Details are described in this ticket)
Most of complex part is moved to vm_args.c.
Now, ISeq#to_a does not catch up new instruction format.
* vm_core.h: change iseq data structures.
* introduce rb_call_info_kw_arg_t to represent keyword arguments.
* add rb_call_info_t::kw_arg.
* rename rb_iseq_t::arg_post_len to rb_iseq_t::arg_post_num.
* rename rb_iseq_t::arg_keywords to arg_keyword_num.
* rename rb_iseq_t::arg_keyword to rb_iseq_t::arg_keyword_bits.
to represent keyword bitmap parameter index.
This bitmap parameter shows that which keyword parameters are given
or not given (0 for given).
It is refered by `checkkeyword' instruction described bellow.
* rename rb_iseq_t::arg_keyword_check to rb_iseq_t::arg_keyword_rest
to represent keyword rest parameter index.
* add rb_iseq_t::arg_keyword_default_values to represent default
keyword values.
* rename VM_CALL_ARGS_SKIP_SETUP to VM_CALL_ARGS_SIMPLE
to represent
(ci->flag & (SPLAT|BLOCKARG)) &&
ci->blockiseq == NULL &&
ci->kw_arg == NULL.
* vm_insnhelper.c, vm_args.c: rewrite with refactoring.
* rewrite splat argument code.
* rewrite keyword arguments/parameters code.
* merge method and block parameter fitting code into one code base.
* vm.c, vm_eval.c: catch up these changes.
* compile.c (new_callinfo): callinfo requires kw_arg parameter.
* compile.c (compile_array_): check the last argument Hash object or
not. If Hash object and all keys are Symbol literals, they are
compiled to keyword arguments.
* insns.def (checkkeyword): add new instruction.
This instruction check the availability of corresponding keyword.
For example, a method "def foo k1: 'v1'; end" is cimpiled to the
following instructions.
0000 checkkeyword 2, 0 # check k1 is given.
0003 branchif 9 # if given, jump to address #9
0005 putstring "v1"
0007 setlocal_OP__WC__0 3 # k1 = 'v1'
0009 trace 8
0011 putnil
0012 trace 16
0014 leave
* insns.def (opt_send_simple): removed and add new instruction
"opt_send_without_block".
* parse.y (new_args_tail_gen): reorder variables.
Before this patch, a method "def foo(k1: 1, kr1:, k2: 2, **krest, &b)"
has parameter variables "k1, kr1, k2, &b, internal_id, krest",
but this patch reorders to "kr1, k1, k2, internal_id, krest, &b".
(locate a block variable at last)
* parse.y (vtable_pop): added.
This function remove latest `n' variables from vtable.
* iseq.c: catch up iseq data changes.
* proc.c: ditto.
* class.c (keyword_error): export as rb_keyword_error().
* common.mk: depend vm_args.c for vm.o.
* hash.c (rb_hash_has_key): export.
* internal.h: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@48239 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2014-11-02 13:02:55 -05:00
|
|
|
VALUE *argv;
|
|
|
|
|
|
|
|
CALLER_SETUP_ARG(cfp, ci);
|
|
|
|
|
|
|
|
argv = ALLOCA_N(VALUE, ci->argc);
|
2012-10-14 15:58:59 -04:00
|
|
|
MEMCPY(argv, cfp->sp - ci->argc, VALUE, ci->argc);
|
|
|
|
cfp->sp += - ci->argc - 1;
|
|
|
|
|
|
|
|
return vm_call_bmethod_body(th, ci, argv);
|
2012-08-23 03:22:40 -04:00
|
|
|
}
|
2012-09-28 00:05:36 -04:00
|
|
|
|
2015-06-03 06:42:18 -04:00
|
|
|
static enum method_missing_reason
|
2015-02-04 22:31:07 -05:00
|
|
|
ci_missing_reason(const rb_call_info_t *ci)
|
|
|
|
{
|
2015-06-03 06:42:18 -04:00
|
|
|
enum method_missing_reason stat = MISSING_NOENTRY;
|
2015-06-02 21:39:16 -04:00
|
|
|
if (ci->flag & VM_CALL_VCALL) stat |= MISSING_VCALL;
|
|
|
|
if (ci->flag & VM_CALL_SUPER) stat |= MISSING_SUPER;
|
2015-02-04 22:31:07 -05:00
|
|
|
return stat;
|
|
|
|
}
|
|
|
|
|
2012-12-14 03:04:55 -05:00
|
|
|
static
|
|
|
|
#ifdef _MSC_VER
|
|
|
|
__forceinline
|
|
|
|
#else
|
|
|
|
inline
|
|
|
|
#endif
|
|
|
|
VALUE vm_call_method(rb_thread_t *th, rb_control_frame_t *cfp, rb_call_info_t *ci);
|
2012-10-14 15:58:59 -04:00
|
|
|
|
|
|
|
static VALUE
|
|
|
|
vm_call_opt_send(rb_thread_t *th, rb_control_frame_t *reg_cfp, rb_call_info_t *ci)
|
2012-09-28 00:05:36 -04:00
|
|
|
{
|
* rewrite method/block parameter fitting logic to optimize
keyword arguments/parameters and a splat argument.
[Feature #10440] (Details are described in this ticket)
Most of complex part is moved to vm_args.c.
Now, ISeq#to_a does not catch up new instruction format.
* vm_core.h: change iseq data structures.
* introduce rb_call_info_kw_arg_t to represent keyword arguments.
* add rb_call_info_t::kw_arg.
* rename rb_iseq_t::arg_post_len to rb_iseq_t::arg_post_num.
* rename rb_iseq_t::arg_keywords to arg_keyword_num.
* rename rb_iseq_t::arg_keyword to rb_iseq_t::arg_keyword_bits.
to represent keyword bitmap parameter index.
This bitmap parameter shows that which keyword parameters are given
or not given (0 for given).
It is refered by `checkkeyword' instruction described bellow.
* rename rb_iseq_t::arg_keyword_check to rb_iseq_t::arg_keyword_rest
to represent keyword rest parameter index.
* add rb_iseq_t::arg_keyword_default_values to represent default
keyword values.
* rename VM_CALL_ARGS_SKIP_SETUP to VM_CALL_ARGS_SIMPLE
to represent
(ci->flag & (SPLAT|BLOCKARG)) &&
ci->blockiseq == NULL &&
ci->kw_arg == NULL.
* vm_insnhelper.c, vm_args.c: rewrite with refactoring.
* rewrite splat argument code.
* rewrite keyword arguments/parameters code.
* merge method and block parameter fitting code into one code base.
* vm.c, vm_eval.c: catch up these changes.
* compile.c (new_callinfo): callinfo requires kw_arg parameter.
* compile.c (compile_array_): check the last argument Hash object or
not. If Hash object and all keys are Symbol literals, they are
compiled to keyword arguments.
* insns.def (checkkeyword): add new instruction.
This instruction check the availability of corresponding keyword.
For example, a method "def foo k1: 'v1'; end" is cimpiled to the
following instructions.
0000 checkkeyword 2, 0 # check k1 is given.
0003 branchif 9 # if given, jump to address #9
0005 putstring "v1"
0007 setlocal_OP__WC__0 3 # k1 = 'v1'
0009 trace 8
0011 putnil
0012 trace 16
0014 leave
* insns.def (opt_send_simple): removed and add new instruction
"opt_send_without_block".
* parse.y (new_args_tail_gen): reorder variables.
Before this patch, a method "def foo(k1: 1, kr1:, k2: 2, **krest, &b)"
has parameter variables "k1, kr1, k2, &b, internal_id, krest",
but this patch reorders to "kr1, k1, k2, internal_id, krest, &b".
(locate a block variable at last)
* parse.y (vtable_pop): added.
This function remove latest `n' variables from vtable.
* iseq.c: catch up iseq data changes.
* proc.c: ditto.
* class.c (keyword_error): export as rb_keyword_error().
* common.mk: depend vm_args.c for vm.o.
* hash.c (rb_hash_has_key): export.
* internal.h: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@48239 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2014-11-02 13:02:55 -05:00
|
|
|
int i;
|
2012-10-14 15:58:59 -04:00
|
|
|
VALUE sym;
|
|
|
|
rb_call_info_t ci_entry;
|
2012-09-28 00:05:36 -04:00
|
|
|
|
* rewrite method/block parameter fitting logic to optimize
keyword arguments/parameters and a splat argument.
[Feature #10440] (Details are described in this ticket)
Most of complex part is moved to vm_args.c.
Now, ISeq#to_a does not catch up new instruction format.
* vm_core.h: change iseq data structures.
* introduce rb_call_info_kw_arg_t to represent keyword arguments.
* add rb_call_info_t::kw_arg.
* rename rb_iseq_t::arg_post_len to rb_iseq_t::arg_post_num.
* rename rb_iseq_t::arg_keywords to arg_keyword_num.
* rename rb_iseq_t::arg_keyword to rb_iseq_t::arg_keyword_bits.
to represent keyword bitmap parameter index.
This bitmap parameter shows that which keyword parameters are given
or not given (0 for given).
It is refered by `checkkeyword' instruction described bellow.
* rename rb_iseq_t::arg_keyword_check to rb_iseq_t::arg_keyword_rest
to represent keyword rest parameter index.
* add rb_iseq_t::arg_keyword_default_values to represent default
keyword values.
* rename VM_CALL_ARGS_SKIP_SETUP to VM_CALL_ARGS_SIMPLE
to represent
(ci->flag & (SPLAT|BLOCKARG)) &&
ci->blockiseq == NULL &&
ci->kw_arg == NULL.
* vm_insnhelper.c, vm_args.c: rewrite with refactoring.
* rewrite splat argument code.
* rewrite keyword arguments/parameters code.
* merge method and block parameter fitting code into one code base.
* vm.c, vm_eval.c: catch up these changes.
* compile.c (new_callinfo): callinfo requires kw_arg parameter.
* compile.c (compile_array_): check the last argument Hash object or
not. If Hash object and all keys are Symbol literals, they are
compiled to keyword arguments.
* insns.def (checkkeyword): add new instruction.
This instruction check the availability of corresponding keyword.
For example, a method "def foo k1: 'v1'; end" is cimpiled to the
following instructions.
0000 checkkeyword 2, 0 # check k1 is given.
0003 branchif 9 # if given, jump to address #9
0005 putstring "v1"
0007 setlocal_OP__WC__0 3 # k1 = 'v1'
0009 trace 8
0011 putnil
0012 trace 16
0014 leave
* insns.def (opt_send_simple): removed and add new instruction
"opt_send_without_block".
* parse.y (new_args_tail_gen): reorder variables.
Before this patch, a method "def foo(k1: 1, kr1:, k2: 2, **krest, &b)"
has parameter variables "k1, kr1, k2, &b, internal_id, krest",
but this patch reorders to "kr1, k1, k2, internal_id, krest, &b".
(locate a block variable at last)
* parse.y (vtable_pop): added.
This function remove latest `n' variables from vtable.
* iseq.c: catch up iseq data changes.
* proc.c: ditto.
* class.c (keyword_error): export as rb_keyword_error().
* common.mk: depend vm_args.c for vm.o.
* hash.c (rb_hash_has_key): export.
* internal.h: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@48239 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2014-11-02 13:02:55 -05:00
|
|
|
CALLER_SETUP_ARG(reg_cfp, ci);
|
|
|
|
|
|
|
|
i = ci->argc - 1;
|
|
|
|
|
2012-10-14 15:58:59 -04:00
|
|
|
if (ci->argc == 0) {
|
|
|
|
rb_raise(rb_eArgError, "no method name given");
|
2012-09-28 00:05:36 -04:00
|
|
|
}
|
|
|
|
|
2012-10-14 15:58:59 -04:00
|
|
|
ci_entry = *ci; /* copy ci entry */
|
|
|
|
ci = &ci_entry;
|
* rewrite method/block parameter fitting logic to optimize
keyword arguments/parameters and a splat argument.
[Feature #10440] (Details are described in this ticket)
Most of complex part is moved to vm_args.c.
Now, ISeq#to_a does not catch up new instruction format.
* vm_core.h: change iseq data structures.
* introduce rb_call_info_kw_arg_t to represent keyword arguments.
* add rb_call_info_t::kw_arg.
* rename rb_iseq_t::arg_post_len to rb_iseq_t::arg_post_num.
* rename rb_iseq_t::arg_keywords to arg_keyword_num.
* rename rb_iseq_t::arg_keyword to rb_iseq_t::arg_keyword_bits.
to represent keyword bitmap parameter index.
This bitmap parameter shows that which keyword parameters are given
or not given (0 for given).
It is refered by `checkkeyword' instruction described bellow.
* rename rb_iseq_t::arg_keyword_check to rb_iseq_t::arg_keyword_rest
to represent keyword rest parameter index.
* add rb_iseq_t::arg_keyword_default_values to represent default
keyword values.
* rename VM_CALL_ARGS_SKIP_SETUP to VM_CALL_ARGS_SIMPLE
to represent
(ci->flag & (SPLAT|BLOCKARG)) &&
ci->blockiseq == NULL &&
ci->kw_arg == NULL.
* vm_insnhelper.c, vm_args.c: rewrite with refactoring.
* rewrite splat argument code.
* rewrite keyword arguments/parameters code.
* merge method and block parameter fitting code into one code base.
* vm.c, vm_eval.c: catch up these changes.
* compile.c (new_callinfo): callinfo requires kw_arg parameter.
* compile.c (compile_array_): check the last argument Hash object or
not. If Hash object and all keys are Symbol literals, they are
compiled to keyword arguments.
* insns.def (checkkeyword): add new instruction.
This instruction check the availability of corresponding keyword.
For example, a method "def foo k1: 'v1'; end" is cimpiled to the
following instructions.
0000 checkkeyword 2, 0 # check k1 is given.
0003 branchif 9 # if given, jump to address #9
0005 putstring "v1"
0007 setlocal_OP__WC__0 3 # k1 = 'v1'
0009 trace 8
0011 putnil
0012 trace 16
0014 leave
* insns.def (opt_send_simple): removed and add new instruction
"opt_send_without_block".
* parse.y (new_args_tail_gen): reorder variables.
Before this patch, a method "def foo(k1: 1, kr1:, k2: 2, **krest, &b)"
has parameter variables "k1, kr1, k2, &b, internal_id, krest",
but this patch reorders to "kr1, k1, k2, internal_id, krest, &b".
(locate a block variable at last)
* parse.y (vtable_pop): added.
This function remove latest `n' variables from vtable.
* iseq.c: catch up iseq data changes.
* proc.c: ditto.
* class.c (keyword_error): export as rb_keyword_error().
* common.mk: depend vm_args.c for vm.o.
* hash.c (rb_hash_has_key): export.
* internal.h: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@48239 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2014-11-02 13:02:55 -05:00
|
|
|
ci->kw_arg = NULL; /* TODO: delegate kw_arg without making a Hash object */
|
2012-10-14 15:58:59 -04:00
|
|
|
|
|
|
|
sym = TOPN(i);
|
|
|
|
|
2015-02-04 14:03:04 -05:00
|
|
|
if (!(ci->mid = rb_check_id(&sym))) {
|
2012-10-14 15:58:59 -04:00
|
|
|
if (rb_method_basic_definition_p(CLASS_OF(ci->recv), idMethodMissing)) {
|
|
|
|
VALUE exc = make_no_method_exception(rb_eNoMethodError, NULL, ci->recv, rb_long2int(ci->argc), &TOPN(i));
|
|
|
|
rb_exc_raise(exc);
|
|
|
|
}
|
2015-02-04 23:41:05 -05:00
|
|
|
TOPN(i) = rb_str_intern(sym);
|
2015-02-04 22:31:07 -05:00
|
|
|
ci->mid = idMethodMissing;
|
2015-06-03 06:42:18 -04:00
|
|
|
th->method_missing_reason = ci->aux.method_missing_reason = ci_missing_reason(ci);
|
2015-02-04 14:45:16 -05:00
|
|
|
}
|
2015-02-04 22:31:07 -05:00
|
|
|
else {
|
|
|
|
/* shift arguments */
|
|
|
|
if (i > 0) {
|
|
|
|
MEMMOVE(&TOPN(i), &TOPN(i-1), VALUE, i);
|
|
|
|
}
|
|
|
|
ci->argc -= 1;
|
|
|
|
DEC_SP(1);
|
2012-10-14 15:58:59 -04:00
|
|
|
}
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
ci->me = rb_callable_method_entry_without_refinements(CLASS_OF(ci->recv), ci->mid);
|
2012-09-28 00:05:36 -04:00
|
|
|
|
2012-10-17 03:12:40 -04:00
|
|
|
ci->flag = VM_CALL_FCALL | VM_CALL_OPT_SEND;
|
2012-10-14 15:58:59 -04:00
|
|
|
|
|
|
|
return vm_call_method(th, reg_cfp, ci);
|
2012-09-28 00:05:36 -04:00
|
|
|
}
|
|
|
|
|
2012-10-14 15:58:59 -04:00
|
|
|
static VALUE
|
|
|
|
vm_call_opt_call(rb_thread_t *th, rb_control_frame_t *cfp, rb_call_info_t *ci)
|
|
|
|
{
|
|
|
|
rb_proc_t *proc;
|
* rewrite method/block parameter fitting logic to optimize
keyword arguments/parameters and a splat argument.
[Feature #10440] (Details are described in this ticket)
Most of complex part is moved to vm_args.c.
Now, ISeq#to_a does not catch up new instruction format.
* vm_core.h: change iseq data structures.
* introduce rb_call_info_kw_arg_t to represent keyword arguments.
* add rb_call_info_t::kw_arg.
* rename rb_iseq_t::arg_post_len to rb_iseq_t::arg_post_num.
* rename rb_iseq_t::arg_keywords to arg_keyword_num.
* rename rb_iseq_t::arg_keyword to rb_iseq_t::arg_keyword_bits.
to represent keyword bitmap parameter index.
This bitmap parameter shows that which keyword parameters are given
or not given (0 for given).
It is refered by `checkkeyword' instruction described bellow.
* rename rb_iseq_t::arg_keyword_check to rb_iseq_t::arg_keyword_rest
to represent keyword rest parameter index.
* add rb_iseq_t::arg_keyword_default_values to represent default
keyword values.
* rename VM_CALL_ARGS_SKIP_SETUP to VM_CALL_ARGS_SIMPLE
to represent
(ci->flag & (SPLAT|BLOCKARG)) &&
ci->blockiseq == NULL &&
ci->kw_arg == NULL.
* vm_insnhelper.c, vm_args.c: rewrite with refactoring.
* rewrite splat argument code.
* rewrite keyword arguments/parameters code.
* merge method and block parameter fitting code into one code base.
* vm.c, vm_eval.c: catch up these changes.
* compile.c (new_callinfo): callinfo requires kw_arg parameter.
* compile.c (compile_array_): check the last argument Hash object or
not. If Hash object and all keys are Symbol literals, they are
compiled to keyword arguments.
* insns.def (checkkeyword): add new instruction.
This instruction check the availability of corresponding keyword.
For example, a method "def foo k1: 'v1'; end" is cimpiled to the
following instructions.
0000 checkkeyword 2, 0 # check k1 is given.
0003 branchif 9 # if given, jump to address #9
0005 putstring "v1"
0007 setlocal_OP__WC__0 3 # k1 = 'v1'
0009 trace 8
0011 putnil
0012 trace 16
0014 leave
* insns.def (opt_send_simple): removed and add new instruction
"opt_send_without_block".
* parse.y (new_args_tail_gen): reorder variables.
Before this patch, a method "def foo(k1: 1, kr1:, k2: 2, **krest, &b)"
has parameter variables "k1, kr1, k2, &b, internal_id, krest",
but this patch reorders to "kr1, k1, k2, internal_id, krest, &b".
(locate a block variable at last)
* parse.y (vtable_pop): added.
This function remove latest `n' variables from vtable.
* iseq.c: catch up iseq data changes.
* proc.c: ditto.
* class.c (keyword_error): export as rb_keyword_error().
* common.mk: depend vm_args.c for vm.o.
* hash.c (rb_hash_has_key): export.
* internal.h: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@48239 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2014-11-02 13:02:55 -05:00
|
|
|
int argc;
|
|
|
|
VALUE *argv;
|
|
|
|
|
|
|
|
CALLER_SETUP_ARG(cfp, ci);
|
|
|
|
|
|
|
|
argc = ci->argc;
|
|
|
|
argv = ALLOCA_N(VALUE, argc);
|
2012-10-14 15:58:59 -04:00
|
|
|
GetProcPtr(ci->recv, proc);
|
|
|
|
MEMCPY(argv, cfp->sp - argc, VALUE, argc);
|
|
|
|
cfp->sp -= argc + 1;
|
|
|
|
|
|
|
|
return rb_vm_invoke_proc(th, proc, argc, argv, ci->blockptr);
|
|
|
|
}
|
* insns.def (send, invokesuper, invokeblock, opt_*), vm_core.h:
use only a `ci' (rb_call_info_t) parameter instead of using
parameters such as `op_id', 'op_argc', `blockiseq' and flag.
These information are stored in rb_call_info_t at the compile
time.
This technique simplifies parameter passings at related
function calls (~10% speedups for simple mehtod invocation at
my machine).
`rb_call_info_t' also has new function pointer variable `call'.
