2008-05-24 21:12:12 -04:00
|
|
|
/**********************************************************************
|
|
|
|
|
|
|
|
vm_eval.c -
|
|
|
|
|
|
|
|
$Author$
|
|
|
|
created at: Sat May 24 16:02:32 JST 2008
|
|
|
|
|
|
|
|
Copyright (C) 1993-2007 Yukihiro Matsumoto
|
|
|
|
Copyright (C) 2000 Network Applied Communication Laboratory, Inc.
|
|
|
|
Copyright (C) 2000 Information-technology Promotion Agency, Japan
|
|
|
|
|
|
|
|
**********************************************************************/
|
|
|
|
|
2014-05-07 00:26:49 -04:00
|
|
|
struct local_var_list {
|
|
|
|
VALUE tbl;
|
|
|
|
};
|
|
|
|
|
2015-06-03 06:42:18 -04:00
|
|
|
static inline VALUE method_missing(VALUE obj, ID id, int argc, const VALUE *argv, enum method_missing_reason call_status);
|
2015-03-08 17:22:43 -04:00
|
|
|
static inline VALUE vm_yield_with_cref(rb_thread_t *th, int argc, const VALUE *argv, const rb_cref_t *cref);
|
2008-05-24 21:12:12 -04:00
|
|
|
static inline VALUE vm_yield(rb_thread_t *th, int argc, const VALUE *argv);
|
2013-11-29 03:06:19 -05:00
|
|
|
static inline VALUE vm_yield_with_block(rb_thread_t *th, int argc, const VALUE *argv, const rb_block_t *blockargptr);
|
* common.mk: clean up
- remove blockinlining.$(OBJEXT) to built
- make ENCODING_H_INCLDUES variable (include/ruby/encoding.h)
- make VM_CORE_H_INCLUDES variable (vm_core.h)
- simplify rules.
- make depends rule to output depend status using gcc -MM.
* include/ruby/mvm.h, include/ruby/vm.h: rename mvm.h to vm.h.
* include/ruby.h: ditto.
* load.c: add inclusion explicitly.
* enumerator.c, object.c, parse.y, thread.c, vm_dump.c:
remove useless inclusion.
* eval_intern.h: cleanup inclusion.
* vm_core.h: rb_thread_t should be defined in this file.
* vm_evalbody.c, vm_exec.c: rename vm_evalbody.c to vm_exec.c.
* vm.h, vm_exec.h: rename vm.h to vm_exec.h.
* insnhelper.h, vm_insnhelper.h: rename insnhelper.h to vm_insnhelper.h.
* vm.c, vm_insnhelper.c, vm_insnhelper.h:
- rename vm_eval() to vm_exec_core().
- rename vm_eval_body() to vm_exec().
- cleanup include order.
* vm_method.c: fix comment.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@19466 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2008-09-22 20:20:28 -04:00
|
|
|
static VALUE vm_exec(rb_thread_t *th);
|
2015-07-21 18:52:59 -04:00
|
|
|
static void vm_set_eval_stack(rb_thread_t * th, const rb_iseq_t *iseq, const rb_cref_t *cref, rb_block_t *base_block);
|
2014-07-01 13:55:44 -04:00
|
|
|
static int vm_collect_local_variables_in_heap(rb_thread_t *th, const VALUE *dfp, const struct local_var_list *vars);
|
2009-07-15 10:59:41 -04:00
|
|
|
|
2014-11-15 02:28:08 -05:00
|
|
|
static VALUE rb_eUncaughtThrow;
|
2014-11-16 03:33:49 -05:00
|
|
|
static ID id_tag, id_value;
|
2014-11-16 03:33:35 -05:00
|
|
|
#define id_mesg idMesg
|
2014-11-15 02:28:08 -05:00
|
|
|
|
2012-06-02 11:59:37 -04:00
|
|
|
/* vm_backtrace.c */
|
2013-03-06 01:30:03 -05:00
|
|
|
VALUE rb_vm_backtrace_str_ary(rb_thread_t *th, int lev, int n);
|
2012-05-24 02:09:23 -04:00
|
|
|
|
2009-07-15 10:59:41 -04:00
|
|
|
typedef enum call_type {
|
|
|
|
CALL_PUBLIC,
|
|
|
|
CALL_FCALL,
|
|
|
|
CALL_VCALL,
|
2009-10-30 04:01:48 -04:00
|
|
|
CALL_TYPE_MAX
|
2009-07-15 10:59:41 -04:00
|
|
|
} call_type;
|
2008-05-24 21:12:12 -04:00
|
|
|
|
2009-10-30 03:57:21 -04:00
|
|
|
static VALUE send_internal(int argc, const VALUE *argv, VALUE recv, call_type scope);
|
|
|
|
|
2012-10-14 13:54:21 -04:00
|
|
|
static VALUE vm_call0_body(rb_thread_t* th, rb_call_info_t *ci, const VALUE *argv);
|
|
|
|
|
|
|
|
static VALUE
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
vm_call0(rb_thread_t* th, VALUE recv, ID id, int argc, const VALUE *argv, const rb_callable_method_entry_t *me)
|
2008-05-24 21:12:12 -04:00
|
|
|
{
|
* insns.def (send, invokesuper, invokeblock, opt_*), vm_core.h:
use only a `ci' (rb_call_info_t) parameter instead of using
parameters such as `op_id', 'op_argc', `blockiseq' and flag.
These information are stored in rb_call_info_t at the compile
time.
This technique simplifies parameter passings at related
function calls (~10% speedups for simple mehtod invocation at
my machine).
`rb_call_info_t' also has new function pointer variable `call'.
This `call' variable enables to customize method (block)
invocation process for each place. However, it always call
`vm_call_general()' at this changes.
`rb_call_info_t' also has temporary variables for method
(block) invocation.
* vm_core.h, compile.c, insns.def: introduce VM_CALL_ARGS_SKIP_SETUP
VM_CALL macro. This flag indicates that this call can skip
caller_setup (block arg and splat arg).
* compile.c: catch up above changes.
* iseq.c: catch up above changes (especially for TS_CALLINFO).
* tool/instruction.rb: catch up above chagnes.
* vm_insnhelper.c, vm_insnhelper.h: ditto. Macros and functions
parameters are changed.
* vm_eval.c (vm_call0): ditto (it will be rewriten soon).
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@37180 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-10-14 12:59:05 -04:00
|
|
|
rb_call_info_t ci_entry, *ci = &ci_entry;
|
|
|
|
|
|
|
|
ci->flag = 0;
|
|
|
|
ci->mid = id;
|
|
|
|
ci->recv = recv;
|
|
|
|
ci->argc = argc;
|
|
|
|
ci->me = me;
|
* rewrite method/block parameter fitting logic to optimize
keyword arguments/parameters and a splat argument.
[Feature #10440] (Details are described in this ticket)
Most of complex part is moved to vm_args.c.
Now, ISeq#to_a does not catch up new instruction format.
* vm_core.h: change iseq data structures.
* introduce rb_call_info_kw_arg_t to represent keyword arguments.
* add rb_call_info_t::kw_arg.
* rename rb_iseq_t::arg_post_len to rb_iseq_t::arg_post_num.
* rename rb_iseq_t::arg_keywords to arg_keyword_num.
* rename rb_iseq_t::arg_keyword to rb_iseq_t::arg_keyword_bits.
to represent keyword bitmap parameter index.
This bitmap parameter shows that which keyword parameters are given
or not given (0 for given).
It is refered by `checkkeyword' instruction described bellow.
* rename rb_iseq_t::arg_keyword_check to rb_iseq_t::arg_keyword_rest
to represent keyword rest parameter index.
* add rb_iseq_t::arg_keyword_default_values to represent default
keyword values.
* rename VM_CALL_ARGS_SKIP_SETUP to VM_CALL_ARGS_SIMPLE
to represent
(ci->flag & (SPLAT|BLOCKARG)) &&
ci->blockiseq == NULL &&
ci->kw_arg == NULL.
* vm_insnhelper.c, vm_args.c: rewrite with refactoring.
* rewrite splat argument code.
* rewrite keyword arguments/parameters code.
* merge method and block parameter fitting code into one code base.
* vm.c, vm_eval.c: catch up these changes.
* compile.c (new_callinfo): callinfo requires kw_arg parameter.
* compile.c (compile_array_): check the last argument Hash object or
not. If Hash object and all keys are Symbol literals, they are
compiled to keyword arguments.
* insns.def (checkkeyword): add new instruction.
This instruction check the availability of corresponding keyword.
For example, a method "def foo k1: 'v1'; end" is cimpiled to the
following instructions.
0000 checkkeyword 2, 0 # check k1 is given.
0003 branchif 9 # if given, jump to address #9
0005 putstring "v1"
0007 setlocal_OP__WC__0 3 # k1 = 'v1'
0009 trace 8
0011 putnil
0012 trace 16
0014 leave
* insns.def (opt_send_simple): removed and add new instruction
"opt_send_without_block".
* parse.y (new_args_tail_gen): reorder variables.
Before this patch, a method "def foo(k1: 1, kr1:, k2: 2, **krest, &b)"
has parameter variables "k1, kr1, k2, &b, internal_id, krest",
but this patch reorders to "kr1, k1, k2, internal_id, krest, &b".
(locate a block variable at last)
* parse.y (vtable_pop): added.
This function remove latest `n' variables from vtable.
* iseq.c: catch up iseq data changes.
* proc.c: ditto.
* class.c (keyword_error): export as rb_keyword_error().
* common.mk: depend vm_args.c for vm.o.
* hash.c (rb_hash_has_key): export.
* internal.h: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@48239 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2014-11-02 13:02:55 -05:00
|
|
|
ci->kw_arg = NULL;
|
2008-05-24 21:12:12 -04:00
|
|
|
|
2012-10-14 13:54:21 -04:00
|
|
|
return vm_call0_body(th, ci, argv);
|
|
|
|
}
|
|
|
|
|
* vm_core.h, vm_insnhelper.c, vm_eval.c (OPT_CALL_CFUNC_WITHOUT_FRAME):
add a new otpimization and its macro `OPT_CALL_CFUNC_WITHOUT_FRAME'.