This `call' variable enables to customize method (block)
invocation process for each place. However, it always call
`vm_call_general()' at this changes.
`rb_call_info_t' also has temporary variables for method
(block) invocation.
* vm_core.h, compile.c, insns.def: introduce VM_CALL_ARGS_SKIP_SETUP
VM_CALL macro. This flag indicates that this call can skip
caller_setup (block arg and splat arg).
* compile.c: catch up above changes.
* iseq.c: catch up above changes (especially for TS_CALLINFO).
* tool/instruction.rb: catch up above chagnes.
* vm_insnhelper.c, vm_insnhelper.h: ditto. Macros and functions
parameters are changed.
* vm_eval.c (vm_call0): ditto (it will be rewriten soon).
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@37180 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-10-14 12:59:05 -04:00
|
|
|
|
2012-10-14 15:58:59 -04:00
|
|
|
static VALUE
|
2012-10-17 03:12:40 -04:00
|
|
|
vm_call_method_missing(rb_thread_t *th, rb_control_frame_t *reg_cfp, rb_call_info_t *ci)
|
2012-10-14 15:58:59 -04:00
|
|
|
{
|
2012-10-17 03:12:40 -04:00
|
|
|
VALUE *argv = STACK_ADDR_FROM_TOP(ci->argc);
|
|
|
|
rb_call_info_t ci_entry;
|
2012-10-14 15:58:59 -04:00
|
|
|
|
* rewrite method/block parameter fitting logic to optimize
keyword arguments/parameters and a splat argument.
[Feature #10440] (Details are described in this ticket)
Most of complex part is moved to vm_args.c.
Now, ISeq#to_a does not catch up new instruction format.
* vm_core.h: change iseq data structures.
* introduce rb_call_info_kw_arg_t to represent keyword arguments.
* add rb_call_info_t::kw_arg.
* rename rb_iseq_t::arg_post_len to rb_iseq_t::arg_post_num.
* rename rb_iseq_t::arg_keywords to arg_keyword_num.
* rename rb_iseq_t::arg_keyword to rb_iseq_t::arg_keyword_bits.
to represent keyword bitmap parameter index.
This bitmap parameter shows that which keyword parameters are given
or not given (0 for given).
It is refered by `checkkeyword' instruction described bellow.
* rename rb_iseq_t::arg_keyword_check to rb_iseq_t::arg_keyword_rest
to represent keyword rest parameter index.
* add rb_iseq_t::arg_keyword_default_values to represent default
keyword values.
* rename VM_CALL_ARGS_SKIP_SETUP to VM_CALL_ARGS_SIMPLE
to represent
(ci->flag & (SPLAT|BLOCKARG)) &&
ci->blockiseq == NULL &&
ci->kw_arg == NULL.
* vm_insnhelper.c, vm_args.c: rewrite with refactoring.
* rewrite splat argument code.
* rewrite keyword arguments/parameters code.
* merge method and block parameter fitting code into one code base.
* vm.c, vm_eval.c: catch up these changes.
* compile.c (new_callinfo): callinfo requires kw_arg parameter.
* compile.c (compile_array_): check the last argument Hash object or
not. If Hash object and all keys are Symbol literals, they are
compiled to keyword arguments.
* insns.def (checkkeyword): add new instruction.
This instruction check the availability of corresponding keyword.
For example, a method "def foo k1: 'v1'; end" is cimpiled to the
following instructions.
0000 checkkeyword 2, 0 # check k1 is given.
0003 branchif 9 # if given, jump to address #9
0005 putstring "v1"
0007 setlocal_OP__WC__0 3 # k1 = 'v1'
0009 trace 8
0011 putnil
0012 trace 16
0014 leave
* insns.def (opt_send_simple): removed and add new instruction
"opt_send_without_block".
* parse.y (new_args_tail_gen): reorder variables.
Before this patch, a method "def foo(k1: 1, kr1:, k2: 2, **krest, &b)"
has parameter variables "k1, kr1, k2, &b, internal_id, krest",
but this patch reorders to "kr1, k1, k2, internal_id, krest, &b".
(locate a block variable at last)
* parse.y (vtable_pop): added.
This function remove latest `n' variables from vtable.
* iseq.c: catch up iseq data changes.
* proc.c: ditto.
* class.c (keyword_error): export as rb_keyword_error().
* common.mk: depend vm_args.c for vm.o.
* hash.c (rb_hash_has_key): export.
* internal.h: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@48239 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2014-11-02 13:02:55 -05:00
|
|
|
CALLER_SETUP_ARG(reg_cfp, ci);
|
|
|
|
|
2012-10-17 03:12:40 -04:00
|
|
|
ci_entry.flag = VM_CALL_FCALL | VM_CALL_OPT_SEND;
|
|
|
|
ci_entry.argc = ci->argc+1;
|
|
|
|
ci_entry.mid = idMethodMissing;
|
|
|
|
ci_entry.blockptr = ci->blockptr;
|
|
|
|
ci_entry.recv = ci->recv;
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
ci_entry.me = rb_callable_method_entry(CLASS_OF(ci_entry.recv), idMethodMissing);
|
* rewrite method/block parameter fitting logic to optimize
keyword arguments/parameters and a splat argument.
[Feature #10440] (Details are described in this ticket)
Most of complex part is moved to vm_args.c.
Now, ISeq#to_a does not catch up new instruction format.
* vm_core.h: change iseq data structures.
* introduce rb_call_info_kw_arg_t to represent keyword arguments.
* add rb_call_info_t::kw_arg.
* rename rb_iseq_t::arg_post_len to rb_iseq_t::arg_post_num.
* rename rb_iseq_t::arg_keywords to arg_keyword_num.
* rename rb_iseq_t::arg_keyword to rb_iseq_t::arg_keyword_bits.
to represent keyword bitmap parameter index.
This bitmap parameter shows that which keyword parameters are given
or not given (0 for given).
It is refered by `checkkeyword' instruction described bellow.
* rename rb_iseq_t::arg_keyword_check to rb_iseq_t::arg_keyword_rest
to represent keyword rest parameter index.
* add rb_iseq_t::arg_keyword_default_values to represent default
keyword values.
* rename VM_CALL_ARGS_SKIP_SETUP to VM_CALL_ARGS_SIMPLE
to represent
(ci->flag & (SPLAT|BLOCKARG)) &&
ci->blockiseq == NULL &&
ci->kw_arg == NULL.
* vm_insnhelper.c, vm_args.c: rewrite with refactoring.
* rewrite splat argument code.
* rewrite keyword arguments/parameters code.
* merge method and block parameter fitting code into one code base.
* vm.c, vm_eval.c: catch up these changes.
* compile.c (new_callinfo): callinfo requires kw_arg parameter.
* compile.c (compile_array_): check the last argument Hash object or
not. If Hash object and all keys are Symbol literals, they are
compiled to keyword arguments.
* insns.def (checkkeyword): add new instruction.
This instruction check the availability of corresponding keyword.
For example, a method "def foo k1: 'v1'; end" is cimpiled to the
following instructions.
0000 checkkeyword 2, 0 # check k1 is given.
0003 branchif 9 # if given, jump to address #9
0005 putstring "v1"
0007 setlocal_OP__WC__0 3 # k1 = 'v1'
0009 trace 8
0011 putnil
0012 trace 16
0014 leave
* insns.def (opt_send_simple): removed and add new instruction
"opt_send_without_block".
* parse.y (new_args_tail_gen): reorder variables.
Before this patch, a method "def foo(k1: 1, kr1:, k2: 2, **krest, &b)"
has parameter variables "k1, kr1, k2, &b, internal_id, krest",
but this patch reorders to "kr1, k1, k2, internal_id, krest, &b".
(locate a block variable at last)
* parse.y (vtable_pop): added.
This function remove latest `n' variables from vtable.
* iseq.c: catch up iseq data changes.
* proc.c: ditto.
* class.c (keyword_error): export as rb_keyword_error().
* common.mk: depend vm_args.c for vm.o.
* hash.c (rb_hash_has_key): export.
* internal.h: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@48239 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2014-11-02 13:02:55 -05:00
|
|
|
ci_entry.kw_arg = NULL;
|
2012-10-14 15:58:59 -04:00
|
|
|
|
2012-10-17 03:12:40 -04:00
|
|
|
/* shift arguments: m(a, b, c) #=> method_missing(:m, a, b, c) */
|
2012-12-25 04:57:07 -05:00
|
|
|
CHECK_VM_STACK_OVERFLOW(reg_cfp, 1);
|
2012-10-17 03:12:40 -04:00
|
|
|
if (ci->argc > 0) {
|
|
|
|
MEMMOVE(argv+1, argv, VALUE, ci->argc);
|
|
|
|
}
|
2012-10-14 15:58:59 -04:00
|
|
|
argv[0] = ID2SYM(ci->mid);
|
2012-10-17 03:12:40 -04:00
|
|
|
INC_SP(1);
|
|
|
|
|
2015-06-03 06:42:18 -04:00
|
|
|
th->method_missing_reason = ci->aux.method_missing_reason;
|
2012-10-17 03:12:40 -04:00
|
|
|
return vm_call_method(th, reg_cfp, &ci_entry);
|
2012-10-14 15:58:59 -04:00
|
|
|
}
|
|
|
|
|
2012-12-07 10:49:21 -05:00
|
|
|
static inline VALUE
|
* revised r37993 to avoid SEGV/ILL in tests. In r37993, a method
entry with VM_METHOD_TYPE_REFINED holds only the original method
definition, so ci->me is set to a method entry allocated in the
stack, and it causes SEGV/ILL. In this commit, a method entry
with VM_METHOD_TYPE_REFINED holds the whole original method entry.
Furthermore, rb_thread_mark() is changed to mark cfp->klass to
avoid GC for iclasses created by copy_refinement_iclass().
* vm_method.c (rb_method_entry_make): add a method entry with
VM_METHOD_TYPE_REFINED to the class refined by the refinement if
the target module is a refinement. When a method entry with
VM_METHOD_TYPE_UNDEF is invoked by vm_call_method(), a method with
the same name is searched in refinements. If such a method is
found, the method is invoked. Otherwise, the original method in
the refined class (rb_method_definition_t::body.orig_me) is
invoked. This change is made to simplify the normal method lookup
and to improve the performance of normal method calls.
* vm_method.c (EXPR1, search_method, rb_method_entry),
vm_eval.c (rb_call0, rb_search_method_entry): do not use
refinements for method lookup.
* vm_insnhelper.c (vm_call_method): search methods in refinements if
ci->me is VM_METHOD_TYPE_REFINED. If the method is called by
super (i.e., ci->call == vm_call_super_method), skip the same
method entry as the current method to avoid infinite call of the
same method.
* class.c (include_modules_at): add a refined method entry for each
method defined in a module included in a refinement.
* class.c (rb_prepend_module): set an empty table to
RCLASS_M_TBL(klass) to add refined method entries, because
refinements should have priority over prepended modules.
* proc.c (mnew): use rb_method_entry_with_refinements() to get
a refined method.
* vm.c (rb_thread_mark): mark cfp->klass for iclasses created by
copy_refinement_iclass().
* vm.c (Init_VM), cont.c (fiber_init): initialize th->cfp->klass.
* test/ruby/test_refinement.rb (test_inline_method_cache): do not skip
the test because it should pass successfully.
* test/ruby/test_refinement.rb (test_redefine_refined_method): new
test for the case a refined method is redefined.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@38236 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-12-06 08:08:41 -05:00
|
|
|
find_refinement(VALUE refinements, VALUE klass)
|
|
|
|
{
|
|
|
|
if (NIL_P(refinements)) {
|
|
|
|
return Qnil;
|
|
|
|
}
|
2012-12-07 10:49:21 -05:00
|
|
|
return rb_hash_lookup(refinements, klass);
|
* revised r37993 to avoid SEGV/ILL in tests. In r37993, a method
entry with VM_METHOD_TYPE_REFINED holds only the original method
definition, so ci->me is set to a method entry allocated in the
stack, and it causes SEGV/ILL. In this commit, a method entry
with VM_METHOD_TYPE_REFINED holds the whole original method entry.
Furthermore, rb_thread_mark() is changed to mark cfp->klass to
avoid GC for iclasses created by copy_refinement_iclass().
* vm_method.c (rb_method_entry_make): add a method entry with
VM_METHOD_TYPE_REFINED to the class refined by the refinement if
the target module is a refinement. When a method entry with
VM_METHOD_TYPE_UNDEF is invoked by vm_call_method(), a method with
the same name is searched in refinements. If such a method is
found, the method is invoked. Otherwise, the original method in
the refined class (rb_method_definition_t::body.orig_me) is
invoked. This change is made to simplify the normal method lookup
and to improve the performance of normal method calls.
* vm_method.c (EXPR1, search_method, rb_method_entry),
vm_eval.c (rb_call0, rb_search_method_entry): do not use
refinements for method lookup.
* vm_insnhelper.c (vm_call_method): search methods in refinements if
ci->me is VM_METHOD_TYPE_REFINED. If the method is called by
super (i.e., ci->call == vm_call_super_method), skip the same
method entry as the current method to avoid infinite call of the
same method.
* class.c (include_modules_at): add a refined method entry for each
method defined in a module included in a refinement.
* class.c (rb_prepend_module): set an empty table to
RCLASS_M_TBL(klass) to add refined method entries, because
refinements should have priority over prepended modules.
* proc.c (mnew): use rb_method_entry_with_refinements() to get
a refined method.
* vm.c (rb_thread_mark): mark cfp->klass for iclasses created by
copy_refinement_iclass().
* vm.c (Init_VM), cont.c (fiber_init): initialize th->cfp->klass.
* test/ruby/test_refinement.rb (test_inline_method_cache): do not skip
the test because it should pass successfully.
* test/ruby/test_refinement.rb (test_redefine_refined_method): new
test for the case a refined method is redefined.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@38236 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-12-06 08:08:41 -05:00
|
|
|
}
|
|
|
|
|
|
|
|
static int rb_method_definition_eq(const rb_method_definition_t *d1, const rb_method_definition_t *d2);
|
|
|
|
static VALUE vm_call_super_method(rb_thread_t *th, rb_control_frame_t *reg_cfp, rb_call_info_t *ci);
|
|
|
|
|
2013-02-23 23:36:00 -05:00
|
|
|
static rb_control_frame_t *
|
|
|
|
current_method_entry(rb_thread_t *th, rb_control_frame_t *cfp)
|
|
|
|
{
|
|
|
|
rb_control_frame_t *top_cfp = cfp;
|
|
|
|
|
2015-07-21 18:52:59 -04:00
|
|
|
if (cfp->iseq && cfp->iseq->body->type == ISEQ_TYPE_BLOCK) {
|
|
|
|
const rb_iseq_t *local_iseq = cfp->iseq->body->local_iseq;
|
|
|
|
|
2013-02-23 23:36:00 -05:00
|
|
|
do {
|
|
|
|
cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp);
|
|
|
|
if (RUBY_VM_CONTROL_FRAME_STACK_OVERFLOW_P(th, cfp)) {
|
|
|
|
/* TODO: orphan block */
|
|
|
|
return top_cfp;
|
|
|
|
}
|
|
|
|
} while (cfp->iseq != local_iseq);
|
|
|
|
}
|
|
|
|
return cfp;
|
|
|
|
}
|
|
|
|
|
2015-05-30 14:45:28 -04:00
|
|
|
static VALUE
|
2015-06-01 11:00:17 -04:00
|
|
|
find_defined_class_by_owner(VALUE current_class, VALUE target_owner)
|
2015-05-30 14:45:28 -04:00
|
|
|
{
|
|
|
|
VALUE klass = current_class;
|
|
|
|
|
|
|
|
/* for prepended Module, then start from cover class */
|
|
|
|
if (RB_TYPE_P(klass, T_ICLASS) && FL_TEST(klass, RICLASS_IS_ORIGIN)) klass = RBASIC_CLASS(klass);
|
|
|
|
|
|
|
|
while (RTEST(klass)) {
|
|
|
|
VALUE owner = RB_TYPE_P(klass, T_ICLASS) ? RBASIC_CLASS(klass) : klass;
|
|
|
|
if (owner == target_owner) {
|
|
|
|
return klass;
|
|
|
|
}
|
|
|
|
klass = RCLASS_SUPER(klass);
|
|
|
|
}
|
|
|
|
|
|
|
|
return current_class; /* maybe module function */
|
|
|
|
}
|
|
|
|
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
static rb_method_definition_t *method_definition_create(rb_method_type_t type, ID mid);
|
|
|
|
static void method_definition_set(const rb_method_entry_t *me, rb_method_definition_t *def, void *opts);
|
|
|
|
|
|
|
|
static const rb_callable_method_entry_t *
|
|
|
|
aliased_callable_method_entry(const rb_callable_method_entry_t *me)
|
|
|
|
{
|
|
|
|
const rb_method_entry_t *orig_me = me->def->body.alias.original_me;
|
|
|
|
const rb_callable_method_entry_t *cme;
|
|
|
|
|
|
|
|
if (orig_me->defined_class == 0) {
|
|
|
|
VALUE defined_class = find_defined_class_by_owner(me->defined_class, orig_me->owner);
|
|
|
|
VM_ASSERT(RB_TYPE_P(orig_me->owner, T_MODULE));
|
|
|
|
cme = rb_method_entry_complement_defined_class(orig_me, defined_class);
|
|
|
|
|
|
|
|
if (me->def->alias_count == 0) {
|
|
|
|
RB_OBJ_WRITE(me, &me->def->body.alias.original_me, cme);
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
method_definition_set((rb_method_entry_t *)me,
|
|
|
|
method_definition_create(VM_METHOD_TYPE_ALIAS, me->def->original_id),
|
|
|
|
(void *)cme);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
cme = (const rb_callable_method_entry_t *)orig_me;
|
|
|
|
}
|
|
|
|
|
|
|
|
VM_ASSERT(callable_method_entry_p(cme));
|
|
|
|
return cme;
|
|
|
|
}
|
|
|
|
|
|
|
|
static const rb_callable_method_entry_t *
|
|
|
|
refined_method_callable_without_refinement(const rb_callable_method_entry_t *me)
|
|
|
|
{
|
|
|
|
const rb_method_entry_t *orig_me = me->def->body.refined.orig_me;
|
|
|
|
const rb_callable_method_entry_t *cme;
|
|
|
|
|
|
|
|
if (orig_me->defined_class == 0) {
|
|
|
|
cme = NULL;
|
|
|
|
rb_notimplement();
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
cme = (const rb_callable_method_entry_t *)orig_me;
|
|
|
|
}
|
|
|
|
|
|
|
|
VM_ASSERT(callable_method_entry_p(cme));
|
|
|
|
return cme;
|
|
|
|
}
|
|
|
|
|
2012-12-14 03:04:55 -05:00
|
|
|
static
|
|
|
|
#ifdef _MSC_VER
|
|
|
|
__forceinline
|
|
|
|
#else
|
|
|
|
inline
|
|
|
|
#endif
|
|
|
|
VALUE
|
* insns.def (send, invokesuper, invokeblock, opt_*), vm_core.h:
use only a `ci' (rb_call_info_t) parameter instead of using
parameters such as `op_id', 'op_argc', `blockiseq' and flag.
These information are stored in rb_call_info_t at the compile
time.
This technique simplifies parameter passings at related
function calls (~10% speedups for simple mehtod invocation at
my machine).
`rb_call_info_t' also has new function pointer variable `call'.
This `call' variable enables to customize method (block)
invocation process for each place. However, it always call
`vm_call_general()' at this changes.
`rb_call_info_t' also has temporary variables for method
(block) invocation.
* vm_core.h, compile.c, insns.def: introduce VM_CALL_ARGS_SKIP_SETUP
VM_CALL macro. This flag indicates that this call can skip
caller_setup (block arg and splat arg).
* compile.c: catch up above changes.
* iseq.c: catch up above changes (especially for TS_CALLINFO).
* tool/instruction.rb: catch up above chagnes.
* vm_insnhelper.c, vm_insnhelper.h: ditto. Macros and functions
parameters are changed.
* vm_eval.c (vm_call0): ditto (it will be rewriten soon).
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@37180 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-10-14 12:59:05 -04:00
|
|
|
vm_call_method(rb_thread_t *th, rb_control_frame_t *cfp, rb_call_info_t *ci)
|
|
|
|
{
|
2012-10-15 13:40:50 -04:00
|
|
|
int enable_fastpath = 1;
|
2012-11-28 08:56:29 -05:00
|
|
|
rb_call_info_t ci_temp;
|
* insns.def (send, invokesuper, invokeblock, opt_*), vm_core.h:
use only a `ci' (rb_call_info_t) parameter instead of using
parameters such as `op_id', 'op_argc', `blockiseq' and flag.
These information are stored in rb_call_info_t at the compile
time.
This technique simplifies parameter passings at related
function calls (~10% speedups for simple mehtod invocation at
my machine).
`rb_call_info_t' also has new function pointer variable `call'.
This `call' variable enables to customize method (block)
invocation process for each place. However, it always call
`vm_call_general()' at this changes.
`rb_call_info_t' also has temporary variables for method
(block) invocation.
* vm_core.h, compile.c, insns.def: introduce VM_CALL_ARGS_SKIP_SETUP
VM_CALL macro. This flag indicates that this call can skip
caller_setup (block arg and splat arg).