This optimization makes all cfunc method calls `frameless', which
is fster than ordinal cfunc method call.
If `frame' is needed (for example, it calls another method with
`rb_funcall()'), then build a frame. In other words, this
optimization delays frame building.
However, to delay the frame building, we need additional overheads:
(1) Store the last call information.
(2) Check the delayed frame buidling before the frame is needed.
(3) Overhead to build a delayed frame.
rb_thread_t::passed_ci is storage of delayed cfunc call information.
(1) is lightweight because it is only 1 assignment to `passed_ci'.
To achieve (2), we modify GET_THREAD() to check `passed_ci' every
time. It causes 10% overhead on my envrionment.
This optimization only works for cfunc methods which do not need
their `frame'.
After evaluation on my environment, this optimization does not
effective every time. Because of this evaluation results, this
optimization is disabled at default.
* vm_insnhelper.c, vm.c: add VM_PROFILE* macros to measure behaviour
of VM internals. I will extend this feature.
* vm_method.c, method.h: change parameters of the `invoker' function.
Receive `func' pointer as the first parameter.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@37293 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-10-23 00:22:31 -04:00
|
|
|
#if OPT_CALL_CFUNC_WITHOUT_FRAME
|
|
|
|
static VALUE
|
|
|
|
vm_call0_cfunc(rb_thread_t* th, rb_call_info_t *ci, const VALUE *argv)
|
|
|
|
{
|
|
|
|
VALUE val;
|
|
|
|
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
RUBY_DTRACE_CMETHOD_ENTRY_HOOK(th, ci->me->owner, ci->mid);
|
|
|
|
EXEC_EVENT_HOOK(th, RUBY_EVENT_C_CALL, ci->recv, ci->mid, ci->me->owner, Qnil);
|
* vm_core.h, vm_insnhelper.c, vm_eval.c (OPT_CALL_CFUNC_WITHOUT_FRAME):
add a new otpimization and its macro `OPT_CALL_CFUNC_WITHOUT_FRAME'.
This optimization makes all cfunc method calls `frameless', which
is fster than ordinal cfunc method call.
If `frame' is needed (for example, it calls another method with
`rb_funcall()'), then build a frame. In other words, this
optimization delays frame building.
However, to delay the frame building, we need additional overheads:
(1) Store the last call information.
(2) Check the delayed frame buidling before the frame is needed.
(3) Overhead to build a delayed frame.
rb_thread_t::passed_ci is storage of delayed cfunc call information.
(1) is lightweight because it is only 1 assignment to `passed_ci'.
To achieve (2), we modify GET_THREAD() to check `passed_ci' every
time. It causes 10% overhead on my envrionment.
This optimization only works for cfunc methods which do not need
their `frame'.
After evaluation on my environment, this optimization does not
effective every time. Because of this evaluation results, this
optimization is disabled at default.
* vm_insnhelper.c, vm.c: add VM_PROFILE* macros to measure behaviour
of VM internals. I will extend this feature.
* vm_method.c, method.h: change parameters of the `invoker' function.
Receive `func' pointer as the first parameter.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@37293 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-10-23 00:22:31 -04:00
|
|
|
{
|
|
|
|
rb_control_frame_t *reg_cfp = th->cfp;
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
const rb_callable_method_entry_t *me = ci->me;
|
* vm_core.h, vm_insnhelper.c, vm_eval.c (OPT_CALL_CFUNC_WITHOUT_FRAME):
add a new otpimization and its macro `OPT_CALL_CFUNC_WITHOUT_FRAME'.
This optimization makes all cfunc method calls `frameless', which
is fster than ordinal cfunc method call.
If `frame' is needed (for example, it calls another method with
`rb_funcall()'), then build a frame. In other words, this
optimization delays frame building.
However, to delay the frame building, we need additional overheads:
(1) Store the last call information.
(2) Check the delayed frame buidling before the frame is needed.
(3) Overhead to build a delayed frame.
rb_thread_t::passed_ci is storage of delayed cfunc call information.
(1) is lightweight because it is only 1 assignment to `passed_ci'.
To achieve (2), we modify GET_THREAD() to check `passed_ci' every
time. It causes 10% overhead on my envrionment.
This optimization only works for cfunc methods which do not need
their `frame'.
After evaluation on my environment, this optimization does not
effective every time. Because of this evaluation results, this
optimization is disabled at default.
* vm_insnhelper.c, vm.c: add VM_PROFILE* macros to measure behaviour
of VM internals. I will extend this feature.
* vm_method.c, method.h: change parameters of the `invoker' function.
Receive `func' pointer as the first parameter.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@37293 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-10-23 00:22:31 -04:00
|
|
|
const rb_method_cfunc_t *cfunc = &me->def->body.cfunc;
|
|
|
|
int len = cfunc->argc;
|
2015-04-02 22:43:20 -04:00
|
|
|
VALUE recv = ci->recv;
|
|
|
|
int argc = ci->argc;
|
* vm_core.h, vm_insnhelper.c, vm_eval.c (OPT_CALL_CFUNC_WITHOUT_FRAME):
add a new otpimization and its macro `OPT_CALL_CFUNC_WITHOUT_FRAME'.
This optimization makes all cfunc method calls `frameless', which
is fster than ordinal cfunc method call.
If `frame' is needed (for example, it calls another method with
`rb_funcall()'), then build a frame. In other words, this
optimization delays frame building.
However, to delay the frame building, we need additional overheads:
(1) Store the last call information.
(2) Check the delayed frame buidling before the frame is needed.
(3) Overhead to build a delayed frame.
rb_thread_t::passed_ci is storage of delayed cfunc call information.
(1) is lightweight because it is only 1 assignment to `passed_ci'.
To achieve (2), we modify GET_THREAD() to check `passed_ci' every
time. It causes 10% overhead on my envrionment.
This optimization only works for cfunc methods which do not need
their `frame'.
After evaluation on my environment, this optimization does not
effective every time. Because of this evaluation results, this
optimization is disabled at default.
* vm_insnhelper.c, vm.c: add VM_PROFILE* macros to measure behaviour
of VM internals. I will extend this feature.
* vm_method.c, method.h: change parameters of the `invoker' function.
Receive `func' pointer as the first parameter.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@37293 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-10-23 00:22:31 -04:00
|
|
|
|
|
|
|
if (len >= 0) rb_check_arity(ci->argc, len, len);
|
|
|
|
|
|
|
|
th->passed_ci = ci;
|
|
|
|
ci->aux.inc_sp = 0;
|
|
|
|
VM_PROFILE_UP(2);
|
2015-04-02 22:43:20 -04:00
|
|
|
val = (*cfunc->invoker)(cfunc->func, recv, argc, argv);
|
* vm_core.h, vm_insnhelper.c, vm_eval.c (OPT_CALL_CFUNC_WITHOUT_FRAME):
add a new otpimization and its macro `OPT_CALL_CFUNC_WITHOUT_FRAME'.
This optimization makes all cfunc method calls `frameless', which
is fster than ordinal cfunc method call.
If `frame' is needed (for example, it calls another method with
`rb_funcall()'), then build a frame. In other words, this
optimization delays frame building.
However, to delay the frame building, we need additional overheads:
(1) Store the last call information.
(2) Check the delayed frame buidling before the frame is needed.
(3) Overhead to build a delayed frame.
rb_thread_t::passed_ci is storage of delayed cfunc call information.
(1) is lightweight because it is only 1 assignment to `passed_ci'.
To achieve (2), we modify GET_THREAD() to check `passed_ci' every
time. It causes 10% overhead on my envrionment.
This optimization only works for cfunc methods which do not need
their `frame'.
After evaluation on my environment, this optimization does not
effective every time. Because of this evaluation results, this
optimization is disabled at default.
* vm_insnhelper.c, vm.c: add VM_PROFILE* macros to measure behaviour
of VM internals. I will extend this feature.
* vm_method.c, method.h: change parameters of the `invoker' function.
Receive `func' pointer as the first parameter.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@37293 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-10-23 00:22:31 -04:00
|
|
|
|
|
|
|
if (reg_cfp == th->cfp) {
|
|
|
|
if (UNLIKELY(th->passed_ci != ci)) {
|
|
|
|
rb_bug("vm_call0_cfunc: passed_ci error (ci: %p, passed_ci: %p)", ci, th->passed_ci);
|
|
|
|
}
|
|
|
|
th->passed_ci = 0;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
if (reg_cfp != th->cfp + 1) {
|
|
|
|
rb_bug("vm_call0_cfunc: cfp consistency error");
|
|
|
|
}
|
|
|
|
VM_PROFILE_UP(3);
|
|
|
|
vm_pop_frame(th);
|
|
|
|
}
|
|
|
|
}
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
EXEC_EVENT_HOOK(th, RUBY_EVENT_C_RETURN, ci->recv, ci->mid, ci->me->owner, val);
|
|
|
|
RUBY_DTRACE_CMETHOD_RETURN_HOOK(th, ci->me->owner, ci->mid);
|
* vm_core.h, vm_insnhelper.c, vm_eval.c (OPT_CALL_CFUNC_WITHOUT_FRAME):
add a new otpimization and its macro `OPT_CALL_CFUNC_WITHOUT_FRAME'.
This optimization makes all cfunc method calls `frameless', which
is fster than ordinal cfunc method call.
If `frame' is needed (for example, it calls another method with
`rb_funcall()'), then build a frame. In other words, this
optimization delays frame building.
However, to delay the frame building, we need additional overheads:
(1) Store the last call information.
(2) Check the delayed frame buidling before the frame is needed.
(3) Overhead to build a delayed frame.
rb_thread_t::passed_ci is storage of delayed cfunc call information.
(1) is lightweight because it is only 1 assignment to `passed_ci'.