* compile.c: catch up above changes.
* iseq.c: catch up above changes (especially for TS_CALLINFO).
* tool/instruction.rb: catch up above chagnes.
* vm_insnhelper.c, vm_insnhelper.h: ditto. Macros and functions
parameters are changed.
* vm_eval.c (vm_call0): ditto (it will be rewriten soon).
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@37180 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-10-14 12:59:05 -04:00
|
|
|
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
VM_ASSERT(callable_method_entry_p(ci->me));
|
|
|
|
|
* insns.def (send, invokesuper, invokeblock, opt_*), vm_core.h:
use only a `ci' (rb_call_info_t) parameter instead of using
parameters such as `op_id', 'op_argc', `blockiseq' and flag.
These information are stored in rb_call_info_t at the compile
time.
This technique simplifies parameter passings at related
function calls (~10% speedups for simple mehtod invocation at
my machine).
`rb_call_info_t' also has new function pointer variable `call'.
This `call' variable enables to customize method (block)
invocation process for each place. However, it always call
`vm_call_general()' at this changes.
`rb_call_info_t' also has temporary variables for method
(block) invocation.
* vm_core.h, compile.c, insns.def: introduce VM_CALL_ARGS_SKIP_SETUP
VM_CALL macro. This flag indicates that this call can skip
caller_setup (block arg and splat arg).
* compile.c: catch up above changes.
* iseq.c: catch up above changes (especially for TS_CALLINFO).
* tool/instruction.rb: catch up above chagnes.
* vm_insnhelper.c, vm_insnhelper.h: ditto. Macros and functions
parameters are changed.
* vm_eval.c (vm_call0): ditto (it will be rewriten soon).
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@37180 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-10-14 12:59:05 -04:00
|
|
|
start_method_dispatch:
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
VM_ASSERT(callable_method_entry_p(ci->me));
|
* insns.def (send, invokesuper, invokeblock, opt_*), vm_core.h:
use only a `ci' (rb_call_info_t) parameter instead of using
parameters such as `op_id', 'op_argc', `blockiseq' and flag.
These information are stored in rb_call_info_t at the compile
time.
This technique simplifies parameter passings at related
function calls (~10% speedups for simple mehtod invocation at
my machine).
`rb_call_info_t' also has new function pointer variable `call'.
This `call' variable enables to customize method (block)
invocation process for each place. However, it always call
`vm_call_general()' at this changes.
`rb_call_info_t' also has temporary variables for method
(block) invocation.
* vm_core.h, compile.c, insns.def: introduce VM_CALL_ARGS_SKIP_SETUP
VM_CALL macro. This flag indicates that this call can skip
caller_setup (block arg and splat arg).
* compile.c: catch up above changes.
* iseq.c: catch up above changes (especially for TS_CALLINFO).
* tool/instruction.rb: catch up above chagnes.
* vm_insnhelper.c, vm_insnhelper.h: ditto. Macros and functions
parameters are changed.
* vm_eval.c (vm_call0): ditto (it will be rewriten soon).
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@37180 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-10-14 12:59:05 -04:00
|
|
|
if (ci->me != 0) {
|
2015-06-06 06:19:48 -04:00
|
|
|
if (LIKELY(METHOD_ENTRY_VISI(ci->me) == METHOD_VISI_PUBLIC && METHOD_ENTRY_SAFE(ci->me) == 0)) {
|
2013-08-29 04:03:23 -04:00
|
|
|
VALUE klass;
|
|
|
|
|
* insns.def (send, invokesuper, invokeblock, opt_*), vm_core.h:
use only a `ci' (rb_call_info_t) parameter instead of using
parameters such as `op_id', 'op_argc', `blockiseq' and flag.
These information are stored in rb_call_info_t at the compile
time.
This technique simplifies parameter passings at related
function calls (~10% speedups for simple mehtod invocation at
my machine).
`rb_call_info_t' also has new function pointer variable `call'.
This `call' variable enables to customize method (block)
invocation process for each place. However, it always call
`vm_call_general()' at this changes.
`rb_call_info_t' also has temporary variables for method
(block) invocation.
* vm_core.h, compile.c, insns.def: introduce VM_CALL_ARGS_SKIP_SETUP
VM_CALL macro. This flag indicates that this call can skip
caller_setup (block arg and splat arg).
* compile.c: catch up above changes.
* iseq.c: catch up above changes (especially for TS_CALLINFO).
* tool/instruction.rb: catch up above chagnes.
* vm_insnhelper.c, vm_insnhelper.h: ditto. Macros and functions
parameters are changed.
* vm_eval.c (vm_call0): ditto (it will be rewriten soon).
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@37180 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-10-14 12:59:05 -04:00
|
|
|
normal_method_dispatch:
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
VM_ASSERT(callable_method_entry_p(ci->me));
|
* insns.def (send, invokesuper, invokeblock, opt_*), vm_core.h:
use only a `ci' (rb_call_info_t) parameter instead of using
parameters such as `op_id', 'op_argc', `blockiseq' and flag.
These information are stored in rb_call_info_t at the compile
time.
This technique simplifies parameter passings at related
function calls (~10% speedups for simple mehtod invocation at
my machine).
`rb_call_info_t' also has new function pointer variable `call'.
This `call' variable enables to customize method (block)
invocation process for each place. However, it always call
`vm_call_general()' at this changes.
`rb_call_info_t' also has temporary variables for method
(block) invocation.
* vm_core.h, compile.c, insns.def: introduce VM_CALL_ARGS_SKIP_SETUP
VM_CALL macro. This flag indicates that this call can skip
caller_setup (block arg and splat arg).
* compile.c: catch up above changes.
* iseq.c: catch up above changes (especially for TS_CALLINFO).
* tool/instruction.rb: catch up above chagnes.
* vm_insnhelper.c, vm_insnhelper.h: ditto. Macros and functions
parameters are changed.
* vm_eval.c (vm_call0): ditto (it will be rewriten soon).
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@37180 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-10-14 12:59:05 -04:00
|
|
|
switch (ci->me->def->type) {
|
|
|
|
case VM_METHOD_TYPE_ISEQ:{
|
2012-10-15 13:40:50 -04:00
|
|
|
CI_SET_FASTPATH(ci, vm_call_iseq_setup, enable_fastpath);
|
2012-10-14 15:58:59 -04:00
|
|
|
return vm_call_iseq_setup(th, cfp, ci);
|
* insns.def (send, invokesuper, invokeblock, opt_*), vm_core.h:
use only a `ci' (rb_call_info_t) parameter instead of using
parameters such as `op_id', 'op_argc', `blockiseq' and flag.
These information are stored in rb_call_info_t at the compile
time.
This technique simplifies parameter passings at related
function calls (~10% speedups for simple mehtod invocation at
my machine).
`rb_call_info_t' also has new function pointer variable `call'.
This `call' variable enables to customize method (block)
invocation process for each place. However, it always call
`vm_call_general()' at this changes.
`rb_call_info_t' also has temporary variables for method
(block) invocation.
* vm_core.h, compile.c, insns.def: introduce VM_CALL_ARGS_SKIP_SETUP
VM_CALL macro. This flag indicates that this call can skip
caller_setup (block arg and splat arg).
* compile.c: catch up above changes.
* iseq.c: catch up above changes (especially for TS_CALLINFO).
* tool/instruction.rb: catch up above chagnes.
* vm_insnhelper.c, vm_insnhelper.h: ditto. Macros and functions
parameters are changed.
* vm_eval.c (vm_call0): ditto (it will be rewriten soon).
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@37180 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-10-14 12:59:05 -04:00
|
|
|
}
|
|
|
|
case VM_METHOD_TYPE_NOTIMPLEMENTED:
|
* vm_core.h, vm_insnhelper.c, vm_eval.c (OPT_CALL_CFUNC_WITHOUT_FRAME):
add a new otpimization and its macro `OPT_CALL_CFUNC_WITHOUT_FRAME'.
This optimization makes all cfunc method calls `frameless', which
is fster than ordinal cfunc method call.
If `frame' is needed (for example, it calls another method with
`rb_funcall()'), then build a frame. In other words, this
optimization delays frame building.
However, to delay the frame building, we need additional overheads:
(1) Store the last call information.
(2) Check the delayed frame buidling before the frame is needed.
(3) Overhead to build a delayed frame.
rb_thread_t::passed_ci is storage of delayed cfunc call information.
(1) is lightweight because it is only 1 assignment to `passed_ci'.
To achieve (2), we modify GET_THREAD() to check `passed_ci' every
time. It causes 10% overhead on my envrionment.
This optimization only works for cfunc methods which do not need
their `frame'.
After evaluation on my environment, this optimization does not
effective every time. Because of this evaluation results, this
optimization is disabled at default.
* vm_insnhelper.c, vm.c: add VM_PROFILE* macros to measure behaviour
of VM internals. I will extend this feature.
* vm_method.c, method.h: change parameters of the `invoker' function.
Receive `func' pointer as the first parameter.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@37293 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-10-23 00:22:31 -04:00
|
|
|
case VM_METHOD_TYPE_CFUNC:
|
2012-10-15 13:40:50 -04:00
|
|
|
CI_SET_FASTPATH(ci, vm_call_cfunc, enable_fastpath);
|
2012-10-16 17:49:18 -04:00
|
|
|
return vm_call_cfunc(th, cfp, ci);
|
* insns.def (send, invokesuper, invokeblock, opt_*), vm_core.h:
use only a `ci' (rb_call_info_t) parameter instead of using
parameters such as `op_id', 'op_argc', `blockiseq' and flag.
These information are stored in rb_call_info_t at the compile
time.
This technique simplifies parameter passings at related
function calls (~10% speedups for simple mehtod invocation at
my machine).
`rb_call_info_t' also has new function pointer variable `call'.
This `call' variable enables to customize method (block)
invocation process for each place. However, it always call
`vm_call_general()' at this changes.
`rb_call_info_t' also has temporary variables for method
(block) invocation.
* vm_core.h, compile.c, insns.def: introduce VM_CALL_ARGS_SKIP_SETUP
VM_CALL macro. This flag indicates that this call can skip
caller_setup (block arg and splat arg).
* compile.c: catch up above changes.
* iseq.c: catch up above changes (especially for TS_CALLINFO).
* tool/instruction.rb: catch up above chagnes.
* vm_insnhelper.c, vm_insnhelper.h: ditto. Macros and functions
parameters are changed.
* vm_eval.c (vm_call0): ditto (it will be rewriten soon).
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@37180 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-10-14 12:59:05 -04:00
|
|
|
case VM_METHOD_TYPE_ATTRSET:{
|
* rewrite method/block parameter fitting logic to optimize
keyword arguments/parameters and a splat argument.
[Feature #10440] (Details are described in this ticket)
Most of complex part is moved to vm_args.c.
Now, ISeq#to_a does not catch up new instruction format.
* vm_core.h: change iseq data structures.
* introduce rb_call_info_kw_arg_t to represent keyword arguments.
* add rb_call_info_t::kw_arg.
* rename rb_iseq_t::arg_post_len to rb_iseq_t::arg_post_num.
* rename rb_iseq_t::arg_keywords to arg_keyword_num.
* rename rb_iseq_t::arg_keyword to rb_iseq_t::arg_keyword_bits.
to represent keyword bitmap parameter index.
This bitmap parameter shows that which keyword parameters are given
or not given (0 for given).
It is refered by `checkkeyword' instruction described bellow.
* rename rb_iseq_t::arg_keyword_check to rb_iseq_t::arg_keyword_rest
to represent keyword rest parameter index.
* add rb_iseq_t::arg_keyword_default_values to represent default
keyword values.
* rename VM_CALL_ARGS_SKIP_SETUP to VM_CALL_ARGS_SIMPLE
to represent
(ci->flag & (SPLAT|BLOCKARG)) &&
ci->blockiseq == NULL &&
ci->kw_arg == NULL.
* vm_insnhelper.c, vm_args.c: rewrite with refactoring.
* rewrite splat argument code.
* rewrite keyword arguments/parameters code.
* merge method and block parameter fitting code into one code base.
* vm.c, vm_eval.c: catch up these changes.
* compile.c (new_callinfo): callinfo requires kw_arg parameter.
* compile.c (compile_array_): check the last argument Hash object or
not. If Hash object and all keys are Symbol literals, they are
compiled to keyword arguments.
* insns.def (checkkeyword): add new instruction.
This instruction check the availability of corresponding keyword.
For example, a method "def foo k1: 'v1'; end" is cimpiled to the
following instructions.
0000 checkkeyword 2, 0 # check k1 is given.
0003 branchif 9 # if given, jump to address #9
0005 putstring "v1"
0007 setlocal_OP__WC__0 3 # k1 = 'v1'
0009 trace 8
0011 putnil
0012 trace 16
0014 leave
* insns.def (opt_send_simple): removed and add new instruction
"opt_send_without_block".
* parse.y (new_args_tail_gen): reorder variables.
Before this patch, a method "def foo(k1: 1, kr1:, k2: 2, **krest, &b)"
has parameter variables "k1, kr1, k2, &b, internal_id, krest",
but this patch reorders to "kr1, k1, k2, internal_id, krest, &b".
(locate a block variable at last)
* parse.y (vtable_pop): added.
This function remove latest `n' variables from vtable.
* iseq.c: catch up iseq data changes.
* proc.c: ditto.
* class.c (keyword_error): export as rb_keyword_error().
* common.mk: depend vm_args.c for vm.o.
* hash.c (rb_hash_has_key): export.
* internal.h: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@48239 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2014-11-02 13:02:55 -05:00
|
|
|
CALLER_SETUP_ARG(cfp, ci);
|
2013-06-18 10:01:32 -04:00
|
|
|
rb_check_arity(ci->argc, 1, 1);
|
2012-10-16 13:07:23 -04:00
|
|
|
ci->aux.index = 0;
|
2012-10-15 17:35:29 -04:00
|
|
|
CI_SET_FASTPATH(ci, vm_call_attrset, enable_fastpath && !(ci->flag & VM_CALL_ARGS_SPLAT));
|
2012-10-16 17:49:18 -04:00
|
|
|
return vm_call_attrset(th, cfp, ci);
|
* insns.def (send, invokesuper, invokeblock, opt_*), vm_core.h:
use only a `ci' (rb_call_info_t) parameter instead of using
parameters such as `op_id', 'op_argc', `blockiseq' and flag.
These information are stored in rb_call_info_t at the compile
time.
This technique simplifies parameter passings at related
function calls (~10% speedups for simple mehtod invocation at
my machine).
`rb_call_info_t' also has new function pointer variable `call'.
This `call' variable enables to customize method (block)
invocation process for each place. However, it always call
`vm_call_general()' at this changes.
`rb_call_info_t' also has temporary variables for method
(block) invocation.
* vm_core.h, compile.c, insns.def: introduce VM_CALL_ARGS_SKIP_SETUP
VM_CALL macro. This flag indicates that this call can skip
caller_setup (block arg and splat arg).
* compile.c: catch up above changes.
* iseq.c: catch up above changes (especially for TS_CALLINFO).
* tool/instruction.rb: catch up above chagnes.
* vm_insnhelper.c, vm_insnhelper.h: ditto. Macros and functions
parameters are changed.
* vm_eval.c (vm_call0): ditto (it will be rewriten soon).
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@37180 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-10-14 12:59:05 -04:00
|
|
|
}
|
|
|
|
case VM_METHOD_TYPE_IVAR:{
|
* rewrite method/block parameter fitting logic to optimize
keyword arguments/parameters and a splat argument.
[Feature #10440] (Details are described in this ticket)
Most of complex part is moved to vm_args.c.
Now, ISeq#to_a does not catch up new instruction format.
* vm_core.h: change iseq data structures.
* introduce rb_call_info_kw_arg_t to represent keyword arguments.
* add rb_call_info_t::kw_arg.
* rename rb_iseq_t::arg_post_len to rb_iseq_t::arg_post_num.
* rename rb_iseq_t::arg_keywords to arg_keyword_num.
* rename rb_iseq_t::arg_keyword to rb_iseq_t::arg_keyword_bits.
to represent keyword bitmap parameter index.
This bitmap parameter shows that which keyword parameters are given
or not given (0 for given).
It is refered by `checkkeyword' instruction described bellow.
* rename rb_iseq_t::arg_keyword_check to rb_iseq_t::arg_keyword_rest
to represent keyword rest parameter index.
* add rb_iseq_t::arg_keyword_default_values to represent default
keyword values.
* rename VM_CALL_ARGS_SKIP_SETUP to VM_CALL_ARGS_SIMPLE
to represent
(ci->flag & (SPLAT|BLOCKARG)) &&
ci->blockiseq == NULL &&
ci->kw_arg == NULL.
* vm_insnhelper.c, vm_args.c: rewrite with refactoring.
* rewrite splat argument code.
* rewrite keyword arguments/parameters code.
* merge method and block parameter fitting code into one code base.
* vm.c, vm_eval.c: catch up these changes.
* compile.c (new_callinfo): callinfo requires kw_arg parameter.
* compile.c (compile_array_): check the last argument Hash object or
not. If Hash object and all keys are Symbol literals, they are
compiled to keyword arguments.
* insns.def (checkkeyword): add new instruction.
This instruction check the availability of corresponding keyword.
For example, a method "def foo k1: 'v1'; end" is cimpiled to the
following instructions.
0000 checkkeyword 2, 0 # check k1 is given.
0003 branchif 9 # if given, jump to address #9
0005 putstring "v1"
0007 setlocal_OP__WC__0 3 # k1 = 'v1'
0009 trace 8
0011 putnil
0012 trace 16
0014 leave
* insns.def (opt_send_simple): removed and add new instruction
"opt_send_without_block".
* parse.y (new_args_tail_gen): reorder variables.
Before this patch, a method "def foo(k1: 1, kr1:, k2: 2, **krest, &b)"
has parameter variables "k1, kr1, k2, &b, internal_id, krest",
but this patch reorders to "kr1, k1, k2, internal_id, krest, &b".
(locate a block variable at last)
* parse.y (vtable_pop): added.
This function remove latest `n' variables from vtable.
* iseq.c: catch up iseq data changes.
* proc.c: ditto.
* class.c (keyword_error): export as rb_keyword_error().
* common.mk: depend vm_args.c for vm.o.
* hash.c (rb_hash_has_key): export.
* internal.h: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@48239 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2014-11-02 13:02:55 -05:00
|
|
|
CALLER_SETUP_ARG(cfp, ci);
|
2012-10-14 16:59:21 -04:00
|
|
|
rb_check_arity(ci->argc, 0, 0);
|
2012-10-16 13:07:23 -04:00
|
|
|
ci->aux.index = 0;
|
2012-10-15 17:35:29 -04:00
|
|
|
CI_SET_FASTPATH(ci, vm_call_ivar, enable_fastpath && !(ci->flag & VM_CALL_ARGS_SPLAT));
|
2012-10-16 17:49:18 -04:00
|
|
|
return vm_call_ivar(th, cfp, ci);
|
* insns.def (send, invokesuper, invokeblock, opt_*), vm_core.h:
use only a `ci' (rb_call_info_t) parameter instead of using
parameters such as `op_id', 'op_argc', `blockiseq' and flag.
These information are stored in rb_call_info_t at the compile
time.
This technique simplifies parameter passings at related
function calls (~10% speedups for simple mehtod invocation at
my machine).
`rb_call_info_t' also has new function pointer variable `call'.
This `call' variable enables to customize method (block)
invocation process for each place. However, it always call
`vm_call_general()' at this changes.
`rb_call_info_t' also has temporary variables for method
(block) invocation.
* vm_core.h, compile.c, insns.def: introduce VM_CALL_ARGS_SKIP_SETUP
VM_CALL macro. This flag indicates that this call can skip
caller_setup (block arg and splat arg).
* compile.c: catch up above changes.
* iseq.c: catch up above changes (especially for TS_CALLINFO).
* tool/instruction.rb: catch up above chagnes.
* vm_insnhelper.c, vm_insnhelper.h: ditto. Macros and functions
parameters are changed.
* vm_eval.c (vm_call0): ditto (it will be rewriten soon).
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@37180 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-10-14 12:59:05 -04:00
|
|
|
}
|
|
|
|
case VM_METHOD_TYPE_MISSING:{
|
2015-06-03 06:42:18 -04:00
|
|
|
ci->aux.method_missing_reason = 0;
|
2012-10-17 03:12:40 -04:00
|
|
|
CI_SET_FASTPATH(ci, vm_call_method_missing, enable_fastpath);
|
|
|
|
return vm_call_method_missing(th, cfp, ci);
|
* insns.def (send, invokesuper, invokeblock, opt_*), vm_core.h:
use only a `ci' (rb_call_info_t) parameter instead of using
parameters such as `op_id', 'op_argc', `blockiseq' and flag.
These information are stored in rb_call_info_t at the compile
time.
This technique simplifies parameter passings at related
function calls (~10% speedups for simple mehtod invocation at
my machine).
`rb_call_info_t' also has new function pointer variable `call'.
This `call' variable enables to customize method (block)
invocation process for each place. However, it always call
`vm_call_general()' at this changes.
`rb_call_info_t' also has temporary variables for method
(block) invocation.
* vm_core.h, compile.c, insns.def: introduce VM_CALL_ARGS_SKIP_SETUP
VM_CALL macro. This flag indicates that this call can skip
caller_setup (block arg and splat arg).
* compile.c: catch up above changes.
* iseq.c: catch up above changes (especially for TS_CALLINFO).
* tool/instruction.rb: catch up above chagnes.
* vm_insnhelper.c, vm_insnhelper.h: ditto. Macros and functions
parameters are changed.
* vm_eval.c (vm_call0): ditto (it will be rewriten soon).
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@37180 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-10-14 12:59:05 -04:00
|
|
|
}
|
|
|
|
case VM_METHOD_TYPE_BMETHOD:{
|
2012-10-15 13:40:50 -04:00
|
|
|
CI_SET_FASTPATH(ci, vm_call_bmethod, enable_fastpath);
|
2012-10-16 17:49:18 -04:00
|
|
|
return vm_call_bmethod(th, cfp, ci);
|
* insns.def (send, invokesuper, invokeblock, opt_*), vm_core.h:
use only a `ci' (rb_call_info_t) parameter instead of using
parameters such as `op_id', 'op_argc', `blockiseq' and flag.
These information are stored in rb_call_info_t at the compile
time.
This technique simplifies parameter passings at related
function calls (~10% speedups for simple mehtod invocation at
my machine).
`rb_call_info_t' also has new function pointer variable `call'.
This `call' variable enables to customize method (block)
invocation process for each place. However, it always call
`vm_call_general()' at this changes.
`rb_call_info_t' also has temporary variables for method
(block) invocation.
* vm_core.h, compile.c, insns.def: introduce VM_CALL_ARGS_SKIP_SETUP
VM_CALL macro. This flag indicates that this call can skip
caller_setup (block arg and splat arg).
* compile.c: catch up above changes.
* iseq.c: catch up above changes (especially for TS_CALLINFO).
* tool/instruction.rb: catch up above chagnes.
* vm_insnhelper.c, vm_insnhelper.h: ditto. Macros and functions
parameters are changed.
* vm_eval.c (vm_call0): ditto (it will be rewriten soon).
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@37180 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-10-14 12:59:05 -04:00
|
|
|
}
|
|
|
|
case VM_METHOD_TYPE_ZSUPER:{
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
klass = ci->me->owner;
|
2013-08-29 04:03:23 -04:00
|
|
|
klass = RCLASS_ORIGIN(klass);
|
* revised r37993 to avoid SEGV/ILL in tests. In r37993, a method
entry with VM_METHOD_TYPE_REFINED holds only the original method
definition, so ci->me is set to a method entry allocated in the
stack, and it causes SEGV/ILL. In this commit, a method entry
with VM_METHOD_TYPE_REFINED holds the whole original method entry.
Furthermore, rb_thread_mark() is changed to mark cfp->klass to
avoid GC for iclasses created by copy_refinement_iclass().
* vm_method.c (rb_method_entry_make): add a method entry with
VM_METHOD_TYPE_REFINED to the class refined by the refinement if
the target module is a refinement. When a method entry with
VM_METHOD_TYPE_UNDEF is invoked by vm_call_method(), a method with
the same name is searched in refinements. If such a method is
found, the method is invoked. Otherwise, the original method in
the refined class (rb_method_definition_t::body.orig_me) is
invoked. This change is made to simplify the normal method lookup
and to improve the performance of normal method calls.
* vm_method.c (EXPR1, search_method, rb_method_entry),
vm_eval.c (rb_call0, rb_search_method_entry): do not use
refinements for method lookup.
* vm_insnhelper.c (vm_call_method): search methods in refinements if
ci->me is VM_METHOD_TYPE_REFINED. If the method is called by
super (i.e., ci->call == vm_call_super_method), skip the same
method entry as the current method to avoid infinite call of the
same method.
* class.c (include_modules_at): add a refined method entry for each
method defined in a module included in a refinement.
* class.c (rb_prepend_module): set an empty table to
RCLASS_M_TBL(klass) to add refined method entries, because
refinements should have priority over prepended modules.
* proc.c (mnew): use rb_method_entry_with_refinements() to get
a refined method.
* vm.c (rb_thread_mark): mark cfp->klass for iclasses created by
copy_refinement_iclass().
* vm.c (Init_VM), cont.c (fiber_init): initialize th->cfp->klass.
* test/ruby/test_refinement.rb (test_inline_method_cache): do not skip
the test because it should pass successfully.
* test/ruby/test_refinement.rb (test_redefine_refined_method): new
test for the case a refined method is redefined.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@38236 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-12-06 08:08:41 -05:00
|
|
|
zsuper_method_dispatch:
|
2013-08-29 04:03:23 -04:00
|
|
|
klass = RCLASS_SUPER(klass);
|
2014-08-02 21:43:10 -04:00
|
|
|
if (!klass) {
|
|
|
|
ci->me = 0;
|
|
|
|
goto start_method_dispatch;
|
|
|
|
}
|
2012-11-28 08:56:29 -05:00
|
|
|
ci_temp = *ci;
|
|
|
|
ci = &ci_temp;
|
* insns.def (send, invokesuper, invokeblock, opt_*), vm_core.h:
use only a `ci' (rb_call_info_t) parameter instead of using
parameters such as `op_id', 'op_argc', `blockiseq' and flag.
These information are stored in rb_call_info_t at the compile
time.
This technique simplifies parameter passings at related
function calls (~10% speedups for simple mehtod invocation at
my machine).
`rb_call_info_t' also has new function pointer variable `call'.
This `call' variable enables to customize method (block)
invocation process for each place. However, it always call
`vm_call_general()' at this changes.
`rb_call_info_t' also has temporary variables for method
(block) invocation.
* vm_core.h, compile.c, insns.def: introduce VM_CALL_ARGS_SKIP_SETUP
VM_CALL macro. This flag indicates that this call can skip
caller_setup (block arg and splat arg).
* compile.c: catch up above changes.
* iseq.c: catch up above changes (especially for TS_CALLINFO).
* tool/instruction.rb: catch up above chagnes.
* vm_insnhelper.c, vm_insnhelper.h: ditto. Macros and functions
parameters are changed.
* vm_eval.c (vm_call0): ditto (it will be rewriten soon).
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@37180 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-10-14 12:59:05 -04:00
|
|
|
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
ci->me = rb_callable_method_entry(klass, ci->mid);
|
* insns.def (send, invokesuper, invokeblock, opt_*), vm_core.h:
use only a `ci' (rb_call_info_t) parameter instead of using
parameters such as `op_id', 'op_argc', `blockiseq' and flag.
These information are stored in rb_call_info_t at the compile
time.
This technique simplifies parameter passings at related
function calls (~10% speedups for simple mehtod invocation at
my machine).
`rb_call_info_t' also has new function pointer variable `call'.
This `call' variable enables to customize method (block)
invocation process for each place. However, it always call
`vm_call_general()' at this changes.
`rb_call_info_t' also has temporary variables for method
(block) invocation.
* vm_core.h, compile.c, insns.def: introduce VM_CALL_ARGS_SKIP_SETUP
VM_CALL macro. This flag indicates that this call can skip
caller_setup (block arg and splat arg).
* compile.c: catch up above changes.
* iseq.c: catch up above changes (especially for TS_CALLINFO).
* tool/instruction.rb: catch up above chagnes.
* vm_insnhelper.c, vm_insnhelper.h: ditto. Macros and functions
parameters are changed.
* vm_eval.c (vm_call0): ditto (it will be rewriten soon).
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@37180 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-10-14 12:59:05 -04:00
|
|
|
|
|
|
|
if (ci->me != 0) {
|
|
|
|
goto normal_method_dispatch;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
goto start_method_dispatch;
|
|
|
|
}
|
|
|
|
}
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
case VM_METHOD_TYPE_ALIAS:
|
|
|
|
ci->me = aliased_callable_method_entry(ci->me);
|
2015-05-30 14:45:28 -04:00
|
|
|
goto normal_method_dispatch;
|
* insns.def (send, invokesuper, invokeblock, opt_*), vm_core.h:
use only a `ci' (rb_call_info_t) parameter instead of using
parameters such as `op_id', 'op_argc', `blockiseq' and flag.
These information are stored in rb_call_info_t at the compile
time.
This technique simplifies parameter passings at related
function calls (~10% speedups for simple mehtod invocation at
my machine).
`rb_call_info_t' also has new function pointer variable `call'.
This `call' variable enables to customize method (block)
invocation process for each place. However, it always call
`vm_call_general()' at this changes.
`rb_call_info_t' also has temporary variables for method
(block) invocation.
* vm_core.h, compile.c, insns.def: introduce VM_CALL_ARGS_SKIP_SETUP
VM_CALL macro. This flag indicates that this call can skip
caller_setup (block arg and splat arg).
* compile.c: catch up above changes.
* iseq.c: catch up above changes (especially for TS_CALLINFO).
* tool/instruction.rb: catch up above chagnes.
* vm_insnhelper.c, vm_insnhelper.h: ditto. Macros and functions
parameters are changed.
* vm_eval.c (vm_call0): ditto (it will be rewriten soon).
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@37180 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-10-14 12:59:05 -04:00
|
|
|
case VM_METHOD_TYPE_OPTIMIZED:{
|
|
|
|
switch (ci->me->def->body.optimize_type) {
|
2012-10-15 17:24:08 -04:00
|
|
|
case OPTIMIZED_METHOD_TYPE_SEND:
|
2012-10-15 13:40:50 -04:00
|
|
|
CI_SET_FASTPATH(ci, vm_call_opt_send, enable_fastpath);
|
2012-10-16 17:49:18 -04:00
|
|
|
return vm_call_opt_send(th, cfp, ci);
|
2012-10-15 17:24:08 -04:00
|
|
|
case OPTIMIZED_METHOD_TYPE_CALL:
|
2012-10-15 13:40:50 -04:00
|
|
|
CI_SET_FASTPATH(ci, vm_call_opt_call, enable_fastpath);
|
2012-10-16 17:49:18 -04:00
|
|
|
return vm_call_opt_call(th, cfp, ci);
|
* insns.def (send, invokesuper, invokeblock, opt_*), vm_core.h:
use only a `ci' (rb_call_info_t) parameter instead of using
parameters such as `op_id', 'op_argc', `blockiseq' and flag.
These information are stored in rb_call_info_t at the compile
time.
This technique simplifies parameter passings at related
function calls (~10% speedups for simple mehtod invocation at
my machine).
`rb_call_info_t' also has new function pointer variable `call'.
This `call' variable enables to customize method (block)
invocation process for each place. However, it always call
`vm_call_general()' at this changes.
`rb_call_info_t' also has temporary variables for method
(block) invocation.
* vm_core.h, compile.c, insns.def: introduce VM_CALL_ARGS_SKIP_SETUP
VM_CALL macro. This flag indicates that this call can skip
caller_setup (block arg and splat arg).
* compile.c: catch up above changes.
* iseq.c: catch up above changes (especially for TS_CALLINFO).
* tool/instruction.rb: catch up above chagnes.
* vm_insnhelper.c, vm_insnhelper.h: ditto. Macros and functions
parameters are changed.
* vm_eval.c (vm_call0): ditto (it will be rewriten soon).
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@37180 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-10-14 12:59:05 -04:00
|
|
|
default:
|
2012-10-15 17:24:08 -04:00
|
|
|
rb_bug("vm_call_method: unsupported optimized method type (%d)",
|
* insns.def (send, invokesuper, invokeblock, opt_*), vm_core.h:
use only a `ci' (rb_call_info_t) parameter instead of using
parameters such as `op_id', 'op_argc', `blockiseq' and flag.
These information are stored in rb_call_info_t at the compile
time.
This technique simplifies parameter passings at related
function calls (~10% speedups for simple mehtod invocation at
my machine).
`rb_call_info_t' also has new function pointer variable `call'.
This `call' variable enables to customize method (block)
invocation process for each place. However, it always call
`vm_call_general()' at this changes.
`rb_call_info_t' also has temporary variables for method
(block) invocation.
* vm_core.h, compile.c, insns.def: introduce VM_CALL_ARGS_SKIP_SETUP
VM_CALL macro. This flag indicates that this call can skip
caller_setup (block arg and splat arg).
* compile.c: catch up above changes.
* iseq.c: catch up above changes (especially for TS_CALLINFO).
* tool/instruction.rb: catch up above chagnes.
* vm_insnhelper.c, vm_insnhelper.h: ditto. Macros and functions
parameters are changed.
* vm_eval.c (vm_call0): ditto (it will be rewriten soon).
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@37180 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-10-14 12:59:05 -04:00
|
|
|
ci->me->def->body.optimize_type);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
2012-10-23 16:53:35 -04:00
|
|
|
case VM_METHOD_TYPE_UNDEF:
|
* insns.def (send, invokesuper, invokeblock, opt_*), vm_core.h:
use only a `ci' (rb_call_info_t) parameter instead of using
parameters such as `op_id', 'op_argc', `blockiseq' and flag.
These information are stored in rb_call_info_t at the compile
time.
This technique simplifies parameter passings at related
function calls (~10% speedups for simple mehtod invocation at
my machine).
`rb_call_info_t' also has new function pointer variable `call'.
This `call' variable enables to customize method (block)
invocation process for each place. However, it always call
`vm_call_general()' at this changes.
`rb_call_info_t' also has temporary variables for method
(block) invocation.
* vm_core.h, compile.c, insns.def: introduce VM_CALL_ARGS_SKIP_SETUP
VM_CALL macro. This flag indicates that this call can skip
caller_setup (block arg and splat arg).
* compile.c: catch up above changes.
* iseq.c: catch up above changes (especially for TS_CALLINFO).
* tool/instruction.rb: catch up above chagnes.
* vm_insnhelper.c, vm_insnhelper.h: ditto. Macros and functions
parameters are changed.
* vm_eval.c (vm_call0): ditto (it will be rewriten soon).
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@37180 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-10-14 12:59:05 -04:00
|
|
|
break;
|
* revised r37993 to avoid SEGV/ILL in tests. In r37993, a method
entry with VM_METHOD_TYPE_REFINED holds only the original method
definition, so ci->me is set to a method entry allocated in the
stack, and it causes SEGV/ILL. In this commit, a method entry
with VM_METHOD_TYPE_REFINED holds the whole original method entry.
Furthermore, rb_thread_mark() is changed to mark cfp->klass to
avoid GC for iclasses created by copy_refinement_iclass().
* vm_method.c (rb_method_entry_make): add a method entry with
VM_METHOD_TYPE_REFINED to the class refined by the refinement if
the target module is a refinement. When a method entry with
VM_METHOD_TYPE_UNDEF is invoked by vm_call_method(), a method with
the same name is searched in refinements. If such a method is
found, the method is invoked. Otherwise, the original method in
the refined class (rb_method_definition_t::body.orig_me) is
invoked. This change is made to simplify the normal method lookup
and to improve the performance of normal method calls.
* vm_method.c (EXPR1, search_method, rb_method_entry),
vm_eval.c (rb_call0, rb_search_method_entry): do not use
refinements for method lookup.
* vm_insnhelper.c (vm_call_method): search methods in refinements if
ci->me is VM_METHOD_TYPE_REFINED. If the method is called by
super (i.e., ci->call == vm_call_super_method), skip the same
method entry as the current method to avoid infinite call of the
same method.
* class.c (include_modules_at): add a refined method entry for each
method defined in a module included in a refinement.
* class.c (rb_prepend_module): set an empty table to
RCLASS_M_TBL(klass) to add refined method entries, because
refinements should have priority over prepended modules.
* proc.c (mnew): use rb_method_entry_with_refinements() to get
a refined method.
* vm.c (rb_thread_mark): mark cfp->klass for iclasses created by
copy_refinement_iclass().
* vm.c (Init_VM), cont.c (fiber_init): initialize th->cfp->klass.
* test/ruby/test_refinement.rb (test_inline_method_cache): do not skip
the test because it should pass successfully.
* test/ruby/test_refinement.rb (test_redefine_refined_method): new
test for the case a refined method is redefined.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@38236 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-12-06 08:08:41 -05:00
|
|
|
case VM_METHOD_TYPE_REFINED:{
|
2015-03-08 17:22:43 -04:00
|
|
|
const rb_cref_t *cref = rb_vm_get_cref(cfp->ep);
|
2015-03-08 15:50:37 -04:00
|
|
|
VALUE refinements = cref ? CREF_REFINEMENTS(cref) : Qnil;
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
VALUE refinement;
|
|
|
|
const rb_callable_method_entry_t *me;
|
* revised r37993 to avoid SEGV/ILL in tests. In r37993, a method
entry with VM_METHOD_TYPE_REFINED holds only the original method
definition, so ci->me is set to a method entry allocated in the
stack, and it causes SEGV/ILL. In this commit, a method entry
with VM_METHOD_TYPE_REFINED holds the whole original method entry.
Furthermore, rb_thread_mark() is changed to mark cfp->klass to
avoid GC for iclasses created by copy_refinement_iclass().
* vm_method.c (rb_method_entry_make): add a method entry with
VM_METHOD_TYPE_REFINED to the class refined by the refinement if
the target module is a refinement. When a method entry with
VM_METHOD_TYPE_UNDEF is invoked by vm_call_method(), a method with
the same name is searched in refinements. If such a method is
found, the method is invoked. Otherwise, the original method in
the refined class (rb_method_definition_t::body.orig_me) is
invoked. This change is made to simplify the normal method lookup
and to improve the performance of normal method calls.
* vm_method.c (EXPR1, search_method, rb_method_entry),
vm_eval.c (rb_call0, rb_search_method_entry): do not use
refinements for method lookup.
* vm_insnhelper.c (vm_call_method): search methods in refinements if
ci->me is VM_METHOD_TYPE_REFINED. If the method is called by
super (i.e., ci->call == vm_call_super_method), skip the same
method entry as the current method to avoid infinite call of the
same method.
* class.c (include_modules_at): add a refined method entry for each
method defined in a module included in a refinement.
* class.c (rb_prepend_module): set an empty table to
RCLASS_M_TBL(klass) to add refined method entries, because
refinements should have priority over prepended modules.
* proc.c (mnew): use rb_method_entry_with_refinements() to get
a refined method.
* vm.c (rb_thread_mark): mark cfp->klass for iclasses created by
copy_refinement_iclass().
* vm.c (Init_VM), cont.c (fiber_init): initialize th->cfp->klass.
* test/ruby/test_refinement.rb (test_inline_method_cache): do not skip
the test because it should pass successfully.
* test/ruby/test_refinement.rb (test_redefine_refined_method): new
test for the case a refined method is redefined.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@38236 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-12-06 08:08:41 -05:00
|
|
|
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
refinement = find_refinement(refinements, ci->me->owner);
|
* revised r37993 to avoid SEGV/ILL in tests. In r37993, a method
entry with VM_METHOD_TYPE_REFINED holds only the original method
definition, so ci->me is set to a method entry allocated in the
stack, and it causes SEGV/ILL. In this commit, a method entry
with VM_METHOD_TYPE_REFINED holds the whole original method entry.
Furthermore, rb_thread_mark() is changed to mark cfp->klass to
avoid GC for iclasses created by copy_refinement_iclass().
* vm_method.c (rb_method_entry_make): add a method entry with
VM_METHOD_TYPE_REFINED to the class refined by the refinement if
the target module is a refinement. When a method entry with
VM_METHOD_TYPE_UNDEF is invoked by vm_call_method(), a method with
the same name is searched in refinements. If such a method is
found, the method is invoked. Otherwise, the original method in
the refined class (rb_method_definition_t::body.orig_me) is
invoked. This change is made to simplify the normal method lookup
and to improve the performance of normal method calls.
* vm_method.c (EXPR1, search_method, rb_method_entry),
vm_eval.c (rb_call0, rb_search_method_entry): do not use
refinements for method lookup.
* vm_insnhelper.c (vm_call_method): search methods in refinements if
ci->me is VM_METHOD_TYPE_REFINED. If the method is called by
super (i.e., ci->call == vm_call_super_method), skip the same
method entry as the current method to avoid infinite call of the
same method.
* class.c (include_modules_at): add a refined method entry for each
method defined in a module included in a refinement.
* class.c (rb_prepend_module): set an empty table to
RCLASS_M_TBL(klass) to add refined method entries, because
refinements should have priority over prepended modules.
* proc.c (mnew): use rb_method_entry_with_refinements() to get
a refined method.
* vm.c (rb_thread_mark): mark cfp->klass for iclasses created by
copy_refinement_iclass().
* vm.c (Init_VM), cont.c (fiber_init): initialize th->cfp->klass.
* test/ruby/test_refinement.rb (test_inline_method_cache): do not skip
the test because it should pass successfully.
* test/ruby/test_refinement.rb (test_redefine_refined_method): new
test for the case a refined method is redefined.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@38236 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-12-06 08:08:41 -05:00
|
|
|
if (NIL_P(refinement)) {
|
|
|
|
goto no_refinement_dispatch;
|
|
|
|
}
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
me = rb_callable_method_entry(refinement, ci->mid);
|
* revised r37993 to avoid SEGV/ILL in tests. In r37993, a method
entry with VM_METHOD_TYPE_REFINED holds only the original method
definition, so ci->me is set to a method entry allocated in the
stack, and it causes SEGV/ILL. In this commit, a method entry
with VM_METHOD_TYPE_REFINED holds the whole original method entry.