To achieve (2), we modify GET_THREAD() to check `passed_ci' every
time. It causes 10% overhead on my envrionment.
This optimization only works for cfunc methods which do not need
their `frame'.
After evaluation on my environment, this optimization does not
effective every time. Because of this evaluation results, this
optimization is disabled at default.
* vm_insnhelper.c, vm.c: add VM_PROFILE* macros to measure behaviour
of VM internals. I will extend this feature.
* vm_method.c, method.h: change parameters of the `invoker' function.
Receive `func' pointer as the first parameter.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@37293 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-10-23 00:22:31 -04:00
|
|
|
|
|
|
|
return val;
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
static VALUE
|
|
|
|
vm_call0_cfunc_with_frame(rb_thread_t* th, rb_call_info_t *ci, const VALUE *argv)
|
|
|
|
{
|
|
|
|
VALUE val;
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
const rb_callable_method_entry_t *me = ci->me;
|
2012-11-13 04:48:08 -05:00
|
|
|
const rb_method_cfunc_t *cfunc = &me->def->body.cfunc;
|
|
|
|
int len = cfunc->argc;
|
|
|
|
VALUE recv = ci->recv;
|
|
|
|
int argc = ci->argc;
|
|
|
|
ID mid = ci->mid;
|
|
|
|
rb_block_t *blockptr = ci->blockptr;
|
|
|
|
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
RUBY_DTRACE_CMETHOD_ENTRY_HOOK(th, me->owner, mid);
|
|
|
|
EXEC_EVENT_HOOK(th, RUBY_EVENT_C_CALL, recv, mid, me->owner, Qnil);
|
* vm_core.h, vm_insnhelper.c, vm_eval.c (OPT_CALL_CFUNC_WITHOUT_FRAME):
add a new otpimization and its macro `OPT_CALL_CFUNC_WITHOUT_FRAME'.
This optimization makes all cfunc method calls `frameless', which
is fster than ordinal cfunc method call.
If `frame' is needed (for example, it calls another method with
`rb_funcall()'), then build a frame. In other words, this
optimization delays frame building.
However, to delay the frame building, we need additional overheads:
(1) Store the last call information.
(2) Check the delayed frame buidling before the frame is needed.
(3) Overhead to build a delayed frame.
rb_thread_t::passed_ci is storage of delayed cfunc call information.
(1) is lightweight because it is only 1 assignment to `passed_ci'.
To achieve (2), we modify GET_THREAD() to check `passed_ci' every
time. It causes 10% overhead on my envrionment.
This optimization only works for cfunc methods which do not need
their `frame'.
After evaluation on my environment, this optimization does not
effective every time. Because of this evaluation results, this
optimization is disabled at default.
* vm_insnhelper.c, vm.c: add VM_PROFILE* macros to measure behaviour
of VM internals. I will extend this feature.
* vm_method.c, method.h: change parameters of the `invoker' function.
Receive `func' pointer as the first parameter.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@37293 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-10-23 00:22:31 -04:00
|
|
|
{
|
|
|
|
rb_control_frame_t *reg_cfp = th->cfp;
|
|
|
|
|
2015-07-03 07:25:29 -04:00
|
|
|
vm_push_frame(th, 0, VM_FRAME_MAGIC_CFUNC, recv,
|
2015-06-02 00:20:30 -04:00
|
|
|
VM_ENVVAL_BLOCK_PTR(blockptr), (VALUE)me,
|
|
|
|
0, reg_cfp->sp, 1, 0);
|
* vm_core.h, vm_insnhelper.c, vm_eval.c (OPT_CALL_CFUNC_WITHOUT_FRAME):
add a new otpimization and its macro `OPT_CALL_CFUNC_WITHOUT_FRAME'.
This optimization makes all cfunc method calls `frameless', which
is fster than ordinal cfunc method call.
If `frame' is needed (for example, it calls another method with
`rb_funcall()'), then build a frame. In other words, this
optimization delays frame building.
However, to delay the frame building, we need additional overheads:
(1) Store the last call information.
(2) Check the delayed frame buidling before the frame is needed.
(3) Overhead to build a delayed frame.
rb_thread_t::passed_ci is storage of delayed cfunc call information.
(1) is lightweight because it is only 1 assignment to `passed_ci'.
To achieve (2), we modify GET_THREAD() to check `passed_ci' every
time. It causes 10% overhead on my envrionment.
This optimization only works for cfunc methods which do not need
their `frame'.
After evaluation on my environment, this optimization does not
effective every time. Because of this evaluation results, this
optimization is disabled at default.
* vm_insnhelper.c, vm.c: add VM_PROFILE* macros to measure behaviour
of VM internals. I will extend this feature.
* vm_method.c, method.h: change parameters of the `invoker' function.
Receive `func' pointer as the first parameter.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@37293 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-10-23 00:22:31 -04:00
|
|
|
|
2012-11-13 04:48:08 -05:00
|
|
|
if (len >= 0) rb_check_arity(argc, len, len);
|
* vm_core.h, vm_insnhelper.c, vm_eval.c (OPT_CALL_CFUNC_WITHOUT_FRAME):
add a new otpimization and its macro `OPT_CALL_CFUNC_WITHOUT_FRAME'.
This optimization makes all cfunc method calls `frameless', which
is fster than ordinal cfunc method call.
If `frame' is needed (for example, it calls another method with
`rb_funcall()'), then build a frame. In other words, this
optimization delays frame building.
However, to delay the frame building, we need additional overheads:
(1) Store the last call information.
(2) Check the delayed frame buidling before the frame is needed.
(3) Overhead to build a delayed frame.
rb_thread_t::passed_ci is storage of delayed cfunc call information.
(1) is lightweight because it is only 1 assignment to `passed_ci'.
To achieve (2), we modify GET_THREAD() to check `passed_ci' every
time. It causes 10% overhead on my envrionment.
This optimization only works for cfunc methods which do not need
their `frame'.
After evaluation on my environment, this optimization does not
effective every time. Because of this evaluation results, this
optimization is disabled at default.
* vm_insnhelper.c, vm.c: add VM_PROFILE* macros to measure behaviour
of VM internals. I will extend this feature.
* vm_method.c, method.h: change parameters of the `invoker' function.
Receive `func' pointer as the first parameter.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@37293 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-10-23 00:22:31 -04:00
|
|
|
|
|
|
|
VM_PROFILE_UP(2);
|
2012-11-13 04:48:08 -05:00
|
|
|
val = (*cfunc->invoker)(cfunc->func, recv, argc, argv);
|
* vm_core.h, vm_insnhelper.c, vm_eval.c (OPT_CALL_CFUNC_WITHOUT_FRAME):
add a new otpimization and its macro `OPT_CALL_CFUNC_WITHOUT_FRAME'.
This optimization makes all cfunc method calls `frameless', which
is fster than ordinal cfunc method call.
If `frame' is needed (for example, it calls another method with
`rb_funcall()'), then build a frame. In other words, this
optimization delays frame building.
However, to delay the frame building, we need additional overheads:
(1) Store the last call information.
(2) Check the delayed frame buidling before the frame is needed.
(3) Overhead to build a delayed frame.
rb_thread_t::passed_ci is storage of delayed cfunc call information.
(1) is lightweight because it is only 1 assignment to `passed_ci'.
To achieve (2), we modify GET_THREAD() to check `passed_ci' every
time. It causes 10% overhead on my envrionment.
This optimization only works for cfunc methods which do not need
their `frame'.
After evaluation on my environment, this optimization does not
effective every time. Because of this evaluation results, this
optimization is disabled at default.
* vm_insnhelper.c, vm.c: add VM_PROFILE* macros to measure behaviour
of VM internals. I will extend this feature.
* vm_method.c, method.h: change parameters of the `invoker' function.
Receive `func' pointer as the first parameter.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@37293 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-10-23 00:22:31 -04:00
|
|
|
|
|
|
|
if (UNLIKELY(reg_cfp != th->cfp + 1)) {
|
|
|
|
rb_bug("vm_call0_cfunc_with_frame: cfp consistency error");
|
|
|
|
}
|
|
|
|
VM_PROFILE_UP(3);
|
|
|
|
vm_pop_frame(th);
|
|
|
|
}
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
EXEC_EVENT_HOOK(th, RUBY_EVENT_C_RETURN, recv, mid, me->owner, val);
|
|
|
|
RUBY_DTRACE_CMETHOD_RETURN_HOOK(th, me->owner, mid);
|
* vm_core.h, vm_insnhelper.c, vm_eval.c (OPT_CALL_CFUNC_WITHOUT_FRAME):
add a new otpimization and its macro `OPT_CALL_CFUNC_WITHOUT_FRAME'.
This optimization makes all cfunc method calls `frameless', which
is fster than ordinal cfunc method call.
If `frame' is needed (for example, it calls another method with
`rb_funcall()'), then build a frame. In other words, this
optimization delays frame building.
However, to delay the frame building, we need additional overheads:
(1) Store the last call information.
(2) Check the delayed frame buidling before the frame is needed.
(3) Overhead to build a delayed frame.
rb_thread_t::passed_ci is storage of delayed cfunc call information.
(1) is lightweight because it is only 1 assignment to `passed_ci'.
To achieve (2), we modify GET_THREAD() to check `passed_ci' every
time. It causes 10% overhead on my envrionment.
This optimization only works for cfunc methods which do not need
their `frame'.
After evaluation on my environment, this optimization does not
effective every time. Because of this evaluation results, this
optimization is disabled at default.
* vm_insnhelper.c, vm.c: add VM_PROFILE* macros to measure behaviour
of VM internals. I will extend this feature.
* vm_method.c, method.h: change parameters of the `invoker' function.
Receive `func' pointer as the first parameter.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@37293 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-10-23 00:22:31 -04:00
|
|
|
|
|
|
|
return val;
|
|
|
|
}
|
|
|
|
|
|
|
|
static VALUE
|
|
|
|
vm_call0_cfunc(rb_thread_t* th, rb_call_info_t *ci, const VALUE *argv)
|
|
|
|
{
|
|
|
|
return vm_call0_cfunc_with_frame(th, ci, argv);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2012-10-15 08:29:42 -04:00
|
|
|
/* `ci' should point temporal value (on stack value) */
|
2012-10-14 13:54:21 -04:00
|
|
|
static VALUE
|
|
|
|
vm_call0_body(rb_thread_t* th, rb_call_info_t *ci, const VALUE *argv)
|
|
|
|
{
|
2013-02-18 18:53:41 -05:00
|
|
|
VALUE ret;
|
|
|
|
|
2008-05-24 21:12:12 -04:00
|
|
|
if (th->passed_block) {
|
* insns.def (send, invokesuper, invokeblock, opt_*), vm_core.h:
use only a `ci' (rb_call_info_t) parameter instead of using
parameters such as `op_id', 'op_argc', `blockiseq' and flag.
These information are stored in rb_call_info_t at the compile
time.
This technique simplifies parameter passings at related
function calls (~10% speedups for simple mehtod invocation at
my machine).
`rb_call_info_t' also has new function pointer variable `call'.
This `call' variable enables to customize method (block)
invocation process for each place. However, it always call
`vm_call_general()' at this changes.
`rb_call_info_t' also has temporary variables for method
(block) invocation.
* vm_core.h, compile.c, insns.def: introduce VM_CALL_ARGS_SKIP_SETUP
VM_CALL macro. This flag indicates that this call can skip
caller_setup (block arg and splat arg).
* compile.c: catch up above changes.
* iseq.c: catch up above changes (especially for TS_CALLINFO).
* tool/instruction.rb: catch up above chagnes.
* vm_insnhelper.c, vm_insnhelper.h: ditto. Macros and functions
parameters are changed.
* vm_eval.c (vm_call0): ditto (it will be rewriten soon).
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@37180 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-10-14 12:59:05 -04:00
|
|
|
ci->blockptr = (rb_block_t *)th->passed_block;
|
2008-05-24 21:12:12 -04:00
|
|
|
th->passed_block = 0;
|
|
|
|
}
|
* insns.def (send, invokesuper, invokeblock, opt_*), vm_core.h:
use only a `ci' (rb_call_info_t) parameter instead of using
parameters such as `op_id', 'op_argc', `blockiseq' and flag.
These information are stored in rb_call_info_t at the compile
time.
This technique simplifies parameter passings at related
function calls (~10% speedups for simple mehtod invocation at
my machine).
`rb_call_info_t' also has new function pointer variable `call'.
This `call' variable enables to customize method (block)
invocation process for each place. However, it always call
`vm_call_general()' at this changes.
`rb_call_info_t' also has temporary variables for method
(block) invocation.
* vm_core.h, compile.c, insns.def: introduce VM_CALL_ARGS_SKIP_SETUP
VM_CALL macro. This flag indicates that this call can skip
caller_setup (block arg and splat arg).
* compile.c: catch up above changes.
* iseq.c: catch up above changes (especially for TS_CALLINFO).
* tool/instruction.rb: catch up above chagnes.
* vm_insnhelper.c, vm_insnhelper.h: ditto. Macros and functions
parameters are changed.
* vm_eval.c (vm_call0): ditto (it will be rewriten soon).
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@37180 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-10-14 12:59:05 -04:00
|
|
|
else {
|
|
|
|
ci->blockptr = 0;
|
|
|
|
}
|
2009-07-15 10:59:41 -04:00
|
|
|
|
2008-12-15 00:39:39 -05:00
|
|
|
again:
|
2012-10-14 13:54:21 -04:00
|
|
|
switch (ci->me->def->type) {
|
2012-10-23 16:34:25 -04:00
|
|
|
case VM_METHOD_TYPE_ISEQ:
|
|
|
|
{
|
|
|
|
rb_control_frame_t *reg_cfp = th->cfp;
|
|
|
|
int i;
|
2008-05-24 21:12:12 -04:00
|
|
|
|
2012-12-25 04:57:07 -05:00
|
|
|
CHECK_VM_STACK_OVERFLOW(reg_cfp, ci->argc + 1);
|
2008-05-24 21:12:12 -04:00
|
|
|
|
2012-10-23 16:34:25 -04:00
|
|
|
*reg_cfp->sp++ = ci->recv;
|
|
|
|
for (i = 0; i < ci->argc; i++) {
|
|
|
|
*reg_cfp->sp++ = argv[i];
|
|
|
|
}
|
2008-05-24 21:12:12 -04:00
|
|
|
|
2012-10-23 16:34:25 -04:00
|
|
|
vm_call_iseq_setup(th, reg_cfp, ci);
|
|
|
|
th->cfp->flag |= VM_FRAME_FLAG_FINISH;
|
2013-02-18 18:53:41 -05:00
|
|
|
return vm_exec(th); /* CHECK_INTS in this function */
|
2012-10-23 16:34:25 -04:00
|
|
|
}
|
2010-08-07 00:33:33 -04:00
|
|
|
case VM_METHOD_TYPE_NOTIMPLEMENTED:
|
* vm_core.h, vm_insnhelper.c, vm_eval.c (OPT_CALL_CFUNC_WITHOUT_FRAME):
add a new otpimization and its macro `OPT_CALL_CFUNC_WITHOUT_FRAME'.
This optimization makes all cfunc method calls `frameless', which
is fster than ordinal cfunc method call.
If `frame' is needed (for example, it calls another method with
`rb_funcall()'), then build a frame. In other words, this
optimization delays frame building.
However, to delay the frame building, we need additional overheads:
(1) Store the last call information.
(2) Check the delayed frame buidling before the frame is needed.
(3) Overhead to build a delayed frame.
rb_thread_t::passed_ci is storage of delayed cfunc call information.
(1) is lightweight because it is only 1 assignment to `passed_ci'.
To achieve (2), we modify GET_THREAD() to check `passed_ci' every
time. It causes 10% overhead on my envrionment.
This optimization only works for cfunc methods which do not need
their `frame'.
After evaluation on my environment, this optimization does not
effective every time. Because of this evaluation results, this
optimization is disabled at default.
* vm_insnhelper.c, vm.c: add VM_PROFILE* macros to measure behaviour
of VM internals. I will extend this feature.
* vm_method.c, method.h: change parameters of the `invoker' function.
Receive `func' pointer as the first parameter.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@37293 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-10-23 00:22:31 -04:00
|
|
|
case VM_METHOD_TYPE_CFUNC:
|
2013-02-18 18:53:41 -05:00
|
|
|
ret = vm_call0_cfunc(th, ci, argv);
|
|
|
|
goto success;
|
2012-10-23 16:34:25 -04:00
|
|
|
case VM_METHOD_TYPE_ATTRSET:
|
2012-10-14 13:54:21 -04:00
|
|
|
rb_check_arity(ci->argc, 1, 1);
|
2013-02-18 18:53:41 -05:00
|
|
|
ret = rb_ivar_set(ci->recv, ci->me->def->body.attr.id, argv[0]);
|
|
|
|
goto success;
|
2012-10-23 16:34:25 -04:00
|
|
|
case VM_METHOD_TYPE_IVAR:
|
2012-10-14 13:54:21 -04:00
|
|
|
rb_check_arity(ci->argc, 0, 0);
|
2013-02-18 18:53:41 -05:00
|
|
|
ret = rb_attr_get(ci->recv, ci->me->def->body.attr.id);
|
|
|
|
goto success;
|
2012-10-23 16:34:25 -04:00
|
|
|
case VM_METHOD_TYPE_BMETHOD:
|
2013-02-18 18:53:41 -05:00
|
|
|
ret = vm_call_bmethod_body(th, ci, argv);
|
|
|
|
goto success;
|
2012-10-14 13:54:21 -04:00
|
|
|
case VM_METHOD_TYPE_ZSUPER:
|
* revised r37993 to avoid SEGV/ILL in tests. In r37993, a method
entry with VM_METHOD_TYPE_REFINED holds only the original method
definition, so ci->me is set to a method entry allocated in the
stack, and it causes SEGV/ILL. In this commit, a method entry
with VM_METHOD_TYPE_REFINED holds the whole original method entry.
Furthermore, rb_thread_mark() is changed to mark cfp->klass to
avoid GC for iclasses created by copy_refinement_iclass().
* vm_method.c (rb_method_entry_make): add a method entry with
VM_METHOD_TYPE_REFINED to the class refined by the refinement if
the target module is a refinement. When a method entry with
VM_METHOD_TYPE_UNDEF is invoked by vm_call_method(), a method with
the same name is searched in refinements. If such a method is
found, the method is invoked. Otherwise, the original method in
the refined class (rb_method_definition_t::body.orig_me) is
invoked. This change is made to simplify the normal method lookup
and to improve the performance of normal method calls.
* vm_method.c (EXPR1, search_method, rb_method_entry),
vm_eval.c (rb_call0, rb_search_method_entry): do not use
refinements for method lookup.
* vm_insnhelper.c (vm_call_method): search methods in refinements if
ci->me is VM_METHOD_TYPE_REFINED. If the method is called by
super (i.e., ci->call == vm_call_super_method), skip the same
method entry as the current method to avoid infinite call of the
same method.
* class.c (include_modules_at): add a refined method entry for each
method defined in a module included in a refinement.
* class.c (rb_prepend_module): set an empty table to
RCLASS_M_TBL(klass) to add refined method entries, because
refinements should have priority over prepended modules.
* proc.c (mnew): use rb_method_entry_with_refinements() to get
a refined method.
* vm.c (rb_thread_mark): mark cfp->klass for iclasses created by
copy_refinement_iclass().
* vm.c (Init_VM), cont.c (fiber_init): initialize th->cfp->klass.
* test/ruby/test_refinement.rb (test_inline_method_cache): do not skip
the test because it should pass successfully.