Furthermore, rb_thread_mark() is changed to mark cfp->klass to
avoid GC for iclasses created by copy_refinement_iclass().
* vm_method.c (rb_method_entry_make): add a method entry with
VM_METHOD_TYPE_REFINED to the class refined by the refinement if
the target module is a refinement. When a method entry with
VM_METHOD_TYPE_UNDEF is invoked by vm_call_method(), a method with
the same name is searched in refinements. If such a method is
found, the method is invoked. Otherwise, the original method in
the refined class (rb_method_definition_t::body.orig_me) is
invoked. This change is made to simplify the normal method lookup
and to improve the performance of normal method calls.
* vm_method.c (EXPR1, search_method, rb_method_entry),
vm_eval.c (rb_call0, rb_search_method_entry): do not use
refinements for method lookup.
* vm_insnhelper.c (vm_call_method): search methods in refinements if
ci->me is VM_METHOD_TYPE_REFINED. If the method is called by
super (i.e., ci->call == vm_call_super_method), skip the same
method entry as the current method to avoid infinite call of the
same method.
* class.c (include_modules_at): add a refined method entry for each
method defined in a module included in a refinement.
* class.c (rb_prepend_module): set an empty table to
RCLASS_M_TBL(klass) to add refined method entries, because
refinements should have priority over prepended modules.
* proc.c (mnew): use rb_method_entry_with_refinements() to get
a refined method.
* vm.c (rb_thread_mark): mark cfp->klass for iclasses created by
copy_refinement_iclass().
* vm.c (Init_VM), cont.c (fiber_init): initialize th->cfp->klass.
* test/ruby/test_refinement.rb (test_inline_method_cache): do not skip
the test because it should pass successfully.
* test/ruby/test_refinement.rb (test_redefine_refined_method): new
test for the case a refined method is redefined.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@38236 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-12-06 08:08:41 -05:00
|
|
|
if (me) {
|
2013-02-23 23:36:00 -05:00
|
|
|
if (ci->call == vm_call_super_method) {
|
2015-06-02 00:20:30 -04:00
|
|
|
const rb_control_frame_t *top_cfp = current_method_entry(th, cfp);
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
const rb_callable_method_entry_t *top_me = rb_vm_frame_method_entry(top_cfp);
|
2015-06-02 00:20:30 -04:00
|
|
|
|
|
|
|
if (top_me && rb_method_definition_eq(me->def, top_me->def)) {
|
2013-02-23 23:36:00 -05:00
|
|
|
goto no_refinement_dispatch;
|
|
|
|
}
|
* revised r37993 to avoid SEGV/ILL in tests. In r37993, a method
entry with VM_METHOD_TYPE_REFINED holds only the original method
definition, so ci->me is set to a method entry allocated in the
stack, and it causes SEGV/ILL. In this commit, a method entry
with VM_METHOD_TYPE_REFINED holds the whole original method entry.
Furthermore, rb_thread_mark() is changed to mark cfp->klass to
avoid GC for iclasses created by copy_refinement_iclass().
* vm_method.c (rb_method_entry_make): add a method entry with
VM_METHOD_TYPE_REFINED to the class refined by the refinement if
the target module is a refinement. When a method entry with
VM_METHOD_TYPE_UNDEF is invoked by vm_call_method(), a method with
the same name is searched in refinements. If such a method is
found, the method is invoked. Otherwise, the original method in
the refined class (rb_method_definition_t::body.orig_me) is
invoked. This change is made to simplify the normal method lookup
and to improve the performance of normal method calls.
* vm_method.c (EXPR1, search_method, rb_method_entry),
vm_eval.c (rb_call0, rb_search_method_entry): do not use
refinements for method lookup.
* vm_insnhelper.c (vm_call_method): search methods in refinements if
ci->me is VM_METHOD_TYPE_REFINED. If the method is called by
super (i.e., ci->call == vm_call_super_method), skip the same
method entry as the current method to avoid infinite call of the
same method.
* class.c (include_modules_at): add a refined method entry for each
method defined in a module included in a refinement.
* class.c (rb_prepend_module): set an empty table to
RCLASS_M_TBL(klass) to add refined method entries, because
refinements should have priority over prepended modules.
* proc.c (mnew): use rb_method_entry_with_refinements() to get
a refined method.
* vm.c (rb_thread_mark): mark cfp->klass for iclasses created by
copy_refinement_iclass().
* vm.c (Init_VM), cont.c (fiber_init): initialize th->cfp->klass.
* test/ruby/test_refinement.rb (test_inline_method_cache): do not skip
the test because it should pass successfully.
* test/ruby/test_refinement.rb (test_redefine_refined_method): new
test for the case a refined method is redefined.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@38236 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-12-06 08:08:41 -05:00
|
|
|
}
|
|
|
|
ci->me = me;
|
|
|
|
if (me->def->type != VM_METHOD_TYPE_REFINED) {
|
2014-02-13 09:44:41 -05:00
|
|
|
goto start_method_dispatch;
|
* revised r37993 to avoid SEGV/ILL in tests. In r37993, a method
entry with VM_METHOD_TYPE_REFINED holds only the original method
definition, so ci->me is set to a method entry allocated in the
stack, and it causes SEGV/ILL. In this commit, a method entry
with VM_METHOD_TYPE_REFINED holds the whole original method entry.
Furthermore, rb_thread_mark() is changed to mark cfp->klass to
avoid GC for iclasses created by copy_refinement_iclass().
* vm_method.c (rb_method_entry_make): add a method entry with
VM_METHOD_TYPE_REFINED to the class refined by the refinement if
the target module is a refinement. When a method entry with
VM_METHOD_TYPE_UNDEF is invoked by vm_call_method(), a method with
the same name is searched in refinements. If such a method is
found, the method is invoked. Otherwise, the original method in
the refined class (rb_method_definition_t::body.orig_me) is
invoked. This change is made to simplify the normal method lookup
and to improve the performance of normal method calls.
* vm_method.c (EXPR1, search_method, rb_method_entry),
vm_eval.c (rb_call0, rb_search_method_entry): do not use
refinements for method lookup.
* vm_insnhelper.c (vm_call_method): search methods in refinements if
ci->me is VM_METHOD_TYPE_REFINED. If the method is called by
super (i.e., ci->call == vm_call_super_method), skip the same
method entry as the current method to avoid infinite call of the
same method.
* class.c (include_modules_at): add a refined method entry for each
method defined in a module included in a refinement.
* class.c (rb_prepend_module): set an empty table to
RCLASS_M_TBL(klass) to add refined method entries, because
refinements should have priority over prepended modules.
* proc.c (mnew): use rb_method_entry_with_refinements() to get
a refined method.
* vm.c (rb_thread_mark): mark cfp->klass for iclasses created by
copy_refinement_iclass().
* vm.c (Init_VM), cont.c (fiber_init): initialize th->cfp->klass.
* test/ruby/test_refinement.rb (test_inline_method_cache): do not skip
the test because it should pass successfully.
* test/ruby/test_refinement.rb (test_redefine_refined_method): new
test for the case a refined method is redefined.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@38236 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-12-06 08:08:41 -05:00
|
|
|
}
|
|
|
|
}
|
2015-02-09 21:40:21 -05:00
|
|
|
else {
|
|
|
|
ci->me = 0;
|
|
|
|
goto start_method_dispatch;
|
|
|
|
}
|
* revised r37993 to avoid SEGV/ILL in tests. In r37993, a method
entry with VM_METHOD_TYPE_REFINED holds only the original method
definition, so ci->me is set to a method entry allocated in the
stack, and it causes SEGV/ILL. In this commit, a method entry
with VM_METHOD_TYPE_REFINED holds the whole original method entry.
Furthermore, rb_thread_mark() is changed to mark cfp->klass to
avoid GC for iclasses created by copy_refinement_iclass().
* vm_method.c (rb_method_entry_make): add a method entry with
VM_METHOD_TYPE_REFINED to the class refined by the refinement if
the target module is a refinement. When a method entry with
VM_METHOD_TYPE_UNDEF is invoked by vm_call_method(), a method with
the same name is searched in refinements. If such a method is
found, the method is invoked. Otherwise, the original method in
the refined class (rb_method_definition_t::body.orig_me) is
invoked. This change is made to simplify the normal method lookup
and to improve the performance of normal method calls.
* vm_method.c (EXPR1, search_method, rb_method_entry),
vm_eval.c (rb_call0, rb_search_method_entry): do not use
refinements for method lookup.
* vm_insnhelper.c (vm_call_method): search methods in refinements if
ci->me is VM_METHOD_TYPE_REFINED. If the method is called by
super (i.e., ci->call == vm_call_super_method), skip the same
method entry as the current method to avoid infinite call of the
same method.
* class.c (include_modules_at): add a refined method entry for each
method defined in a module included in a refinement.
* class.c (rb_prepend_module): set an empty table to
RCLASS_M_TBL(klass) to add refined method entries, because
refinements should have priority over prepended modules.
* proc.c (mnew): use rb_method_entry_with_refinements() to get
a refined method.
* vm.c (rb_thread_mark): mark cfp->klass for iclasses created by
copy_refinement_iclass().
* vm.c (Init_VM), cont.c (fiber_init): initialize th->cfp->klass.
* test/ruby/test_refinement.rb (test_inline_method_cache): do not skip
the test because it should pass successfully.
* test/ruby/test_refinement.rb (test_redefine_refined_method): new
test for the case a refined method is redefined.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@38236 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-12-06 08:08:41 -05:00
|
|
|
|
|
|
|
no_refinement_dispatch:
|
2015-06-03 18:27:51 -04:00
|
|
|
if (ci->me->def->body.refined.orig_me) {
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
ci->me = refined_method_callable_without_refinement(ci->me);
|
|
|
|
|
2013-10-17 04:44:26 -04:00
|
|
|
if (UNDEFINED_METHOD_ENTRY_P(ci->me)) {
|
|
|
|
ci->me = 0;
|
|
|
|
}
|
2014-02-13 09:44:41 -05:00
|
|
|
goto start_method_dispatch;
|
* revised r37993 to avoid SEGV/ILL in tests. In r37993, a method
entry with VM_METHOD_TYPE_REFINED holds only the original method
definition, so ci->me is set to a method entry allocated in the
stack, and it causes SEGV/ILL. In this commit, a method entry
with VM_METHOD_TYPE_REFINED holds the whole original method entry.
Furthermore, rb_thread_mark() is changed to mark cfp->klass to
avoid GC for iclasses created by copy_refinement_iclass().
* vm_method.c (rb_method_entry_make): add a method entry with
VM_METHOD_TYPE_REFINED to the class refined by the refinement if
the target module is a refinement. When a method entry with
VM_METHOD_TYPE_UNDEF is invoked by vm_call_method(), a method with
the same name is searched in refinements. If such a method is
found, the method is invoked. Otherwise, the original method in
the refined class (rb_method_definition_t::body.orig_me) is
invoked. This change is made to simplify the normal method lookup
and to improve the performance of normal method calls.
* vm_method.c (EXPR1, search_method, rb_method_entry),
vm_eval.c (rb_call0, rb_search_method_entry): do not use
refinements for method lookup.
* vm_insnhelper.c (vm_call_method): search methods in refinements if
ci->me is VM_METHOD_TYPE_REFINED. If the method is called by
super (i.e., ci->call == vm_call_super_method), skip the same
method entry as the current method to avoid infinite call of the
same method.
* class.c (include_modules_at): add a refined method entry for each
method defined in a module included in a refinement.
* class.c (rb_prepend_module): set an empty table to
RCLASS_M_TBL(klass) to add refined method entries, because
refinements should have priority over prepended modules.
* proc.c (mnew): use rb_method_entry_with_refinements() to get
a refined method.
* vm.c (rb_thread_mark): mark cfp->klass for iclasses created by
copy_refinement_iclass().
* vm.c (Init_VM), cont.c (fiber_init): initialize th->cfp->klass.
* test/ruby/test_refinement.rb (test_inline_method_cache): do not skip
the test because it should pass successfully.
* test/ruby/test_refinement.rb (test_redefine_refined_method): new
test for the case a refined method is redefined.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@38236 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-12-06 08:08:41 -05:00
|
|
|
}
|
|
|
|
else {
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
klass = ci->me->owner;
|
* revised r37993 to avoid SEGV/ILL in tests. In r37993, a method
entry with VM_METHOD_TYPE_REFINED holds only the original method
definition, so ci->me is set to a method entry allocated in the
stack, and it causes SEGV/ILL. In this commit, a method entry
with VM_METHOD_TYPE_REFINED holds the whole original method entry.
Furthermore, rb_thread_mark() is changed to mark cfp->klass to
avoid GC for iclasses created by copy_refinement_iclass().
* vm_method.c (rb_method_entry_make): add a method entry with
VM_METHOD_TYPE_REFINED to the class refined by the refinement if
the target module is a refinement. When a method entry with
VM_METHOD_TYPE_UNDEF is invoked by vm_call_method(), a method with
the same name is searched in refinements. If such a method is
found, the method is invoked. Otherwise, the original method in
the refined class (rb_method_definition_t::body.orig_me) is
invoked. This change is made to simplify the normal method lookup
and to improve the performance of normal method calls.
* vm_method.c (EXPR1, search_method, rb_method_entry),
vm_eval.c (rb_call0, rb_search_method_entry): do not use
refinements for method lookup.
* vm_insnhelper.c (vm_call_method): search methods in refinements if
ci->me is VM_METHOD_TYPE_REFINED. If the method is called by
super (i.e., ci->call == vm_call_super_method), skip the same
method entry as the current method to avoid infinite call of the
same method.
* class.c (include_modules_at): add a refined method entry for each
method defined in a module included in a refinement.
* class.c (rb_prepend_module): set an empty table to
RCLASS_M_TBL(klass) to add refined method entries, because
refinements should have priority over prepended modules.
* proc.c (mnew): use rb_method_entry_with_refinements() to get
a refined method.
* vm.c (rb_thread_mark): mark cfp->klass for iclasses created by
copy_refinement_iclass().
* vm.c (Init_VM), cont.c (fiber_init): initialize th->cfp->klass.
* test/ruby/test_refinement.rb (test_inline_method_cache): do not skip
the test because it should pass successfully.
* test/ruby/test_refinement.rb (test_redefine_refined_method): new
test for the case a refined method is redefined.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@38236 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-12-06 08:08:41 -05:00
|
|
|
goto zsuper_method_dispatch;
|
|
|
|
}
|
|
|
|
}
|
* insns.def (send, invokesuper, invokeblock, opt_*), vm_core.h:
use only a `ci' (rb_call_info_t) parameter instead of using
parameters such as `op_id', 'op_argc', `blockiseq' and flag.
These information are stored in rb_call_info_t at the compile
time.
This technique simplifies parameter passings at related
function calls (~10% speedups for simple mehtod invocation at
my machine).
`rb_call_info_t' also has new function pointer variable `call'.
This `call' variable enables to customize method (block)
invocation process for each place. However, it always call
`vm_call_general()' at this changes.
`rb_call_info_t' also has temporary variables for method
(block) invocation.
* vm_core.h, compile.c, insns.def: introduce VM_CALL_ARGS_SKIP_SETUP
VM_CALL macro. This flag indicates that this call can skip
caller_setup (block arg and splat arg).
* compile.c: catch up above changes.
* iseq.c: catch up above changes (especially for TS_CALLINFO).
* tool/instruction.rb: catch up above chagnes.
* vm_insnhelper.c, vm_insnhelper.h: ditto. Macros and functions
parameters are changed.
* vm_eval.c (vm_call0): ditto (it will be rewriten soon).
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@37180 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-10-14 12:59:05 -04:00
|
|
|
}
|
2012-10-23 16:53:35 -04:00
|
|
|
rb_bug("vm_call_method: unsupported method type (%d)", ci->me->def->type);
|
* insns.def (send, invokesuper, invokeblock, opt_*), vm_core.h:
use only a `ci' (rb_call_info_t) parameter instead of using
parameters such as `op_id', 'op_argc', `blockiseq' and flag.
These information are stored in rb_call_info_t at the compile
time.
This technique simplifies parameter passings at related
function calls (~10% speedups for simple mehtod invocation at
my machine).
`rb_call_info_t' also has new function pointer variable `call'.
This `call' variable enables to customize method (block)
invocation process for each place. However, it always call
`vm_call_general()' at this changes.
`rb_call_info_t' also has temporary variables for method
(block) invocation.
* vm_core.h, compile.c, insns.def: introduce VM_CALL_ARGS_SKIP_SETUP
VM_CALL macro. This flag indicates that this call can skip
caller_setup (block arg and splat arg).
* compile.c: catch up above changes.
* iseq.c: catch up above changes (especially for TS_CALLINFO).
* tool/instruction.rb: catch up above chagnes.
* vm_insnhelper.c, vm_insnhelper.h: ditto. Macros and functions
parameters are changed.
* vm_eval.c (vm_call0): ditto (it will be rewriten soon).
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@37180 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-10-14 12:59:05 -04:00
|
|
|
}
|
|
|
|
else {
|
2015-06-02 21:39:16 -04:00
|
|
|
int safe;
|
2015-06-06 06:19:48 -04:00
|
|
|
if (!(ci->flag & VM_CALL_FCALL) && (METHOD_ENTRY_VISI(ci->me) == METHOD_VISI_PRIVATE)) {
|
2015-06-03 06:42:18 -04:00
|
|
|
enum method_missing_reason stat = MISSING_PRIVATE;
|
2015-06-02 21:39:16 -04:00
|
|
|
bp();
|
|
|
|
if (ci->flag & VM_CALL_VCALL) stat |= MISSING_VCALL;
|
* insns.def (send, invokesuper, invokeblock, opt_*), vm_core.h:
use only a `ci' (rb_call_info_t) parameter instead of using
parameters such as `op_id', 'op_argc', `blockiseq' and flag.
These information are stored in rb_call_info_t at the compile
time.
This technique simplifies parameter passings at related
function calls (~10% speedups for simple mehtod invocation at
my machine).
`rb_call_info_t' also has new function pointer variable `call'.
This `call' variable enables to customize method (block)
invocation process for each place. However, it always call
`vm_call_general()' at this changes.
`rb_call_info_t' also has temporary variables for method
(block) invocation.
* vm_core.h, compile.c, insns.def: introduce VM_CALL_ARGS_SKIP_SETUP
VM_CALL macro. This flag indicates that this call can skip
caller_setup (block arg and splat arg).
* compile.c: catch up above changes.
* iseq.c: catch up above changes (especially for TS_CALLINFO).
* tool/instruction.rb: catch up above chagnes.
* vm_insnhelper.c, vm_insnhelper.h: ditto. Macros and functions
parameters are changed.
* vm_eval.c (vm_call0): ditto (it will be rewriten soon).
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@37180 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-10-14 12:59:05 -04:00
|
|
|
|
2015-06-03 06:42:18 -04:00
|
|
|
ci->aux.method_missing_reason = stat;
|
2012-10-17 03:12:40 -04:00
|
|
|
CI_SET_FASTPATH(ci, vm_call_method_missing, 1);
|
|
|
|
return vm_call_method_missing(th, cfp, ci);
|
* insns.def (send, invokesuper, invokeblock, opt_*), vm_core.h:
use only a `ci' (rb_call_info_t) parameter instead of using
parameters such as `op_id', 'op_argc', `blockiseq' and flag.
These information are stored in rb_call_info_t at the compile
time.
This technique simplifies parameter passings at related
function calls (~10% speedups for simple mehtod invocation at
my machine).
`rb_call_info_t' also has new function pointer variable `call'.
This `call' variable enables to customize method (block)
invocation process for each place. However, it always call
`vm_call_general()' at this changes.
`rb_call_info_t' also has temporary variables for method
(block) invocation.
* vm_core.h, compile.c, insns.def: introduce VM_CALL_ARGS_SKIP_SETUP
VM_CALL macro. This flag indicates that this call can skip
caller_setup (block arg and splat arg).
* compile.c: catch up above changes.
* iseq.c: catch up above changes (especially for TS_CALLINFO).
* tool/instruction.rb: catch up above chagnes.
* vm_insnhelper.c, vm_insnhelper.h: ditto. Macros and functions
parameters are changed.
* vm_eval.c (vm_call0): ditto (it will be rewriten soon).
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@37180 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-10-14 12:59:05 -04:00
|
|
|
}
|
2015-06-06 06:19:48 -04:00
|
|
|
else if (!(ci->flag & VM_CALL_OPT_SEND) && (METHOD_ENTRY_VISI(ci->me) == METHOD_VISI_PROTECTED)) {
|
2012-10-15 13:40:50 -04:00
|
|
|
enable_fastpath = 0;
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
if (!rb_obj_is_kind_of(cfp->self, ci->me->defined_class)) {
|
2015-06-03 06:42:18 -04:00
|
|
|
ci->aux.method_missing_reason = MISSING_PROTECTED;
|
2012-10-17 03:12:40 -04:00
|
|
|
return vm_call_method_missing(th, cfp, ci);
|
* insns.def (send, invokesuper, invokeblock, opt_*), vm_core.h:
use only a `ci' (rb_call_info_t) parameter instead of using
parameters such as `op_id', 'op_argc', `blockiseq' and flag.
These information are stored in rb_call_info_t at the compile
time.