* test/ruby/test_refinement.rb (test_redefine_refined_method): new
test for the case a refined method is redefined.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@38236 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-12-06 08:08:41 -05:00
|
|
|
case VM_METHOD_TYPE_REFINED:
|
2012-10-14 13:54:21 -04:00
|
|
|
{
|
2014-01-30 05:32:32 -05:00
|
|
|
const rb_method_type_t type = ci->me->def->type;
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
VALUE super_class;
|
|
|
|
|
2015-06-03 18:27:51 -04:00
|
|
|
if (type == VM_METHOD_TYPE_REFINED && ci->me->def->body.refined.orig_me) {
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
ci->me = refined_method_callable_without_refinement(ci->me);
|
* revised r37993 to avoid SEGV/ILL in tests. In r37993, a method
entry with VM_METHOD_TYPE_REFINED holds only the original method
definition, so ci->me is set to a method entry allocated in the
stack, and it causes SEGV/ILL. In this commit, a method entry
with VM_METHOD_TYPE_REFINED holds the whole original method entry.
Furthermore, rb_thread_mark() is changed to mark cfp->klass to
avoid GC for iclasses created by copy_refinement_iclass().
* vm_method.c (rb_method_entry_make): add a method entry with
VM_METHOD_TYPE_REFINED to the class refined by the refinement if
the target module is a refinement. When a method entry with
VM_METHOD_TYPE_UNDEF is invoked by vm_call_method(), a method with
the same name is searched in refinements. If such a method is
found, the method is invoked. Otherwise, the original method in
the refined class (rb_method_definition_t::body.orig_me) is
invoked. This change is made to simplify the normal method lookup
and to improve the performance of normal method calls.
* vm_method.c (EXPR1, search_method, rb_method_entry),
vm_eval.c (rb_call0, rb_search_method_entry): do not use
refinements for method lookup.
* vm_insnhelper.c (vm_call_method): search methods in refinements if
ci->me is VM_METHOD_TYPE_REFINED. If the method is called by
super (i.e., ci->call == vm_call_super_method), skip the same
method entry as the current method to avoid infinite call of the
same method.
* class.c (include_modules_at): add a refined method entry for each
method defined in a module included in a refinement.
* class.c (rb_prepend_module): set an empty table to
RCLASS_M_TBL(klass) to add refined method entries, because
refinements should have priority over prepended modules.
* proc.c (mnew): use rb_method_entry_with_refinements() to get
a refined method.
* vm.c (rb_thread_mark): mark cfp->klass for iclasses created by
copy_refinement_iclass().
* vm.c (Init_VM), cont.c (fiber_init): initialize th->cfp->klass.
* test/ruby/test_refinement.rb (test_inline_method_cache): do not skip
the test because it should pass successfully.
* test/ruby/test_refinement.rb (test_redefine_refined_method): new
test for the case a refined method is redefined.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@38236 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-12-06 08:08:41 -05:00
|
|
|
goto again;
|
|
|
|
}
|
|
|
|
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
super_class = RCLASS_SUPER(ci->me->defined_class);
|
2012-10-14 13:54:21 -04:00
|
|
|
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
if (!super_class || !(ci->me = rb_callable_method_entry(super_class, ci->mid))) {
|
2015-06-03 06:42:18 -04:00
|
|
|
enum method_missing_reason ex = (type == VM_METHOD_TYPE_ZSUPER) ? MISSING_SUPER : 0;
|
2014-01-30 05:10:32 -05:00
|
|
|
ret = method_missing(ci->recv, ci->mid, ci->argc, argv, ex);
|
2013-02-18 18:53:41 -05:00
|
|
|
goto success;
|
2012-10-14 13:54:21 -04:00
|
|
|
}
|
|
|
|
RUBY_VM_CHECK_INTS(th);
|
|
|
|
goto again;
|
2009-07-15 20:38:07 -04:00
|
|
|
}
|
2015-05-30 14:45:28 -04:00
|
|
|
case VM_METHOD_TYPE_ALIAS:
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
ci->me = aliased_callable_method_entry(ci->me);
|
|
|
|
goto again;
|
2012-10-23 16:34:25 -04:00
|
|
|
case VM_METHOD_TYPE_MISSING:
|
|
|
|
{
|
|
|
|
VALUE new_args = rb_ary_new4(ci->argc, argv);
|
|
|
|
|
|
|
|
rb_ary_unshift(new_args, ID2SYM(ci->mid));
|
|
|
|
th->passed_block = ci->blockptr;
|
2014-03-07 05:30:51 -05:00
|
|
|
ret = rb_funcall2(ci->recv, idMethodMissing, ci->argc+1,
|
|
|
|
RARRAY_CONST_PTR(new_args));
|
2014-03-07 05:21:28 -05:00
|
|
|
RB_GC_GUARD(new_args);
|
|
|
|
return ret;
|
2012-10-23 16:34:25 -04:00
|
|
|
}
|
|
|
|
case VM_METHOD_TYPE_OPTIMIZED:
|
2012-10-14 13:54:21 -04:00
|
|
|
switch (ci->me->def->body.optimize_type) {
|
2009-07-15 20:38:07 -04:00
|
|
|
case OPTIMIZED_METHOD_TYPE_SEND:
|
2013-02-18 18:53:41 -05:00
|
|
|
ret = send_internal(ci->argc, argv, ci->recv, CALL_FCALL);
|
|
|
|
goto success;
|
2012-10-23 16:34:25 -04:00
|
|
|
case OPTIMIZED_METHOD_TYPE_CALL:
|
|
|
|
{
|
|
|
|
rb_proc_t *proc;
|
|
|
|
GetProcPtr(ci->recv, proc);
|
2013-02-18 18:53:41 -05:00
|
|
|
ret = rb_vm_invoke_proc(th, proc, ci->argc, argv, ci->blockptr);
|
|
|
|
goto success;
|
2012-10-23 16:34:25 -04:00
|
|
|
}
|
2009-07-15 20:38:07 -04:00
|
|
|
default:
|
2012-10-14 13:54:21 -04:00
|
|
|
rb_bug("vm_call0: unsupported optimized method type (%d)", ci->me->def->body.optimize_type);
|
2009-07-15 20:38:07 -04:00
|
|
|
}
|
|
|
|
break;
|
2012-10-23 16:34:25 -04:00
|
|
|
case VM_METHOD_TYPE_UNDEF:
|
|
|
|
break;
|
2008-05-24 21:12:12 -04:00
|
|
|
}
|
2012-10-23 16:34:25 -04:00
|
|
|
rb_bug("vm_call0: unsupported method type (%d)", ci->me->def->type);
|
|
|
|
return Qundef;
|
2013-02-18 18:53:41 -05:00
|
|
|
|
|
|
|
success:
|
|
|
|
RUBY_VM_CHECK_INTS(th);
|
|
|
|
return ret;
|
2008-05-24 21:12:12 -04:00
|
|
|
}
|
|
|
|
|
|
|
|
VALUE
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
rb_vm_call(rb_thread_t *th, VALUE recv, VALUE id, int argc, const VALUE *argv, const rb_callable_method_entry_t *me)
|
2008-05-24 21:12:12 -04:00
|
|
|
{
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
return vm_call0(th, recv, id, argc, argv, me);
|
2008-05-24 21:12:12 -04:00
|
|
|
}
|
|
|
|
|
|
|
|
static inline VALUE
|
2009-07-15 10:59:41 -04:00
|
|
|
vm_call_super(rb_thread_t *th, int argc, const VALUE *argv)
|
2008-05-24 21:12:12 -04:00
|
|
|
{
|
|
|
|
VALUE recv = th->cfp->self;
|
|
|
|
VALUE klass;
|
|
|
|
ID id;
|
|
|
|
rb_control_frame_t *cfp = th->cfp;
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
const rb_callable_method_entry_t *me = rb_vm_frame_method_entry(cfp);
|
2008-05-24 21:12:12 -04:00
|
|
|
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
if (RUBY_VM_NORMAL_ISEQ_P(cfp->iseq)) {
|
2008-05-24 21:12:12 -04:00
|
|
|
rb_bug("vm_call_super: should not be reached");
|
|
|
|
}
|
|
|
|
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
klass = RCLASS_ORIGIN(me->defined_class);
|
2015-03-05 20:31:03 -05:00
|
|
|
klass = RCLASS_SUPER(klass);
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
id = me->def->original_id;
|
|
|
|
me = rb_callable_method_entry(klass, id);
|
|
|
|
|
2009-07-15 10:59:41 -04:00
|
|
|
if (!me) {
|
2015-06-02 21:39:16 -04:00
|
|
|
return method_missing(recv, id, argc, argv, MISSING_SUPER);
|
2008-05-24 21:12:12 -04:00
|
|
|
}
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
else {
|
|
|
|
return vm_call0(th, recv, id, argc, argv, me);
|
|
|
|
}
|
2008-05-24 21:12:12 -04:00
|
|
|
}
|
|
|
|
|
|
|
|
VALUE
|
|
|
|
rb_call_super(int argc, const VALUE *argv)
|
|
|
|
{
|
|
|
|
PASS_PASSED_BLOCK();
|
|
|
|
return vm_call_super(GET_THREAD(), argc, argv);
|
|
|
|
}
|
|
|
|
|
2014-11-16 05:38:15 -05:00
|
|
|
VALUE
|
|
|
|
rb_current_receiver(void)
|
|
|
|
{
|
|
|
|
rb_thread_t *th = GET_THREAD();
|
|
|
|
rb_control_frame_t *cfp;
|
|
|
|
if (!th || !(cfp = th->cfp))
|
|
|
|
rb_raise(rb_eRuntimeError, "no self, no life");
|
|
|
|
return cfp->self;
|
|
|
|
}
|
|
|
|
|
2008-05-24 21:12:12 -04:00
|
|
|
static inline void
|
|
|
|
stack_check(void)
|
|
|
|
{
|
|
|
|
rb_thread_t *th = GET_THREAD();
|
|
|
|
|
|
|
|
if (!rb_thread_raised_p(th, RAISED_STACKOVERFLOW) && ruby_stack_check()) {
|
|
|
|
rb_thread_raised_set(th, RAISED_STACKOVERFLOW);
|
|
|
|
rb_exc_raise(sysstack_error);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
static inline const rb_callable_method_entry_t *rb_search_method_entry(VALUE recv, ID mid);
|
|
|
|
static inline enum method_missing_reason rb_method_call_status(rb_thread_t *th, const rb_callable_method_entry_t *me, call_type scope, VALUE self);
|
2009-10-30 03:42:04 -04:00
|
|
|
|
2009-08-29 09:39:44 -04:00
|
|
|
/*!
|
|
|
|
* \internal
|
|
|
|
* calls the specified method.
|
|
|
|
*
|
|
|
|
* This function is called by functions in rb_call* family.
|
|
|
|
* \param recv receiver of the method
|
|
|
|
* \param mid an ID that represents the name of the method
|
|
|
|
* \param argc the number of method arguments
|
|
|
|
* \param argv a pointer to an array of method arguments
|
2010-05-29 14:51:39 -04:00
|
|
|
* \param scope
|
2012-12-05 11:10:41 -05:00
|
|
|
* \param self self in the caller. Qundef means no self is considered and
|
|
|
|
* protected methods cannot be called
|
2009-08-29 09:39:44 -04:00
|
|
|
*
|
|
|
|
* \note \a self is used in order to controlling access to protected methods.
|
|
|
|
*/
|
2008-05-24 21:12:12 -04:00
|
|
|
static inline VALUE
|
2009-07-15 10:59:41 -04:00
|
|
|
rb_call0(VALUE recv, ID mid, int argc, const VALUE *argv,
|
* revised r37993 to avoid SEGV/ILL in tests. In r37993, a method
entry with VM_METHOD_TYPE_REFINED holds only the original method
definition, so ci->me is set to a method entry allocated in the
stack, and it causes SEGV/ILL. In this commit, a method entry
with VM_METHOD_TYPE_REFINED holds the whole original method entry.
Furthermore, rb_thread_mark() is changed to mark cfp->klass to
avoid GC for iclasses created by copy_refinement_iclass().
* vm_method.c (rb_method_entry_make): add a method entry with
VM_METHOD_TYPE_REFINED to the class refined by the refinement if
the target module is a refinement. When a method entry with
VM_METHOD_TYPE_UNDEF is invoked by vm_call_method(), a method with
the same name is searched in refinements. If such a method is
found, the method is invoked. Otherwise, the original method in
the refined class (rb_method_definition_t::body.orig_me) is
invoked. This change is made to simplify the normal method lookup
and to improve the performance of normal method calls.
* vm_method.c (EXPR1, search_method, rb_method_entry),
vm_eval.c (rb_call0, rb_search_method_entry): do not use
refinements for method lookup.
* vm_insnhelper.c (vm_call_method): search methods in refinements if
ci->me is VM_METHOD_TYPE_REFINED. If the method is called by
super (i.e., ci->call == vm_call_super_method), skip the same
method entry as the current method to avoid infinite call of the
same method.
* class.c (include_modules_at): add a refined method entry for each
method defined in a module included in a refinement.
* class.c (rb_prepend_module): set an empty table to
RCLASS_M_TBL(klass) to add refined method entries, because
refinements should have priority over prepended modules.
* proc.c (mnew): use rb_method_entry_with_refinements() to get
a refined method.
* vm.c (rb_thread_mark): mark cfp->klass for iclasses created by
copy_refinement_iclass().
* vm.c (Init_VM), cont.c (fiber_init): initialize th->cfp->klass.
* test/ruby/test_refinement.rb (test_inline_method_cache): do not skip
the test because it should pass successfully.
* test/ruby/test_refinement.rb (test_redefine_refined_method): new
test for the case a refined method is redefined.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@38236 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-12-06 08:08:41 -05:00
|
|
|
call_type scope, VALUE self)
|
2008-05-24 21:12:12 -04:00
|
|
|
{
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
const rb_callable_method_entry_t *me = rb_search_method_entry(recv, mid);
|
2008-05-24 21:12:12 -04:00
|
|
|
rb_thread_t *th = GET_THREAD();
|
2015-06-03 06:42:18 -04:00
|
|
|
enum method_missing_reason call_status = rb_method_call_status(th, me, scope, self);
|
2009-10-30 03:42:04 -04:00
|
|
|
|
2015-06-02 21:39:16 -04:00
|
|
|
if (call_status != MISSING_NONE) {
|
2009-10-30 03:42:04 -04:00
|
|
|
return method_missing(recv, mid, argc, argv, call_status);
|
|
|
|
}
|
|
|
|
stack_check();
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
return vm_call0(th, recv, mid, argc, argv, me);
|
2009-10-30 03:42:04 -04:00
|
|
|
}
|
|
|
|
|
2009-10-31 11:32:22 -04:00
|
|
|
struct rescue_funcall_args {
|
|
|
|
VALUE recv;
|
2015-02-05 21:33:38 -05:00
|
|
|
ID mid;
|
2009-10-31 11:32:22 -04:00
|
|
|
int argc;
|
2013-08-27 03:08:32 -04:00
|
|
|
const VALUE *argv;
|
2009-10-31 11:32:22 -04:00
|
|
|
};
|
|
|
|
|
|
|
|
static VALUE
|
|
|
|
check_funcall_exec(struct rescue_funcall_args *args)
|
|
|
|
{
|
|
|
|
VALUE new_args = rb_ary_new4(args->argc, args->argv);
|
2014-03-07 05:21:28 -05:00
|
|
|
VALUE ret;
|
2009-10-31 11:32:22 -04:00
|
|
|
|
2015-02-05 21:33:38 -05:00
|
|
|
rb_ary_unshift(new_args, ID2SYM(args->mid));
|
2014-03-07 05:21:28 -05:00
|
|
|
ret = rb_funcall2(args->recv, idMethodMissing,
|
2014-03-07 05:30:51 -05:00
|
|
|
args->argc+1, RARRAY_CONST_PTR(new_args));
|
2014-03-07 05:21:28 -05:00
|
|
|
RB_GC_GUARD(new_args);
|
|
|
|
return ret;
|
2009-10-31 11:32:22 -04:00
|
|
|
}
|
|
|
|
|
|
|
|
static VALUE
|
|
|
|
check_funcall_failed(struct rescue_funcall_args *args, VALUE e)
|
|
|
|
{
|
2015-02-05 21:33:38 -05:00
|
|
|
if (rb_respond_to(args->recv, args->mid)) {
|
2009-10-31 11:32:22 -04:00
|
|
|
rb_exc_raise(e);
|
2009-11-27 19:26:27 -05:00
|
|
|
}
|
2009-10-31 11:32:22 -04:00
|
|
|
return Qundef;
|
|
|
|
}
|
|
|
|
|
2012-12-23 01:05:50 -05:00
|
|
|
static int
|
|
|
|
check_funcall_respond_to(rb_thread_t *th, VALUE klass, VALUE recv, ID mid)
|
2009-10-30 03:42:04 -04:00
|
|
|
{
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
const rb_callable_method_entry_t *me = rb_callable_method_entry(klass, idRespond_to);
|
2011-08-04 23:18:25 -04:00
|
|
|
|
2015-06-06 06:19:48 -04:00
|
|
|
if (me && !METHOD_ENTRY_BASIC(me)) {
|
2013-03-23 04:39:55 -04:00
|
|
|
const rb_block_t *passed_block = th->passed_block;
|
|
|
|
VALUE args[2], result;
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
int arity = rb_method_entry_arity((const rb_method_entry_t *)me);
|
2012-02-11 14:15:36 -05:00
|
|
|
|
2012-03-14 18:12:53 -04:00
|
|
|
if (arity > 2)
|
|
|
|
rb_raise(rb_eArgError, "respond_to? must accept 1 or 2 arguments (requires %d)", arity);
|
|
|
|
|
|
|
|
if (arity < 1) arity = 2;
|
2011-10-20 08:30:13 -04:00
|
|
|
|
2012-02-10 20:22:05 -05:00
|
|
|
args[0] = ID2SYM(mid);
|
|
|
|
args[1] = Qtrue;
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
result = vm_call0(th, recv, idRespond_to, arity, args, me);
|
2013-03-23 04:39:55 -04:00
|
|
|
th->passed_block = passed_block;
|
|
|
|
if (!RTEST(result)) {
|
2012-12-23 01:05:50 -05:00
|
|
|
return FALSE;
|
2011-08-04 23:18:25 -04:00
|
|
|
}
|
|
|
|
}
|
2012-12-23 01:05:50 -05:00
|
|
|
return TRUE;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
check_funcall_callable(rb_thread_t *th, const rb_callable_method_entry_t *me)
|
2012-12-23 01:05:50 -05:00
|
|
|
{
|
2015-06-02 21:39:16 -04:00
|
|
|
return rb_method_call_status(th, me, CALL_FCALL, th->cfp->self) == MISSING_NONE;
|
2012-12-23 01:05:50 -05:00
|
|
|
}
|
|
|
|
|
|
|
|
static VALUE
|
2013-08-27 03:08:32 -04:00
|
|
|
check_funcall_missing(rb_thread_t *th, VALUE klass, VALUE recv, ID mid, int argc, const VALUE *argv)
|
2012-12-23 01:05:50 -05:00
|
|
|
{
|
|
|
|