This technique simplifies parameter passings at related
function calls (~10% speedups for simple mehtod invocation at
my machine).
`rb_call_info_t' also has new function pointer variable `call'.
This `call' variable enables to customize method (block)
invocation process for each place. However, it always call
`vm_call_general()' at this changes.
`rb_call_info_t' also has temporary variables for method
(block) invocation.
* vm_core.h, compile.c, insns.def: introduce VM_CALL_ARGS_SKIP_SETUP
VM_CALL macro. This flag indicates that this call can skip
caller_setup (block arg and splat arg).
* compile.c: catch up above changes.
* iseq.c: catch up above changes (especially for TS_CALLINFO).
* tool/instruction.rb: catch up above chagnes.
* vm_insnhelper.c, vm_insnhelper.h: ditto. Macros and functions
parameters are changed.
* vm_eval.c (vm_call0): ditto (it will be rewriten soon).
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@37180 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-10-14 12:59:05 -04:00
|
|
|
}
|
|
|
|
else {
|
|
|
|
goto normal_method_dispatch;
|
|
|
|
}
|
|
|
|
}
|
2015-06-06 06:19:48 -04:00
|
|
|
else if ((safe = METHOD_ENTRY_SAFE(ci->me)) > th->safe_level && safe > 2) {
|
2014-11-25 13:44:07 -05:00
|
|
|
rb_raise(rb_eSecurityError, "calling insecure method: %"PRIsVALUE, rb_id2str(ci->mid));
|
* insns.def (send, invokesuper, invokeblock, opt_*), vm_core.h:
use only a `ci' (rb_call_info_t) parameter instead of using
parameters such as `op_id', 'op_argc', `blockiseq' and flag.
These information are stored in rb_call_info_t at the compile
time.
This technique simplifies parameter passings at related
function calls (~10% speedups for simple mehtod invocation at
my machine).
`rb_call_info_t' also has new function pointer variable `call'.
This `call' variable enables to customize method (block)
invocation process for each place. However, it always call
`vm_call_general()' at this changes.
`rb_call_info_t' also has temporary variables for method
(block) invocation.
* vm_core.h, compile.c, insns.def: introduce VM_CALL_ARGS_SKIP_SETUP
VM_CALL macro. This flag indicates that this call can skip
caller_setup (block arg and splat arg).
* compile.c: catch up above changes.
* iseq.c: catch up above changes (especially for TS_CALLINFO).
* tool/instruction.rb: catch up above chagnes.
* vm_insnhelper.c, vm_insnhelper.h: ditto. Macros and functions
parameters are changed.
* vm_eval.c (vm_call0): ditto (it will be rewriten soon).
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@37180 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-10-14 12:59:05 -04:00
|
|
|
}
|
|
|
|
else {
|
|
|
|
goto normal_method_dispatch;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
/* method missing */
|
2015-02-04 22:31:07 -05:00
|
|
|
const int stat = ci_missing_reason(ci);
|
* insns.def (send, invokesuper, invokeblock, opt_*), vm_core.h:
use only a `ci' (rb_call_info_t) parameter instead of using
parameters such as `op_id', 'op_argc', `blockiseq' and flag.
These information are stored in rb_call_info_t at the compile
time.
This technique simplifies parameter passings at related
function calls (~10% speedups for simple mehtod invocation at
my machine).
`rb_call_info_t' also has new function pointer variable `call'.
This `call' variable enables to customize method (block)
invocation process for each place. However, it always call
`vm_call_general()' at this changes.
`rb_call_info_t' also has temporary variables for method
(block) invocation.
* vm_core.h, compile.c, insns.def: introduce VM_CALL_ARGS_SKIP_SETUP
VM_CALL macro. This flag indicates that this call can skip
caller_setup (block arg and splat arg).
* compile.c: catch up above changes.
* iseq.c: catch up above changes (especially for TS_CALLINFO).
* tool/instruction.rb: catch up above chagnes.
* vm_insnhelper.c, vm_insnhelper.h: ditto. Macros and functions
parameters are changed.
* vm_eval.c (vm_call0): ditto (it will be rewriten soon).
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@37180 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-10-14 12:59:05 -04:00
|
|
|
if (ci->mid == idMethodMissing) {
|
|
|
|
rb_control_frame_t *reg_cfp = cfp;
|
|
|
|
VALUE *argv = STACK_ADDR_FROM_TOP(ci->argc);
|
|
|
|
rb_raise_method_missing(th, ci->argc, argv, ci->recv, stat);
|
|
|
|
}
|
|
|
|
else {
|
2015-06-03 06:42:18 -04:00
|
|
|
ci->aux.method_missing_reason = stat;
|
2012-10-17 03:12:40 -04:00
|
|
|
CI_SET_FASTPATH(ci, vm_call_method_missing, 1);
|
|
|
|
return vm_call_method_missing(th, cfp, ci);
|
2012-10-14 15:58:59 -04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2012-10-16 17:49:18 -04:00
|
|
|
rb_bug("vm_call_method: unreachable");
|
2012-10-14 15:58:59 -04:00
|
|
|
}
|
|
|
|
|
|
|
|
static VALUE
|
|
|
|
vm_call_general(rb_thread_t *th, rb_control_frame_t *reg_cfp, rb_call_info_t *ci)
|
|
|
|
{
|
|
|
|
return vm_call_method(th, reg_cfp, ci);
|
|
|
|
}
|
|
|
|
|
* revised r37993 to avoid SEGV/ILL in tests. In r37993, a method
entry with VM_METHOD_TYPE_REFINED holds only the original method
definition, so ci->me is set to a method entry allocated in the
stack, and it causes SEGV/ILL. In this commit, a method entry
with VM_METHOD_TYPE_REFINED holds the whole original method entry.
Furthermore, rb_thread_mark() is changed to mark cfp->klass to
avoid GC for iclasses created by copy_refinement_iclass().
* vm_method.c (rb_method_entry_make): add a method entry with
VM_METHOD_TYPE_REFINED to the class refined by the refinement if
the target module is a refinement. When a method entry with
VM_METHOD_TYPE_UNDEF is invoked by vm_call_method(), a method with
the same name is searched in refinements. If such a method is
found, the method is invoked. Otherwise, the original method in
the refined class (rb_method_definition_t::body.orig_me) is
invoked. This change is made to simplify the normal method lookup
and to improve the performance of normal method calls.
* vm_method.c (EXPR1, search_method, rb_method_entry),
vm_eval.c (rb_call0, rb_search_method_entry): do not use
refinements for method lookup.
* vm_insnhelper.c (vm_call_method): search methods in refinements if
ci->me is VM_METHOD_TYPE_REFINED. If the method is called by
super (i.e., ci->call == vm_call_super_method), skip the same
method entry as the current method to avoid infinite call of the
same method.
* class.c (include_modules_at): add a refined method entry for each
method defined in a module included in a refinement.
* class.c (rb_prepend_module): set an empty table to
RCLASS_M_TBL(klass) to add refined method entries, because
refinements should have priority over prepended modules.
* proc.c (mnew): use rb_method_entry_with_refinements() to get
a refined method.
* vm.c (rb_thread_mark): mark cfp->klass for iclasses created by
copy_refinement_iclass().
* vm.c (Init_VM), cont.c (fiber_init): initialize th->cfp->klass.
* test/ruby/test_refinement.rb (test_inline_method_cache): do not skip
the test because it should pass successfully.
* test/ruby/test_refinement.rb (test_redefine_refined_method): new
test for the case a refined method is redefined.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@38236 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-12-06 08:08:41 -05:00
|
|
|
static VALUE
|
|
|
|
vm_call_super_method(rb_thread_t *th, rb_control_frame_t *reg_cfp, rb_call_info_t *ci)
|
|
|
|
{
|
|
|
|
return vm_call_method(th, reg_cfp, ci);
|
|
|
|
}
|
|
|
|
|
2012-10-14 15:58:59 -04:00
|
|
|
/* super */
|
|
|
|
|
|
|
|
static inline VALUE
|
|
|
|
vm_search_normal_superclass(VALUE klass)
|
|
|
|
{
|
2012-12-07 22:36:58 -05:00
|
|
|
if (BUILTIN_TYPE(klass) == T_ICLASS &&
|
|
|
|
FL_TEST(RBASIC(klass)->klass, RMODULE_IS_REFINEMENT)) {
|
* fix the behavior when a module is included into a refinement.
This change is a little tricky, so it might be better to prohibit
module inclusion to refinements.
* include/ruby/ruby.h (RMODULE_INCLUDED_INTO_REFINEMENT): new flag
to represent that a module (iclass) is included into a refinement.
* class.c (include_modules_at): set RMODULE_INCLUDED_INTO_REFINEMENT
if klass is a refinement.
* eval.c (rb_mod_refine): set the superclass of a refinement to the
refined class for super.
* eval.c (rb_using_refinement): skip the above superclass (the
refined class) when creating iclasses for refinements. Otherwise,
`using Refinement1; using Refinement2' creates iclasses:
<Refinement2> -> <RefinedClass> -> <Refinement1> -> RefinedClass,
where <Module> is an iclass for Module, so RefinedClass is
searched before Refinement1. The correct iclasses should be
<Refinement2> -> <Refinement1> -> RefinedClass.
* vm_insnhelper.c (vm_search_normal_superclass): if klass is an
iclass for a refinement, use the refinement's superclass instead
of the iclass's superclass. Otherwise, multiple refinements are
searched by super. For example, if a refinement Refinement2
includes a module M (i.e., Refinement2 -> <M> -> RefinedClass,
and if refinements iclasses are <Refinement2> -> <M>' ->
<Refinement1> -> RefinedClass, then super in <Refinement2> should
use Refinement2's superclass <M> instead of <Refinement2>'s
superclass <M>'.
* vm_insnhelper.c (vm_search_super_method): do not raise a
NotImplementError if current_defind_class is a module included
into a refinement. Because of the change of
vm_search_normal_superclass(), the receiver might not be an
instance of the module('s iclass).
* test/ruby/test_refinement.rb: related test.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@38298 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-12-10 11:05:45 -05:00
|
|
|
klass = RBASIC(klass)->klass;
|
2012-12-07 22:36:58 -05:00
|
|
|
}
|
* fix the behavior when a module is included into a refinement.
This change is a little tricky, so it might be better to prohibit
module inclusion to refinements.
* include/ruby/ruby.h (RMODULE_INCLUDED_INTO_REFINEMENT): new flag
to represent that a module (iclass) is included into a refinement.
* class.c (include_modules_at): set RMODULE_INCLUDED_INTO_REFINEMENT
if klass is a refinement.
* eval.c (rb_mod_refine): set the superclass of a refinement to the
refined class for super.
* eval.c (rb_using_refinement): skip the above superclass (the
refined class) when creating iclasses for refinements. Otherwise,
`using Refinement1; using Refinement2' creates iclasses:
<Refinement2> -> <RefinedClass> -> <Refinement1> -> RefinedClass,
where <Module> is an iclass for Module, so RefinedClass is
searched before Refinement1. The correct iclasses should be
<Refinement2> -> <Refinement1> -> RefinedClass.
* vm_insnhelper.c (vm_search_normal_superclass): if klass is an
iclass for a refinement, use the refinement's superclass instead
of the iclass's superclass. Otherwise, multiple refinements are
searched by super. For example, if a refinement Refinement2
includes a module M (i.e., Refinement2 -> <M> -> RefinedClass,
and if refinements iclasses are <Refinement2> -> <M>' ->
<Refinement1> -> RefinedClass, then super in <Refinement2> should
use Refinement2's superclass <M> instead of <Refinement2>'s
superclass <M>'.
* vm_insnhelper.c (vm_search_super_method): do not raise a
NotImplementError if current_defind_class is a module included
into a refinement. Because of the change of
vm_search_normal_superclass(), the receiver might not be an
instance of the module('s iclass).
* test/ruby/test_refinement.rb: related test.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@38298 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-12-10 11:05:45 -05:00
|
|
|
klass = RCLASS_ORIGIN(klass);
|
|
|
|
return RCLASS_SUPER(klass);
|
2012-10-14 15:58:59 -04:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
vm_super_outside(void)
|
|
|
|
{
|
|
|
|
rb_raise(rb_eNoMethodError, "super called outside of method");
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
vm_search_super_method(rb_thread_t *th, rb_control_frame_t *reg_cfp, rb_call_info_t *ci)
|
|
|
|
{
|
2015-07-08 22:10:51 -04:00
|
|
|
VALUE current_defined_class, klass;
|
2013-09-02 14:21:13 -04:00
|
|
|
VALUE sigval = TOPN(ci->argc);
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
const rb_callable_method_entry_t *me = rb_vm_frame_method_entry(reg_cfp);
|
2012-10-14 15:58:59 -04:00
|
|
|
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
if (!me) {
|
2012-10-14 15:58:59 -04:00
|
|
|
vm_super_outside();
|
|
|
|
}
|
|
|
|
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
current_defined_class = me->defined_class;
|
|
|
|
|
2012-12-11 04:31:26 -05:00
|
|
|
if (!NIL_P(RCLASS_REFINED_CLASS(current_defined_class))) {
|
|
|
|
current_defined_class = RCLASS_REFINED_CLASS(current_defined_class);
|
2012-10-14 15:58:59 -04:00
|
|
|
}
|
|
|
|
|
2014-01-10 04:01:44 -05:00
|
|
|
if (BUILTIN_TYPE(current_defined_class) != T_MODULE &&
|
2014-04-11 02:05:28 -04:00
|
|
|
BUILTIN_TYPE(current_defined_class) != T_ICLASS && /* bound UnboundMethod */
|
2014-01-10 04:01:44 -05:00
|
|
|
!FL_TEST(current_defined_class, RMODULE_INCLUDED_INTO_REFINEMENT) &&
|
2012-12-11 04:31:26 -05:00
|
|
|
!rb_obj_is_kind_of(ci->recv, current_defined_class)) {
|
2013-01-10 02:51:35 -05:00
|
|
|
VALUE m = RB_TYPE_P(current_defined_class, T_ICLASS) ?
|
|
|
|
RBASIC(current_defined_class)->klass : current_defined_class;
|
|
|
|
|
|
|
|
rb_raise(rb_eTypeError,
|
|
|
|
"self has wrong type to call super in this context: "
|
2014-04-11 01:40:52 -04:00
|
|
|
"%"PRIsVALUE" (expected %"PRIsVALUE")",
|
|
|
|
rb_obj_class(ci->recv), m);
|
2012-10-14 15:58:59 -04:00
|
|
|
}
|
|
|
|
|
2015-07-08 22:10:51 -04:00
|
|
|
if (me->def->type == VM_METHOD_TYPE_BMETHOD && !sigval) {
|
2013-05-05 05:57:02 -04:00
|
|
|
rb_raise(rb_eRuntimeError,
|
|
|
|
"implicit argument passing of super from method defined"
|
|
|
|
" by define_method() is not supported."
|
|
|
|
" Specify all arguments explicitly.");
|
|
|
|
}
|
2015-07-08 22:10:51 -04:00
|
|
|
|
|
|
|
ci->mid = me->def->original_id;
|
|
|
|
klass = vm_search_normal_superclass(me->defined_class);
|
|
|
|
|
|
|
|
if (!klass) {
|
2014-01-08 08:53:18 -05:00
|
|
|
/* bound instance method of module */
|
2015-06-03 06:42:18 -04:00
|
|
|
ci->aux.method_missing_reason = MISSING_SUPER;
|
2014-01-08 08:53:18 -05:00
|
|
|
CI_SET_FASTPATH(ci, vm_call_method_missing, 1);
|
|
|
|
}
|
2015-07-08 22:10:51 -04:00
|
|
|
else {
|
|
|
|
/* TODO: use inline cache */
|
|
|
|
ci->me = rb_callable_method_entry(klass, ci->mid);
|
2015-07-09 00:04:30 -04:00
|
|
|
CI_SET_FASTPATH(ci, vm_call_super_method, 1);
|
2015-07-08 22:10:51 -04:00
|
|
|
}
|
2012-10-14 15:58:59 -04:00
|
|
|
}
|
|
|
|
|
|
|
|
/* yield */
|
|
|
|
|
|
|
|
static inline int
|
|
|
|
block_proc_is_lambda(const VALUE procval)
|
|
|
|
{
|
|
|
|
rb_proc_t *proc;
|
|
|
|
|
|
|
|
if (procval) {
|
|
|
|
GetProcPtr(procval, proc);
|
|
|
|
return proc->is_lambda;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline VALUE
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
vm_yield_with_cfunc(rb_thread_t *th, const rb_block_t *block, VALUE self,
|
2014-11-09 09:25:52 -05:00
|
|
|
int argc, const VALUE *argv,
|
2012-10-14 15:58:59 -04:00
|
|
|
const rb_block_t *blockargptr)
|
|
|
|
{
|
2015-03-11 09:31:11 -04:00
|
|
|
const struct vm_ifunc *ifunc = (struct vm_ifunc *)block->iseq;
|
2012-10-14 15:58:59 -04:00
|
|
|
VALUE val, arg, blockarg;
|
|
|
|
int lambda = block_proc_is_lambda(block->proc);
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
const rb_callable_method_entry_t *me = th->passed_bmethod_me;
|
2015-06-02 00:20:30 -04:00
|
|
|
th->passed_bmethod_me = NULL;
|
2012-10-14 15:58:59 -04:00
|
|
|
|
|
|
|
if (lambda) {
|
|
|
|
arg = rb_ary_new4(argc, argv);
|
|
|
|
}
|
|
|
|
else if (argc == 0) {
|
|
|
|
arg = Qnil;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
arg = argv[0];
|
|
|
|
}
|
|
|
|
|
|
|
|
if (blockargptr) {
|
|
|
|
if (blockargptr->proc) {
|
|
|
|
blockarg = blockargptr->proc;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
blockarg = rb_vm_make_proc(th, blockargptr, rb_cProc);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
blockarg = Qnil;
|
|
|
|
}
|
|
|
|
|
2014-11-09 09:25:52 -05:00
|
|
|
vm_push_frame(th, (rb_iseq_t *)ifunc, VM_FRAME_MAGIC_IFUNC,
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
self, VM_ENVVAL_PREV_EP_PTR(block->ep), (VALUE)me,
|
2015-06-02 00:20:30 -04:00
|
|
|
0, th->cfp->sp, 1, 0);
|
2012-10-14 15:58:59 -04:00
|
|
|
|
2015-03-10 15:57:30 -04:00
|
|
|
val = (*ifunc->func) (arg, ifunc->data, argc, argv, blockarg);
|
2012-10-14 15:58:59 -04:00
|
|
|
|
|
|
|
th->cfp++;
|
|
|
|
return val;
|
|
|
|
}
|
|
|
|
|
* rewrite method/block parameter fitting logic to optimize
keyword arguments/parameters and a splat argument.
[Feature #10440] (Details are described in this ticket)
Most of complex part is moved to vm_args.c.
Now, ISeq#to_a does not catch up new instruction format.
* vm_core.h: change iseq data structures.
* introduce rb_call_info_kw_arg_t to represent keyword arguments.
* add rb_call_info_t::kw_arg.
* rename rb_iseq_t::arg_post_len to rb_iseq_t::arg_post_num.
* rename rb_iseq_t::arg_keywords to arg_keyword_num.
* rename rb_iseq_t::arg_keyword to rb_iseq_t::arg_keyword_bits.
to represent keyword bitmap parameter index.
This bitmap parameter shows that which keyword parameters are given
or not given (0 for given).
It is refered by `checkkeyword' instruction described bellow.
* rename rb_iseq_t::arg_keyword_check to rb_iseq_t::arg_keyword_rest
to represent keyword rest parameter index.
* add rb_iseq_t::arg_keyword_default_values to represent default
keyword values.
* rename VM_CALL_ARGS_SKIP_SETUP to VM_CALL_ARGS_SIMPLE
to represent
(ci->flag & (SPLAT|BLOCKARG)) &&
ci->blockiseq == NULL &&
ci->kw_arg == NULL.
* vm_insnhelper.c, vm_args.c: rewrite with refactoring.
* rewrite splat argument code.
* rewrite keyword arguments/parameters code.
* merge method and block parameter fitting code into one code base.
* vm.c, vm_eval.c: catch up these changes.
* compile.c (new_callinfo): callinfo requires kw_arg parameter.
* compile.c (compile_array_): check the last argument Hash object or
not. If Hash object and all keys are Symbol literals, they are
compiled to keyword arguments.
* insns.def (checkkeyword): add new instruction.
This instruction check the availability of corresponding keyword.
For example, a method "def foo k1: 'v1'; end" is cimpiled to the
following instructions.
0000 checkkeyword 2, 0 # check k1 is given.
0003 branchif 9 # if given, jump to address #9
0005 putstring "v1"
0007 setlocal_OP__WC__0 3 # k1 = 'v1'
0009 trace 8
0011 putnil
0012 trace 16
0014 leave
* insns.def (opt_send_simple): removed and add new instruction
"opt_send_without_block".
* parse.y (new_args_tail_gen): reorder variables.
Before this patch, a method "def foo(k1: 1, kr1:, k2: 2, **krest, &b)"
has parameter variables "k1, kr1, k2, &b, internal_id, krest",
but this patch reorders to "kr1, k1, k2, internal_id, krest, &b".
(locate a block variable at last)
* parse.y (vtable_pop): added.