if (rb_method_basic_definition_p(klass, idMethodMissing)) {
|
|
|
|
return Qundef;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
struct rescue_funcall_args args;
|
|
|
|
|
2015-06-03 06:42:18 -04:00
|
|
|
th->method_missing_reason = MISSING_NOENTRY;
|
2012-12-23 01:05:50 -05:00
|
|
|
args.recv = recv;
|
2015-02-05 21:33:38 -05:00
|
|
|
args.mid = mid;
|
2012-12-23 01:05:50 -05:00
|
|
|
args.argc = argc;
|
|
|
|
args.argv = argv;
|
|
|
|
return rb_rescue2(check_funcall_exec, (VALUE)&args,
|
|
|
|
check_funcall_failed, (VALUE)&args,
|
|
|
|
rb_eNoMethodError, (VALUE)0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
VALUE
|
2013-08-27 03:08:32 -04:00
|
|
|
rb_check_funcall(VALUE recv, ID mid, int argc, const VALUE *argv)
|
2012-12-23 01:05:50 -05:00
|
|
|
{
|
|
|
|
VALUE klass = CLASS_OF(recv);
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
const rb_callable_method_entry_t *me;
|
2012-12-23 01:05:50 -05:00
|
|
|
rb_thread_t *th = GET_THREAD();
|
|
|
|
|
|
|
|
if (!check_funcall_respond_to(th, klass, recv, mid))
|
|
|
|
return Qundef;
|
2009-10-30 03:42:04 -04:00
|
|
|
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
me = rb_search_method_entry(recv, mid);
|
2015-06-02 21:39:16 -04:00
|
|
|
if (!check_funcall_callable(th, me)) {
|
2012-12-23 01:05:50 -05:00
|
|
|
return check_funcall_missing(th, klass, recv, mid, argc, argv);
|
2009-10-30 03:42:04 -04:00
|
|
|
}
|
|
|
|
stack_check();
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
return vm_call0(th, recv, mid, argc, argv, me);
|
2009-10-30 03:42:04 -04:00
|
|
|
}
|
|
|
|
|
2009-10-31 11:32:22 -04:00
|
|
|
VALUE
|
2013-08-27 03:08:32 -04:00
|
|
|
rb_check_funcall_with_hook(VALUE recv, ID mid, int argc, const VALUE *argv,
|
2012-12-23 01:05:50 -05:00
|
|
|
rb_check_funcall_hook *hook, VALUE arg)
|
2009-10-31 11:32:22 -04:00
|
|
|
{
|
2012-12-23 01:05:50 -05:00
|
|
|
VALUE klass = CLASS_OF(recv);
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
const rb_callable_method_entry_t *me;
|
2012-12-23 01:05:50 -05:00
|
|
|
rb_thread_t *th = GET_THREAD();
|
|
|
|
|
|
|
|
if (!check_funcall_respond_to(th, klass, recv, mid))
|
|
|
|
return Qundef;
|
|
|
|
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
me = rb_search_method_entry(recv, mid);
|
2015-06-02 21:39:16 -04:00
|
|
|
if (!check_funcall_callable(th, me)) {
|
2012-12-23 01:05:50 -05:00
|
|
|
(*hook)(FALSE, recv, mid, argc, argv, arg);
|
|
|
|
return check_funcall_missing(th, klass, recv, mid, argc, argv);
|
|
|
|
}
|
|
|
|
stack_check();
|
|
|
|
(*hook)(TRUE, recv, mid, argc, argv, arg);
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
return vm_call0(th, recv, mid, argc, argv, me);
|
2009-10-30 03:42:04 -04:00
|
|
|
}
|
|
|
|
|
2009-11-18 12:52:12 -05:00
|
|
|
static const char *
|
|
|
|
rb_type_str(enum ruby_value_type type)
|
|
|
|
{
|
|
|
|
#define type_case(t) case t: return #t;
|
|
|
|
switch (type) {
|
|
|
|
type_case(T_NONE)
|
|
|
|
type_case(T_OBJECT)
|
|
|
|
type_case(T_CLASS)
|
|
|
|
type_case(T_MODULE)
|
|
|
|
type_case(T_FLOAT)
|
|
|
|
type_case(T_STRING)
|
|
|
|
type_case(T_REGEXP)
|
|
|
|
type_case(T_ARRAY)
|
|
|
|
type_case(T_HASH)
|
|
|
|
type_case(T_STRUCT)
|
|
|
|
type_case(T_BIGNUM)
|
|
|
|
type_case(T_FILE)
|
|
|
|
type_case(T_DATA)
|
|
|
|
type_case(T_MATCH)
|
|
|
|
type_case(T_COMPLEX)
|
|
|
|
type_case(T_RATIONAL)
|
|
|
|
type_case(T_NIL)
|
|
|
|
type_case(T_TRUE)
|
|
|
|
type_case(T_FALSE)
|
|
|
|
type_case(T_SYMBOL)
|
|
|
|
type_case(T_FIXNUM)
|
2015-03-11 06:36:17 -04:00
|
|
|
type_case(T_IMEMO)
|
2009-11-18 12:52:12 -05:00
|
|
|
type_case(T_UNDEF)
|
|
|
|
type_case(T_NODE)
|
|
|
|
type_case(T_ICLASS)
|
|
|
|
type_case(T_ZOMBIE)
|
|
|
|
default: return NULL;
|
|
|
|
}
|
|
|
|
#undef type_case
|
|
|
|
}
|
|
|
|
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
static inline const rb_callable_method_entry_t *
|
|
|
|
rb_search_method_entry(VALUE recv, ID mid)
|
2009-10-30 03:42:04 -04:00
|
|
|
{
|
|
|
|
VALUE klass = CLASS_OF(recv);
|
2008-05-24 21:12:12 -04:00
|
|
|
|
|
|
|
if (!klass) {
|
2014-01-30 03:43:04 -05:00
|
|
|
VALUE flags;
|
|
|
|
if (SPECIAL_CONST_P(recv)) {
|
2009-11-21 04:49:30 -05:00
|
|
|
rb_raise(rb_eNotImpError,
|
2014-01-30 03:25:46 -05:00
|
|
|
"method `%"PRIsVALUE"' called on unexpected immediate object (%p)",
|
|
|
|
rb_id2str(mid), (void *)recv);
|
2009-11-21 04:49:30 -05:00
|
|
|
}
|
2009-11-25 06:47:19 -05:00
|
|
|
flags = RBASIC(recv)->flags;
|
|
|
|
if (flags == 0) {
|
2009-11-21 04:49:30 -05:00
|
|
|
rb_raise(rb_eNotImpError,
|
2014-01-30 03:25:46 -05:00
|
|
|
"method `%"PRIsVALUE"' called on terminated object"
|
2014-01-30 03:43:04 -05:00
|
|
|
" (%p flags=0x%"PRIxVALUE")",
|
|
|
|
rb_id2str(mid), (void *)recv, flags);
|
2009-11-21 04:49:30 -05:00
|
|
|
}
|
|
|
|
else {
|
2009-11-18 12:52:12 -05:00
|
|
|
int type = BUILTIN_TYPE(recv);
|
|
|
|
const char *typestr = rb_type_str(type);
|
2009-11-25 06:47:19 -05:00
|
|
|
if (typestr && T_OBJECT <= type && type < T_NIL)
|
2009-11-18 12:52:12 -05:00
|
|
|
rb_raise(rb_eNotImpError,
|
2014-01-30 03:25:46 -05:00
|
|
|
"method `%"PRIsVALUE"' called on hidden %s object"
|
2014-01-30 03:43:04 -05:00
|
|
|
" (%p flags=0x%"PRIxVALUE")",
|
|
|
|
rb_id2str(mid), typestr, (void *)recv, flags);
|
2009-11-25 06:47:19 -05:00
|
|
|
if (typestr)
|
|
|
|
rb_raise(rb_eNotImpError,
|
2014-01-30 03:25:46 -05:00
|
|
|
"method `%"PRIsVALUE"' called on unexpected %s object"
|
2014-01-30 03:43:04 -05:00
|
|
|
" (%p flags=0x%"PRIxVALUE")",
|
|
|
|
rb_id2str(mid), typestr, (void *)recv, flags);
|
2009-11-18 12:52:12 -05:00
|
|
|
else
|
|
|
|
rb_raise(rb_eNotImpError,
|
2014-01-30 03:25:46 -05:00
|
|
|
"method `%"PRIsVALUE"' called on broken T_???" "(0x%02x) object"
|
2014-01-30 03:43:04 -05:00
|
|
|
" (%p flags=0x%"PRIxVALUE")",
|
|
|
|
rb_id2str(mid), type, (void *)recv, flags);
|
2009-11-18 12:52:12 -05:00
|
|
|
}
|
2008-05-24 21:12:12 -04:00
|
|
|
}
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
return rb_callable_method_entry(klass, mid);
|
2009-10-30 03:42:04 -04:00
|
|
|
}
|
2009-07-15 10:59:41 -04:00
|
|
|
|
2015-06-03 06:42:18 -04:00
|
|
|
static inline enum method_missing_reason
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
rb_method_call_status(rb_thread_t *th, const rb_callable_method_entry_t *me, call_type scope, VALUE self)
|
2009-10-30 03:42:04 -04:00
|
|
|
{
|
|
|
|
VALUE klass;
|
|
|
|
ID oid;
|
2015-06-02 21:39:16 -04:00
|
|
|
rb_method_visibility_t visi;
|
2008-05-24 21:12:12 -04:00
|
|
|
|
2015-05-07 23:11:35 -04:00
|
|
|
if (UNDEFINED_METHOD_ENTRY_P(me)) {
|
|
|
|
undefined:
|
2015-06-02 21:39:16 -04:00
|
|
|
return scope == CALL_VCALL ? MISSING_VCALL : MISSING_NOENTRY;
|
2008-05-24 21:12:12 -04:00
|
|
|
}
|
2015-05-07 23:11:35 -04:00
|
|
|
if (me->def->type == VM_METHOD_TYPE_REFINED) {
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
me = rb_resolve_refined_method_callable(Qnil, me);
|
2015-05-07 23:11:35 -04:00
|
|
|
if (UNDEFINED_METHOD_ENTRY_P(me)) goto undefined;
|
|
|
|
}
|
* method.h: introduce rb_callable_method_entry_t to remove
rb_control_frame_t::klass.