This function remove latest `n' variables from vtable.
* iseq.c: catch up iseq data changes.
* proc.c: ditto.
* class.c (keyword_error): export as rb_keyword_error().
* common.mk: depend vm_args.c for vm.o.
* hash.c (rb_hash_has_key): export.
* internal.h: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@48239 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2014-11-02 13:02:55 -05:00
|
|
|
static int
|
|
|
|
vm_yield_callee_setup_arg(rb_thread_t *th, rb_call_info_t *ci, const rb_iseq_t *iseq, VALUE *argv, enum arg_setup_type arg_setup_type)
|
2012-10-14 15:58:59 -04:00
|
|
|
{
|
* rewrite method/block parameter fitting logic to optimize
keyword arguments/parameters and a splat argument.
[Feature #10440] (Details are described in this ticket)
Most of complex part is moved to vm_args.c.
Now, ISeq#to_a does not catch up new instruction format.
* vm_core.h: change iseq data structures.
* introduce rb_call_info_kw_arg_t to represent keyword arguments.
* add rb_call_info_t::kw_arg.
* rename rb_iseq_t::arg_post_len to rb_iseq_t::arg_post_num.
* rename rb_iseq_t::arg_keywords to arg_keyword_num.
* rename rb_iseq_t::arg_keyword to rb_iseq_t::arg_keyword_bits.
to represent keyword bitmap parameter index.
This bitmap parameter shows that which keyword parameters are given
or not given (0 for given).
It is refered by `checkkeyword' instruction described bellow.
* rename rb_iseq_t::arg_keyword_check to rb_iseq_t::arg_keyword_rest
to represent keyword rest parameter index.
* add rb_iseq_t::arg_keyword_default_values to represent default
keyword values.
* rename VM_CALL_ARGS_SKIP_SETUP to VM_CALL_ARGS_SIMPLE
to represent
(ci->flag & (SPLAT|BLOCKARG)) &&
ci->blockiseq == NULL &&
ci->kw_arg == NULL.
* vm_insnhelper.c, vm_args.c: rewrite with refactoring.
* rewrite splat argument code.
* rewrite keyword arguments/parameters code.
* merge method and block parameter fitting code into one code base.
* vm.c, vm_eval.c: catch up these changes.
* compile.c (new_callinfo): callinfo requires kw_arg parameter.
* compile.c (compile_array_): check the last argument Hash object or
not. If Hash object and all keys are Symbol literals, they are
compiled to keyword arguments.
* insns.def (checkkeyword): add new instruction.
This instruction check the availability of corresponding keyword.
For example, a method "def foo k1: 'v1'; end" is cimpiled to the
following instructions.
0000 checkkeyword 2, 0 # check k1 is given.
0003 branchif 9 # if given, jump to address #9
0005 putstring "v1"
0007 setlocal_OP__WC__0 3 # k1 = 'v1'
0009 trace 8
0011 putnil
0012 trace 16
0014 leave
* insns.def (opt_send_simple): removed and add new instruction
"opt_send_without_block".
* parse.y (new_args_tail_gen): reorder variables.
Before this patch, a method "def foo(k1: 1, kr1:, k2: 2, **krest, &b)"
has parameter variables "k1, kr1, k2, &b, internal_id, krest",
but this patch reorders to "kr1, k1, k2, internal_id, krest, &b".
(locate a block variable at last)
* parse.y (vtable_pop): added.
This function remove latest `n' variables from vtable.
* iseq.c: catch up iseq data changes.
* proc.c: ditto.
* class.c (keyword_error): export as rb_keyword_error().
* common.mk: depend vm_args.c for vm.o.
* hash.c (rb_hash_has_key): export.
* internal.h: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@48239 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2014-11-02 13:02:55 -05:00
|
|
|
vm_callee_setup_block_arg(th, ci, iseq, argv, arg_setup_type);
|
|
|
|
return ci->aux.opt_pc;
|
2012-10-14 15:58:59 -04:00
|
|
|
}
|
|
|
|
|
* rewrite method/block parameter fitting logic to optimize
keyword arguments/parameters and a splat argument.
[Feature #10440] (Details are described in this ticket)
Most of complex part is moved to vm_args.c.
Now, ISeq#to_a does not catch up new instruction format.
* vm_core.h: change iseq data structures.
* introduce rb_call_info_kw_arg_t to represent keyword arguments.
* add rb_call_info_t::kw_arg.
* rename rb_iseq_t::arg_post_len to rb_iseq_t::arg_post_num.
* rename rb_iseq_t::arg_keywords to arg_keyword_num.
* rename rb_iseq_t::arg_keyword to rb_iseq_t::arg_keyword_bits.
to represent keyword bitmap parameter index.
This bitmap parameter shows that which keyword parameters are given
or not given (0 for given).
It is refered by `checkkeyword' instruction described bellow.
* rename rb_iseq_t::arg_keyword_check to rb_iseq_t::arg_keyword_rest
to represent keyword rest parameter index.
* add rb_iseq_t::arg_keyword_default_values to represent default
keyword values.
* rename VM_CALL_ARGS_SKIP_SETUP to VM_CALL_ARGS_SIMPLE
to represent
(ci->flag & (SPLAT|BLOCKARG)) &&
ci->blockiseq == NULL &&
ci->kw_arg == NULL.
* vm_insnhelper.c, vm_args.c: rewrite with refactoring.
* rewrite splat argument code.
* rewrite keyword arguments/parameters code.
* merge method and block parameter fitting code into one code base.
* vm.c, vm_eval.c: catch up these changes.
* compile.c (new_callinfo): callinfo requires kw_arg parameter.
* compile.c (compile_array_): check the last argument Hash object or
not. If Hash object and all keys are Symbol literals, they are
compiled to keyword arguments.
* insns.def (checkkeyword): add new instruction.
This instruction check the availability of corresponding keyword.
For example, a method "def foo k1: 'v1'; end" is cimpiled to the
following instructions.
0000 checkkeyword 2, 0 # check k1 is given.
0003 branchif 9 # if given, jump to address #9
0005 putstring "v1"
0007 setlocal_OP__WC__0 3 # k1 = 'v1'
0009 trace 8
0011 putnil
0012 trace 16
0014 leave
* insns.def (opt_send_simple): removed and add new instruction
"opt_send_without_block".
* parse.y (new_args_tail_gen): reorder variables.
Before this patch, a method "def foo(k1: 1, kr1:, k2: 2, **krest, &b)"
has parameter variables "k1, kr1, k2, &b, internal_id, krest",
but this patch reorders to "kr1, k1, k2, internal_id, krest, &b".
(locate a block variable at last)
* parse.y (vtable_pop): added.
This function remove latest `n' variables from vtable.
* iseq.c: catch up iseq data changes.
* proc.c: ditto.
* class.c (keyword_error): export as rb_keyword_error().
* common.mk: depend vm_args.c for vm.o.
* hash.c (rb_hash_has_key): export.
* internal.h: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@48239 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2014-11-02 13:02:55 -05:00
|
|
|
static int
|
|
|
|
vm_yield_setup_args(rb_thread_t *th, const rb_iseq_t *iseq, const int argc, VALUE *argv, const rb_block_t *blockptr, enum arg_setup_type arg_setup_type)
|
2012-10-14 15:58:59 -04:00
|
|
|
{
|
* rewrite method/block parameter fitting logic to optimize
keyword arguments/parameters and a splat argument.
[Feature #10440] (Details are described in this ticket)
Most of complex part is moved to vm_args.c.
Now, ISeq#to_a does not catch up new instruction format.
* vm_core.h: change iseq data structures.
* introduce rb_call_info_kw_arg_t to represent keyword arguments.
* add rb_call_info_t::kw_arg.
* rename rb_iseq_t::arg_post_len to rb_iseq_t::arg_post_num.
* rename rb_iseq_t::arg_keywords to arg_keyword_num.
* rename rb_iseq_t::arg_keyword to rb_iseq_t::arg_keyword_bits.
to represent keyword bitmap parameter index.
This bitmap parameter shows that which keyword parameters are given
or not given (0 for given).
It is refered by `checkkeyword' instruction described bellow.
* rename rb_iseq_t::arg_keyword_check to rb_iseq_t::arg_keyword_rest
to represent keyword rest parameter index.
* add rb_iseq_t::arg_keyword_default_values to represent default
keyword values.
* rename VM_CALL_ARGS_SKIP_SETUP to VM_CALL_ARGS_SIMPLE
to represent
(ci->flag & (SPLAT|BLOCKARG)) &&
ci->blockiseq == NULL &&
ci->kw_arg == NULL.
* vm_insnhelper.c, vm_args.c: rewrite with refactoring.
* rewrite splat argument code.
* rewrite keyword arguments/parameters code.
* merge method and block parameter fitting code into one code base.
* vm.c, vm_eval.c: catch up these changes.
* compile.c (new_callinfo): callinfo requires kw_arg parameter.
* compile.c (compile_array_): check the last argument Hash object or
not. If Hash object and all keys are Symbol literals, they are
compiled to keyword arguments.
* insns.def (checkkeyword): add new instruction.
This instruction check the availability of corresponding keyword.
For example, a method "def foo k1: 'v1'; end" is cimpiled to the
following instructions.
0000 checkkeyword 2, 0 # check k1 is given.
0003 branchif 9 # if given, jump to address #9
0005 putstring "v1"
0007 setlocal_OP__WC__0 3 # k1 = 'v1'
0009 trace 8
0011 putnil
0012 trace 16
0014 leave
* insns.def (opt_send_simple): removed and add new instruction
"opt_send_without_block".
* parse.y (new_args_tail_gen): reorder variables.
Before this patch, a method "def foo(k1: 1, kr1:, k2: 2, **krest, &b)"
has parameter variables "k1, kr1, k2, &b, internal_id, krest",
but this patch reorders to "kr1, k1, k2, internal_id, krest, &b".
(locate a block variable at last)
* parse.y (vtable_pop): added.
This function remove latest `n' variables from vtable.
* iseq.c: catch up iseq data changes.
* proc.c: ditto.
* class.c (keyword_error): export as rb_keyword_error().
* common.mk: depend vm_args.c for vm.o.
* hash.c (rb_hash_has_key): export.
* internal.h: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@48239 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2014-11-02 13:02:55 -05:00
|
|
|
rb_call_info_t ci_entry;
|
|
|
|
ci_entry.argc = argc;
|
|
|
|
ci_entry.blockptr = (rb_block_t *)blockptr;
|
|
|
|
ci_entry.flag = 0;
|
|
|
|
ci_entry.kw_arg = NULL;
|
|
|
|
ci_entry.me = NULL;
|
2012-10-14 15:58:59 -04:00
|
|
|
|
* rewrite method/block parameter fitting logic to optimize
keyword arguments/parameters and a splat argument.
[Feature #10440] (Details are described in this ticket)
Most of complex part is moved to vm_args.c.
Now, ISeq#to_a does not catch up new instruction format.
* vm_core.h: change iseq data structures.
* introduce rb_call_info_kw_arg_t to represent keyword arguments.
* add rb_call_info_t::kw_arg.
* rename rb_iseq_t::arg_post_len to rb_iseq_t::arg_post_num.
* rename rb_iseq_t::arg_keywords to arg_keyword_num.
* rename rb_iseq_t::arg_keyword to rb_iseq_t::arg_keyword_bits.
to represent keyword bitmap parameter index.
This bitmap parameter shows that which keyword parameters are given
or not given (0 for given).
It is refered by `checkkeyword' instruction described bellow.
* rename rb_iseq_t::arg_keyword_check to rb_iseq_t::arg_keyword_rest
to represent keyword rest parameter index.
* add rb_iseq_t::arg_keyword_default_values to represent default
keyword values.
* rename VM_CALL_ARGS_SKIP_SETUP to VM_CALL_ARGS_SIMPLE
to represent
(ci->flag & (SPLAT|BLOCKARG)) &&
ci->blockiseq == NULL &&
ci->kw_arg == NULL.
* vm_insnhelper.c, vm_args.c: rewrite with refactoring.
* rewrite splat argument code.
* rewrite keyword arguments/parameters code.
* merge method and block parameter fitting code into one code base.
* vm.c, vm_eval.c: catch up these changes.
* compile.c (new_callinfo): callinfo requires kw_arg parameter.
* compile.c (compile_array_): check the last argument Hash object or
not. If Hash object and all keys are Symbol literals, they are
compiled to keyword arguments.
* insns.def (checkkeyword): add new instruction.
This instruction check the availability of corresponding keyword.
For example, a method "def foo k1: 'v1'; end" is cimpiled to the
following instructions.
0000 checkkeyword 2, 0 # check k1 is given.
0003 branchif 9 # if given, jump to address #9
0005 putstring "v1"
0007 setlocal_OP__WC__0 3 # k1 = 'v1'
0009 trace 8
0011 putnil
0012 trace 16
0014 leave
* insns.def (opt_send_simple): removed and add new instruction
"opt_send_without_block".
* parse.y (new_args_tail_gen): reorder variables.
Before this patch, a method "def foo(k1: 1, kr1:, k2: 2, **krest, &b)"
has parameter variables "k1, kr1, k2, &b, internal_id, krest",
but this patch reorders to "kr1, k1, k2, internal_id, krest, &b".
(locate a block variable at last)
* parse.y (vtable_pop): added.
This function remove latest `n' variables from vtable.
* iseq.c: catch up iseq data changes.
* proc.c: ditto.
* class.c (keyword_error): export as rb_keyword_error().
* common.mk: depend vm_args.c for vm.o.
* hash.c (rb_hash_has_key): export.
* internal.h: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@48239 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2014-11-02 13:02:55 -05:00
|
|
|
return vm_yield_callee_setup_arg(th, &ci_entry, iseq, argv, arg_setup_type);
|
* insns.def (send, invokesuper, invokeblock, opt_*), vm_core.h:
use only a `ci' (rb_call_info_t) parameter instead of using
parameters such as `op_id', 'op_argc', `blockiseq' and flag.
These information are stored in rb_call_info_t at the compile
time.
This technique simplifies parameter passings at related
function calls (~10% speedups for simple mehtod invocation at
my machine).
`rb_call_info_t' also has new function pointer variable `call'.
This `call' variable enables to customize method (block)
invocation process for each place. However, it always call
`vm_call_general()' at this changes.
`rb_call_info_t' also has temporary variables for method
(block) invocation.
* vm_core.h, compile.c, insns.def: introduce VM_CALL_ARGS_SKIP_SETUP
VM_CALL macro. This flag indicates that this call can skip
caller_setup (block arg and splat arg).
* compile.c: catch up above changes.
* iseq.c: catch up above changes (especially for TS_CALLINFO).
* tool/instruction.rb: catch up above chagnes.
* vm_insnhelper.c, vm_insnhelper.h: ditto. Macros and functions
parameters are changed.
* vm_eval.c (vm_call0): ditto (it will be rewriten soon).
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@37180 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-10-14 12:59:05 -04:00
|
|
|
}
|
|
|
|
|
* rewrite method/block parameter fitting logic to optimize
keyword arguments/parameters and a splat argument.
[Feature #10440] (Details are described in this ticket)
Most of complex part is moved to vm_args.c.
Now, ISeq#to_a does not catch up new instruction format.
* vm_core.h: change iseq data structures.
* introduce rb_call_info_kw_arg_t to represent keyword arguments.
* add rb_call_info_t::kw_arg.
* rename rb_iseq_t::arg_post_len to rb_iseq_t::arg_post_num.
* rename rb_iseq_t::arg_keywords to arg_keyword_num.
* rename rb_iseq_t::arg_keyword to rb_iseq_t::arg_keyword_bits.
to represent keyword bitmap parameter index.
This bitmap parameter shows that which keyword parameters are given
or not given (0 for given).
It is refered by `checkkeyword' instruction described bellow.
* rename rb_iseq_t::arg_keyword_check to rb_iseq_t::arg_keyword_rest
to represent keyword rest parameter index.
* add rb_iseq_t::arg_keyword_default_values to represent default
keyword values.
* rename VM_CALL_ARGS_SKIP_SETUP to VM_CALL_ARGS_SIMPLE
to represent
(ci->flag & (SPLAT|BLOCKARG)) &&
ci->blockiseq == NULL &&
ci->kw_arg == NULL.
* vm_insnhelper.c, vm_args.c: rewrite with refactoring.
* rewrite splat argument code.
* rewrite keyword arguments/parameters code.
* merge method and block parameter fitting code into one code base.
* vm.c, vm_eval.c: catch up these changes.
* compile.c (new_callinfo): callinfo requires kw_arg parameter.
* compile.c (compile_array_): check the last argument Hash object or
not. If Hash object and all keys are Symbol literals, they are
compiled to keyword arguments.
* insns.def (checkkeyword): add new instruction.
This instruction check the availability of corresponding keyword.
For example, a method "def foo k1: 'v1'; end" is cimpiled to the
following instructions.
0000 checkkeyword 2, 0 # check k1 is given.
0003 branchif 9 # if given, jump to address #9
0005 putstring "v1"
0007 setlocal_OP__WC__0 3 # k1 = 'v1'
0009 trace 8
0011 putnil
0012 trace 16
0014 leave
* insns.def (opt_send_simple): removed and add new instruction
"opt_send_without_block".
* parse.y (new_args_tail_gen): reorder variables.
Before this patch, a method "def foo(k1: 1, kr1:, k2: 2, **krest, &b)"
has parameter variables "k1, kr1, k2, &b, internal_id, krest",
but this patch reorders to "kr1, k1, k2, internal_id, krest, &b".
(locate a block variable at last)
* parse.y (vtable_pop): added.
This function remove latest `n' variables from vtable.
* iseq.c: catch up iseq data changes.
* proc.c: ditto.
* class.c (keyword_error): export as rb_keyword_error().
* common.mk: depend vm_args.c for vm.o.
* hash.c (rb_hash_has_key): export.
* internal.h: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@48239 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2014-11-02 13:02:55 -05:00
|
|
|
/* ruby iseq -> ruby block iseq */
|
* insns.def (send, invokesuper, invokeblock, opt_*), vm_core.h:
use only a `ci' (rb_call_info_t) parameter instead of using
parameters such as `op_id', 'op_argc', `blockiseq' and flag.
These information are stored in rb_call_info_t at the compile
time.
This technique simplifies parameter passings at related
function calls (~10% speedups for simple mehtod invocation at
my machine).
`rb_call_info_t' also has new function pointer variable `call'.
This `call' variable enables to customize method (block)
invocation process for each place. However, it always call
`vm_call_general()' at this changes.
`rb_call_info_t' also has temporary variables for method
(block) invocation.
* vm_core.h, compile.c, insns.def: introduce VM_CALL_ARGS_SKIP_SETUP
VM_CALL macro. This flag indicates that this call can skip
caller_setup (block arg and splat arg).
* compile.c: catch up above changes.
* iseq.c: catch up above changes (especially for TS_CALLINFO).
* tool/instruction.rb: catch up above chagnes.
* vm_insnhelper.c, vm_insnhelper.h: ditto. Macros and functions
parameters are changed.
* vm_eval.c (vm_call0): ditto (it will be rewriten soon).
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@37180 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-10-14 12:59:05 -04:00
|
|
|
static VALUE
|
2012-10-14 15:58:59 -04:00
|
|
|
vm_invoke_block(rb_thread_t *th, rb_control_frame_t *reg_cfp, rb_call_info_t *ci)
|
* insns.def (send, invokesuper, invokeblock, opt_*), vm_core.h:
use only a `ci' (rb_call_info_t) parameter instead of using
parameters such as `op_id', 'op_argc', `blockiseq' and flag.
These information are stored in rb_call_info_t at the compile
time.
This technique simplifies parameter passings at related
function calls (~10% speedups for simple mehtod invocation at
my machine).
`rb_call_info_t' also has new function pointer variable `call'.
This `call' variable enables to customize method (block)
invocation process for each place. However, it always call
`vm_call_general()' at this changes.
`rb_call_info_t' also has temporary variables for method
(block) invocation.
* vm_core.h, compile.c, insns.def: introduce VM_CALL_ARGS_SKIP_SETUP
VM_CALL macro. This flag indicates that this call can skip
caller_setup (block arg and splat arg).
* compile.c: catch up above changes.
* iseq.c: catch up above changes (especially for TS_CALLINFO).
* tool/instruction.rb: catch up above chagnes.
* vm_insnhelper.c, vm_insnhelper.h: ditto. Macros and functions
parameters are changed.
* vm_eval.c (vm_call0): ditto (it will be rewriten soon).
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@37180 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-10-14 12:59:05 -04:00
|
|
|
{
|
2012-10-14 15:58:59 -04:00
|
|
|
const rb_block_t *block = VM_CF_BLOCK_PTR(reg_cfp);
|
2015-07-21 17:28:43 -04:00
|
|
|
const rb_iseq_t *iseq;
|
2015-07-21 18:52:59 -04:00
|
|
|
VALUE type = GET_ISEQ()->body->local_iseq->body->type;
|
2012-10-14 15:58:59 -04:00
|
|
|
|
|
|
|
if ((type != ISEQ_TYPE_METHOD && type != ISEQ_TYPE_CLASS) || block == 0) {
|
|
|
|
rb_vm_localjump_error("no block given (yield)", Qnil, 0);
|
|
|
|
}
|
|
|
|
iseq = block->iseq;
|
|
|
|
|
2015-03-10 14:50:15 -04:00
|
|
|
if (!RUBY_VM_IFUNC_P(iseq)) {
|
2012-10-14 15:58:59 -04:00
|
|
|
int opt_pc;
|
2015-07-21 18:52:59 -04:00
|
|
|
const int arg_size = iseq->body->param.size;
|
2013-08-08 21:49:38 -04:00
|
|
|
int is_lambda = block_proc_is_lambda(block->proc);
|
2012-10-14 15:58:59 -04:00
|
|
|
VALUE * const rsp = GET_SP() - ci->argc;
|
|
|
|
|
* rewrite method/block parameter fitting logic to optimize
keyword arguments/parameters and a splat argument.
[Feature #10440] (Details are described in this ticket)
Most of complex part is moved to vm_args.c.
Now, ISeq#to_a does not catch up new instruction format.
* vm_core.h: change iseq data structures.
* introduce rb_call_info_kw_arg_t to represent keyword arguments.
* add rb_call_info_t::kw_arg.
* rename rb_iseq_t::arg_post_len to rb_iseq_t::arg_post_num.
* rename rb_iseq_t::arg_keywords to arg_keyword_num.
* rename rb_iseq_t::arg_keyword to rb_iseq_t::arg_keyword_bits.
to represent keyword bitmap parameter index.
This bitmap parameter shows that which keyword parameters are given
or not given (0 for given).
It is refered by `checkkeyword' instruction described bellow.
* rename rb_iseq_t::arg_keyword_check to rb_iseq_t::arg_keyword_rest
to represent keyword rest parameter index.
* add rb_iseq_t::arg_keyword_default_values to represent default
keyword values.
* rename VM_CALL_ARGS_SKIP_SETUP to VM_CALL_ARGS_SIMPLE
to represent
(ci->flag & (SPLAT|BLOCKARG)) &&
ci->blockiseq == NULL &&
ci->kw_arg == NULL.
* vm_insnhelper.c, vm_args.c: rewrite with refactoring.
* rewrite splat argument code.
* rewrite keyword arguments/parameters code.
* merge method and block parameter fitting code into one code base.
* vm.c, vm_eval.c: catch up these changes.
* compile.c (new_callinfo): callinfo requires kw_arg parameter.
* compile.c (compile_array_): check the last argument Hash object or
not. If Hash object and all keys are Symbol literals, they are
compiled to keyword arguments.
* insns.def (checkkeyword): add new instruction.
This instruction check the availability of corresponding keyword.
For example, a method "def foo k1: 'v1'; end" is cimpiled to the
following instructions.
0000 checkkeyword 2, 0 # check k1 is given.
0003 branchif 9 # if given, jump to address #9
0005 putstring "v1"
0007 setlocal_OP__WC__0 3 # k1 = 'v1'
0009 trace 8
0011 putnil
0012 trace 16
0014 leave
* insns.def (opt_send_simple): removed and add new instruction
"opt_send_without_block".
* parse.y (new_args_tail_gen): reorder variables.
Before this patch, a method "def foo(k1: 1, kr1:, k2: 2, **krest, &b)"
has parameter variables "k1, kr1, k2, &b, internal_id, krest",
but this patch reorders to "kr1, k1, k2, internal_id, krest, &b".
(locate a block variable at last)
* parse.y (vtable_pop): added.
This function remove latest `n' variables from vtable.
* iseq.c: catch up iseq data changes.
* proc.c: ditto.
* class.c (keyword_error): export as rb_keyword_error().
* common.mk: depend vm_args.c for vm.o.
* hash.c (rb_hash_has_key): export.
* internal.h: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@48239 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2014-11-02 13:02:55 -05:00
|
|
|
opt_pc = vm_yield_callee_setup_arg(th, ci, iseq, rsp, is_lambda ? arg_setup_lambda : arg_setup_block);
|
|
|
|
|
|
|
|
SET_SP(rsp);
|
2012-10-14 15:58:59 -04:00
|
|
|
|
2013-08-08 21:49:38 -04:00
|
|
|
vm_push_frame(th, iseq,
|
|
|
|
is_lambda ? VM_FRAME_MAGIC_LAMBDA : VM_FRAME_MAGIC_BLOCK,
|
|
|
|
block->self,
|
2015-06-02 00:20:30 -04:00
|
|
|
VM_ENVVAL_PREV_EP_PTR(block->ep), 0,
|
2015-07-21 18:52:59 -04:00
|
|
|
iseq->body->iseq_encoded + opt_pc,
|
2012-10-14 15:58:59 -04:00
|
|
|
rsp + arg_size,
|
2015-07-21 18:52:59 -04:00
|
|
|
iseq->body->local_size - arg_size, iseq->body->stack_max);
|
2012-10-14 15:58:59 -04:00
|
|
|
|
|
|
|
return Qundef;
|
|
|
|
}
|
|
|
|
else {
|
* rewrite method/block parameter fitting logic to optimize
keyword arguments/parameters and a splat argument.
[Feature #10440] (Details are described in this ticket)
Most of complex part is moved to vm_args.c.
Now, ISeq#to_a does not catch up new instruction format.
* vm_core.h: change iseq data structures.
* introduce rb_call_info_kw_arg_t to represent keyword arguments.
* add rb_call_info_t::kw_arg.
* rename rb_iseq_t::arg_post_len to rb_iseq_t::arg_post_num.
* rename rb_iseq_t::arg_keywords to arg_keyword_num.
* rename rb_iseq_t::arg_keyword to rb_iseq_t::arg_keyword_bits.
to represent keyword bitmap parameter index.
This bitmap parameter shows that which keyword parameters are given
or not given (0 for given).
It is refered by `checkkeyword' instruction described bellow.
* rename rb_iseq_t::arg_keyword_check to rb_iseq_t::arg_keyword_rest
to represent keyword rest parameter index.
* add rb_iseq_t::arg_keyword_default_values to represent default
keyword values.
* rename VM_CALL_ARGS_SKIP_SETUP to VM_CALL_ARGS_SIMPLE
to represent
(ci->flag & (SPLAT|BLOCKARG)) &&
ci->blockiseq == NULL &&
ci->kw_arg == NULL.
* vm_insnhelper.c, vm_args.c: rewrite with refactoring.
* rewrite splat argument code.
* rewrite keyword arguments/parameters code.
* merge method and block parameter fitting code into one code base.
* vm.c, vm_eval.c: catch up these changes.
* compile.c (new_callinfo): callinfo requires kw_arg parameter.
* compile.c (compile_array_): check the last argument Hash object or
not. If Hash object and all keys are Symbol literals, they are
compiled to keyword arguments.
* insns.def (checkkeyword): add new instruction.
This instruction check the availability of corresponding keyword.
For example, a method "def foo k1: 'v1'; end" is cimpiled to the
following instructions.
0000 checkkeyword 2, 0 # check k1 is given.
0003 branchif 9 # if given, jump to address #9
0005 putstring "v1"
0007 setlocal_OP__WC__0 3 # k1 = 'v1'
0009 trace 8
0011 putnil
0012 trace 16
0014 leave
* insns.def (opt_send_simple): removed and add new instruction
"opt_send_without_block".
* parse.y (new_args_tail_gen): reorder variables.
Before this patch, a method "def foo(k1: 1, kr1:, k2: 2, **krest, &b)"
has parameter variables "k1, kr1, k2, &b, internal_id, krest",
but this patch reorders to "kr1, k1, k2, internal_id, krest, &b".
(locate a block variable at last)
* parse.y (vtable_pop): added.
This function remove latest `n' variables from vtable.
* iseq.c: catch up iseq data changes.
* proc.c: ditto.
* class.c (keyword_error): export as rb_keyword_error().
* common.mk: depend vm_args.c for vm.o.
* hash.c (rb_hash_has_key): export.
* internal.h: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@48239 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2014-11-02 13:02:55 -05:00
|
|
|
VALUE val;
|
|
|
|
CALLER_SETUP_ARG(th->cfp, ci);
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
val = vm_yield_with_cfunc(th, block, block->self,
|
2014-11-09 09:25:52 -05:00
|
|
|
ci->argc, STACK_ADDR_FROM_TOP(ci->argc), 0);
|
2012-10-14 15:58:59 -04:00
|
|
|
POPN(ci->argc); /* TODO: should put before C/yield? */
|
|
|
|
return val;
|
|
|
|
}
|
* insns.def (send, invokesuper, invokeblock, opt_*), vm_core.h:
use only a `ci' (rb_call_info_t) parameter instead of using
parameters such as `op_id', 'op_argc', `blockiseq' and flag.
These information are stored in rb_call_info_t at the compile
time.
This technique simplifies parameter passings at related
function calls (~10% speedups for simple mehtod invocation at
my machine).
`rb_call_info_t' also has new function pointer variable `call'.
This `call' variable enables to customize method (block)
invocation process for each place. However, it always call
`vm_call_general()' at this changes.
`rb_call_info_t' also has temporary variables for method
(block) invocation.
* vm_core.h, compile.c, insns.def: introduce VM_CALL_ARGS_SKIP_SETUP
VM_CALL macro. This flag indicates that this call can skip
caller_setup (block arg and splat arg).
* compile.c: catch up above changes.
* iseq.c: catch up above changes (especially for TS_CALLINFO).
* tool/instruction.rb: catch up above chagnes.
* vm_insnhelper.c, vm_insnhelper.h: ditto. Macros and functions
parameters are changed.
* vm_eval.c (vm_call0): ditto (it will be rewriten soon).
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@37180 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-10-14 12:59:05 -04:00
|
|
|
}
|
2013-08-20 13:41:13 -04:00
|
|
|
|
|
|
|
static VALUE
|
2015-07-21 17:28:43 -04:00
|
|
|
vm_make_proc_with_iseq(const rb_iseq_t *blockiseq)
|
2013-08-20 13:41:13 -04:00
|
|
|
{
|
|
|
|
rb_block_t *blockptr;
|
|
|
|
rb_thread_t *th = GET_THREAD();
|
|
|
|
rb_control_frame_t *cfp = rb_vm_get_ruby_level_next_cfp(th, th->cfp);
|
|
|
|
|
|
|
|
if (cfp == 0) {
|
2013-09-22 07:57:50 -04:00
|
|
|
rb_bug("vm_make_proc_with_iseq: unreachable");
|
2013-08-20 13:41:13 -04:00
|
|
|
}
|
|
|
|
|
|
|
|
blockptr = RUBY_VM_GET_BLOCK_PTR_IN_CFP(cfp);
|
|
|
|
blockptr->iseq = blockiseq;
|
|
|
|
blockptr->proc = 0;
|
|
|
|
|
|
|
|
return rb_vm_make_proc(th, blockptr, rb_cProc);
|
|
|
|
}
|
|
|
|
|
|
|
|
static VALUE
|
2014-06-20 02:59:28 -04:00
|
|
|
vm_once_exec(VALUE iseq)
|
2013-08-20 13:41:13 -04:00
|
|
|
{
|
2014-06-20 02:59:28 -04:00
|
|
|
VALUE proc = vm_make_proc_with_iseq((rb_iseq_t *)iseq);
|
2013-08-20 13:41:13 -04:00
|
|
|
return rb_proc_call_with_block(proc, 0, 0, Qnil);
|
|
|
|
}
|
|
|
|
|
|
|
|
static VALUE
|
|
|
|
vm_once_clear(VALUE data)
|
|
|
|
{
|
|
|
|
union iseq_inline_storage_entry *is = (union iseq_inline_storage_entry *)data;
|
|
|
|
is->once.running_thread = NULL;
|
|
|
|
return Qnil;
|
|
|
|
}
|
* rewrite method/block parameter fitting logic to optimize
keyword arguments/parameters and a splat argument.
[Feature #10440] (Details are described in this ticket)
Most of complex part is moved to vm_args.c.
Now, ISeq#to_a does not catch up new instruction format.
* vm_core.h: change iseq data structures.
* introduce rb_call_info_kw_arg_t to represent keyword arguments.
* add rb_call_info_t::kw_arg.
* rename rb_iseq_t::arg_post_len to rb_iseq_t::arg_post_num.
* rename rb_iseq_t::arg_keywords to arg_keyword_num.
* rename rb_iseq_t::arg_keyword to rb_iseq_t::arg_keyword_bits.
to represent keyword bitmap parameter index.
This bitmap parameter shows that which keyword parameters are given
or not given (0 for given).
It is refered by `checkkeyword' instruction described bellow.
* rename rb_iseq_t::arg_keyword_check to rb_iseq_t::arg_keyword_rest
to represent keyword rest parameter index.
* add rb_iseq_t::arg_keyword_default_values to represent default
keyword values.
* rename VM_CALL_ARGS_SKIP_SETUP to VM_CALL_ARGS_SIMPLE
to represent
(ci->flag & (SPLAT|BLOCKARG)) &&
ci->blockiseq == NULL &&
ci->kw_arg == NULL.
* vm_insnhelper.c, vm_args.c: rewrite with refactoring.
* rewrite splat argument code.
* rewrite keyword arguments/parameters code.
* merge method and block parameter fitting code into one code base.
* vm.c, vm_eval.c: catch up these changes.
* compile.c (new_callinfo): callinfo requires kw_arg parameter.
* compile.c (compile_array_): check the last argument Hash object or
not. If Hash object and all keys are Symbol literals, they are
compiled to keyword arguments.
* insns.def (checkkeyword): add new instruction.
This instruction check the availability of corresponding keyword.
For example, a method "def foo k1: 'v1'; end" is cimpiled to the
following instructions.
0000 checkkeyword 2, 0 # check k1 is given.
0003 branchif 9 # if given, jump to address #9
0005 putstring "v1"
0007 setlocal_OP__WC__0 3 # k1 = 'v1'
0009 trace 8
0011 putnil
0012 trace 16
0014 leave
* insns.def (opt_send_simple): removed and add new instruction
"opt_send_without_block".
* parse.y (new_args_tail_gen): reorder variables.
Before this patch, a method "def foo(k1: 1, kr1:, k2: 2, **krest, &b)"
has parameter variables "k1, kr1, k2, &b, internal_id, krest",
but this patch reorders to "kr1, k1, k2, internal_id, krest, &b".
(locate a block variable at last)
* parse.y (vtable_pop): added.
This function remove latest `n' variables from vtable.
* iseq.c: catch up iseq data changes.
* proc.c: ditto.
* class.c (keyword_error): export as rb_keyword_error().
* common.mk: depend vm_args.c for vm.o.
* hash.c (rb_hash_has_key): export.
* internal.h: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@48239 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2014-11-02 13:02:55 -05:00
|
|
|
|
2014-12-16 01:18:25 -05:00
|
|
|
rb_control_frame_t *
|
|
|
|
FUNC_FASTCALL(rb_vm_opt_struct_aref)(rb_thread_t *th, rb_control_frame_t *reg_cfp)
|
|
|
|
{
|
|
|
|
TOPN(0) = rb_struct_aref(GET_SELF(), TOPN(0));
|
|
|
|
return reg_cfp;
|
|
|
|
}
|
|
|
|
|
|
|
|
rb_control_frame_t *
|
|
|
|
FUNC_FASTCALL(rb_vm_opt_struct_aset)(rb_thread_t *th, rb_control_frame_t *reg_cfp)
|
|
|
|
{
|
|
|
|
rb_struct_aset(GET_SELF(), TOPN(0), TOPN(1));
|
|
|
|
return reg_cfp;
|
|
|
|
}
|
2015-06-02 15:15:29 -04:00
|
|
|
|
|
|
|
/* defined insn */
|
|
|
|
|
2015-06-02 15:49:22 -04:00
|
|
|
static enum defined_type
|
2015-06-02 16:03:54 -04:00
|
|
|
check_respond_to_missing(VALUE obj, VALUE v)
|
2015-06-02 15:49:22 -04:00
|
|
|
{
|
|
|
|
VALUE args[2];
|
|
|
|
VALUE r;
|
|
|
|
|
|
|
|
args[0] = obj; args[1] = Qfalse;
|
|
|
|
r = rb_check_funcall(v, idRespond_to_missing, 2, args);
|
|
|
|
if (r != Qundef && RTEST(r)) {
|
|
|
|
return DEFINED_METHOD;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-06-02 15:15:29 -04:00
|
|
|
static VALUE
|
|
|
|
vm_defined(rb_thread_t *th, rb_control_frame_t *reg_cfp, rb_num_t op_type, VALUE obj, VALUE needstr, VALUE v)
|
|
|
|
{
|
|
|
|
VALUE klass;
|
|
|
|
enum defined_type expr_type = 0;
|
|
|
|
enum defined_type type = (enum defined_type)op_type;
|
|
|
|
|
|
|
|
switch (type) {
|
|
|
|
case DEFINED_IVAR:
|
|
|
|
if (rb_ivar_defined(GET_SELF(), SYM2ID(obj))) {
|
|
|
|
expr_type = DEFINED_IVAR;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case DEFINED_IVAR2:
|
|
|
|
klass = vm_get_cbase(GET_EP());
|
|
|
|
break;
|
|
|
|
case DEFINED_GVAR:
|
|
|
|
if (rb_gvar_defined(rb_global_entry(SYM2ID(obj)))) {
|
|
|
|
expr_type = DEFINED_GVAR;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case DEFINED_CVAR: {
|
|
|
|
const rb_cref_t *cref = rb_vm_get_cref(GET_EP());
|
|
|
|
klass = vm_get_cvar_base(cref, GET_CFP());
|
|
|
|
if (rb_cvar_defined(klass, SYM2ID(obj))) {
|
|
|
|
expr_type = DEFINED_CVAR;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case DEFINED_CONST:
|
|
|
|
klass = v;
|
|
|
|
if (vm_get_ev_const(th, klass, SYM2ID(obj), 1)) {
|
|
|
|
expr_type = DEFINED_CONST;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case DEFINED_FUNC:
|
|
|
|
klass = CLASS_OF(v);
|
|
|
|
if (rb_method_boundp(klass, SYM2ID(obj), 0)) {
|
|
|
|
expr_type = DEFINED_METHOD;
|
|
|
|
}
|
2015-06-02 15:49:22 -04:00
|
|
|
else {
|
2015-06-02 16:03:54 -04:00
|
|
|
expr_type = check_respond_to_missing(obj, v);
|
2015-06-02 15:49:22 -04:00
|
|
|
}
|
2015-06-02 15:15:29 -04:00
|
|
|
break;
|
|
|
|
case DEFINED_METHOD:{
|
|
|
|
VALUE klass = CLASS_OF(v);
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
const rb_method_entry_t *me = rb_method_entry(klass, SYM2ID(obj));
|
2015-06-02 15:15:29 -04:00
|
|
|
|
|
|
|
if (me) {
|
2015-06-06 06:19:48 -04:00
|
|
|
switch (METHOD_ENTRY_VISI(me)) {
|
2015-06-02 21:39:16 -04:00
|
|
|
case METHOD_VISI_PRIVATE:
|
|
|
|
break;
|
|
|
|
case METHOD_VISI_PROTECTED:
|
|
|
|
if (!rb_obj_is_kind_of(GET_SELF(), rb_class_real(klass))) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case METHOD_VISI_PUBLIC:
|
2015-06-02 15:36:43 -04:00
|
|
|
expr_type = DEFINED_METHOD;
|
2015-06-02 21:39:16 -04:00
|
|
|
break;
|
|
|
|
default:
|
2015-06-06 06:19:48 -04:00
|
|
|
rb_bug("vm_defined: unreachable: %u", (unsigned int)METHOD_ENTRY_VISI(me));
|
2015-06-02 15:15:29 -04:00
|
|
|
}
|
|
|
|
}
|
2015-06-02 15:36:43 -04:00
|
|
|
else {
|
2015-06-02 16:03:54 -04:00
|
|
|
expr_type = check_respond_to_missing(obj, v);
|
2015-06-02 15:15:29 -04:00
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case DEFINED_YIELD:
|
|
|
|
if (GET_BLOCK_PTR()) {
|
|
|
|
expr_type = DEFINED_YIELD;
|
|
|
|
}
|
|
|
|
break;
|
2015-07-08 22:10:51 -04:00
|
|
|
case DEFINED_ZSUPER:
|
|
|
|
{
|
|
|
|
const rb_callable_method_entry_t *me = rb_vm_frame_method_entry(GET_CFP());
|
|
|
|
|
|
|
|
if (me) {
|
|
|
|
VALUE klass = vm_search_normal_superclass(me->defined_class);
|
|
|
|
ID id = me->def->original_id;
|
|
|
|
|
|
|
|
if (rb_method_boundp(klass, id, 0)) {
|
|
|
|
expr_type = DEFINED_ZSUPER;
|
|
|
|
}
|
2015-06-02 15:15:29 -04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case DEFINED_REF:{
|
|
|
|
if (vm_getspecial(th, GET_LEP(), Qfalse, FIX2INT(obj)) != Qnil) {
|
|
|
|
expr_type = DEFINED_GVAR;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
default:
|
|
|
|
rb_bug("unimplemented defined? type (VM)");
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (expr_type != 0) {
|
|
|
|
if (needstr != Qfalse) {
|
|
|
|
return rb_iseq_defined_string(expr_type);
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
return Qtrue;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
return Qnil;
|
|
|
|
}
|
|
|
|
}
|