[Bug #11278], [Bug #11279]
rb_method_entry_t data belong to modules/classes.
rb_method_entry_t::owner points defined module or class.
module M
def foo; end
end
In this case, owner is M.
rb_callable_method_entry_t data belong to only classes.
For modules, MRI creates corresponding T_ICLASS internally.
rb_callable_method_entry_t can also belong to T_ICLASS.
rb_callable_method_entry_t::defined_class points T_CLASS or
T_ICLASS.
rb_method_entry_t data for classes (not for modules) are also
rb_callable_method_entry_t data because it is completely same data.
In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class.
For example, there are classes C and D, and incldues M,
class C; include M; end
class D; include M; end
then, two T_ICLASS objects for C's super class and D's super class
will be created.
When C.new.foo is called, then M#foo is searcheed and
rb_callable_method_t data is used by VM to invoke M#foo.
rb_method_entry_t data is only one for M#foo.
However, rb_callable_method_entry_t data are two (and can be more).
It is proportional to the number of including (and prepending)
classes (the number of T_ICLASS which point to the module).
Now, created rb_callable_method_entry_t are collected when
the original module M was modified. We can think it is a cache.
We need to select what kind of method entry data is needed.
To operate definition, then you need to use rb_method_entry_t.
You can access them by the following functions.
* rb_method_entry(VALUE klass, ID id);
* rb_method_entry_with_refinements(VALUE klass, ID id);
* rb_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me);
To invoke methods, then you need to use rb_callable_method_entry_t
which you can get by the following APIs corresponding to the
above listed functions.
* rb_callable_method_entry(VALUE klass, ID id);
* rb_callable_method_entry_with_refinements(VALUE klass, ID id);
* rb_callable_method_entry_without_refinements(VALUE klass, ID id);
* rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me);
VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry()
returns rb_callable_method_entry_t.
You can check a super class of current method by
rb_callable_method_entry_t::defined_class.
* method.h: renamed from rb_method_entry_t::klass to
rb_method_entry_t::owner.
* internal.h: add rb_classext_struct::callable_m_tbl to cache
rb_callable_method_entry_t data.
We need to consider abotu this field again because it is only
active for T_ICLASS.
* class.c (method_entry_i): ditto.
* class.c (rb_define_attr): rb_method_entry() does not takes
defiend_class_ptr.
* gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS.
* cont.c (fiber_init): rb_control_frame_t::klass is removed.
* proc.c: fix `struct METHOD' data structure because
rb_callable_method_t has all information.
* vm_core.h: remove several fields.
* rb_control_frame_t::klass.
* rb_block_t::klass.
And catch up changes.
* eval.c: catch up changes.
* gc.c: ditto.
* insns.def: ditto.
* vm.c: ditto.
* vm_args.c: ditto.
* vm_backtrace.c: ditto.
* vm_dump.c: ditto.
* vm_eval.c: ditto.
* vm_insnhelper.c: ditto.
* vm_method.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 07:24:50 -04:00
|
|
|
|
|
|
|
klass = me->owner;
|
2009-08-27 22:45:41 -04:00
|
|
|
oid = me->def->original_id;
|
2015-06-06 06:19:48 -04:00
|
|
|
visi = METHOD_ENTRY_VISI(me);
|
2009-07-15 10:59:41 -04:00
|
|
|
|
|
|
|
if (oid != idMethodMissing) {
|
2008-05-24 21:12:12 -04:00
|
|
|
/* receiver specified form for private method */
|
2015-06-02 21:39:16 -04:00
|
|
|
if (UNLIKELY(visi != METHOD_VISI_PUBLIC)) {
|
|
|
|
if (visi == METHOD_VISI_PRIVATE && scope == CALL_PUBLIC) {
|
|
|
|
return MISSING_PRIVATE;
|
2008-05-24 21:12:12 -04:00
|
|
|
}
|
|
|
|
|
|
|
|
/* self must be kind of a specified form for protected method */
|
2015-06-02 21:39:16 -04:00
|
|
|
if (visi == METHOD_VISI_PROTECTED && scope == CALL_PUBLIC) {
|
2008-05-24 21:12:12 -04:00
|
|
|
VALUE defined_class = klass;
|
2009-02-22 09:23:33 -05:00
|
|
|
|
2011-09-29 07:07:45 -04:00
|
|
|
if (RB_TYPE_P(defined_class, T_ICLASS)) {
|
2008-05-24 21:12:12 -04:00
|
|
|
defined_class = RBASIC(defined_class)->klass;
|
|
|
|
}
|
|
|
|
|
2012-12-05 11:10:41 -05:00
|
|
|
if (self == Qundef || !rb_obj_is_kind_of(self, defined_class)) {
|
2015-06-02 21:39:16 -04:00
|
|
|
return MISSING_PROTECTED;
|
2008-05-24 21:12:12 -04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-06-06 06:19:48 -04:00
|
|
|
if (METHOD_ENTRY_SAFE(me) > th->safe_level) {
|
2015-06-02 21:39:16 -04:00
|
|
|
rb_raise(rb_eSecurityError, "calling insecure method: %"PRIsVALUE, rb_id2str(me->called_id));
|
2008-05-24 21:12:12 -04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2015-06-02 21:39:16 -04:00
|
|
|
|
|
|
|
return MISSING_NONE;
|
2008-05-24 21:12:12 -04:00
|
|
|
}
|
|
|
|
|
2009-08-29 09:39:44 -04:00
|
|
|
|
|
|
|
/*!
|
|
|
|
* \internal
|
|
|
|
* calls the specified method.
|
|
|
|
*
|
|
|
|
* This function is called by functions in rb_call* family.
|
|
|
|
* \param recv receiver
|
|
|
|
* \param mid an ID that represents the name of the method
|
|
|
|
* \param argc the number of method arguments
|
|
|
|
* \param argv a pointer to an array of method arguments
|
2010-05-29 14:51:39 -04:00
|
|
|
* \param scope
|
2009-08-29 09:39:44 -04:00
|
|
|
*/
|
2008-05-24 21:12:12 -04:00
|
|
|
static inline VALUE
|
2009-07-15 10:59:41 -04:00
|
|
|
rb_call(VALUE recv, ID mid, int argc, const VALUE *argv, call_type scope)
|
2008-05-24 21:12:12 -04:00
|
|
|
{
|
2012-12-05 11:10:41 -05:00
|
|
|
rb_thread_t *th = GET_THREAD();
|
* revised r37993 to avoid SEGV/ILL in tests. In r37993, a method
entry with VM_METHOD_TYPE_REFINED holds only the original method
definition, so ci->me is set to a method entry allocated in the
stack, and it causes SEGV/ILL. In this commit, a method entry
with VM_METHOD_TYPE_REFINED holds the whole original method entry.
Furthermore, rb_thread_mark() is changed to mark cfp->klass to
avoid GC for iclasses created by copy_refinement_iclass().
* vm_method.c (rb_method_entry_make): add a method entry with
VM_METHOD_TYPE_REFINED to the class refined by the refinement if
the target module is a refinement. When a method entry with
VM_METHOD_TYPE_UNDEF is invoked by vm_call_method(), a method with
the same name is searched in refinements. If such a method is
found, the method is invoked. Otherwise, the original method in
the refined class (rb_method_definition_t::body.orig_me) is
invoked. This change is made to simplify the normal method lookup
and to improve the performance of normal method calls.
* vm_method.c (EXPR1, search_method, rb_method_entry),
vm_eval.c (rb_call0, rb_search_method_entry): do not use
refinements for method lookup.
* vm_insnhelper.c (vm_call_method): search methods in refinements if
ci->me is VM_METHOD_TYPE_REFINED. If the method is called by
super (i.e., ci->call == vm_call_super_method), skip the same
method entry as the current method to avoid infinite call of the
same method.
* class.c (include_modules_at): add a refined method entry for each
method defined in a module included in a refinement.
* class.c (rb_prepend_module): set an empty table to
RCLASS_M_TBL(klass) to add refined method entries, because
refinements should have priority over prepended modules.
* proc.c (mnew): use rb_method_entry_with_refinements() to get
a refined method.
* vm.c (rb_thread_mark): mark cfp->klass for iclasses created by
copy_refinement_iclass().
* vm.c (Init_VM), cont.c (fiber_init): initialize th->cfp->klass.
* test/ruby/test_refinement.rb (test_inline_method_cache): do not skip
the test because it should pass successfully.
* test/ruby/test_refinement.rb (test_redefine_refined_method): new
test for the case a refined method is redefined.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@38236 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-12-06 08:08:41 -05:00
|
|
|
return rb_call0(recv, mid, argc, argv, scope, th->cfp->self);
|
2008-05-24 21:12:12 -04:00
|
|
|
}
|
|
|
|
|
2009-02-21 20:43:59 -05:00
|
|
|
NORETURN(static void raise_method_missing(rb_thread_t *th, int argc, const VALUE *argv,
|
2015-06-03 06:42:18 -04:00
|
|
|
VALUE obj, enum method_missing_reason call_status));
|
2009-02-21 20:43:59 -05:00
|
|
|
|
2008-05-24 21:12:12 -04:00
|
|
|
/*
|
|
|
|
* call-seq:
|
2010-05-17 17:07:33 -04:00
|
|
|
* obj.method_missing(symbol [, *args] ) -> result
|
2008-05-24 21:12:12 -04:00
|
|
|
*
|
|
|
|
* Invoked by Ruby when <i>obj</i> is sent a message it cannot handle.
|
|
|
|
* <i>symbol</i> is the symbol for the method called, and <i>args</i>
|
|
|
|
* are any arguments that were passed to it. By default, the interpreter
|
|
|
|
* raises an error when this method is called. However, it is possible
|
|
|
|
* to override the method to provide more dynamic behavior.
|
|
|
|
* If it is decided that a particular method should not be handled, then
|
|
|
|
* <i>super</i> should be called, so that ancestors can pick up the
|
|
|
|
* missing method.
|
|
|
|
* The example below creates
|
|
|
|
* a class <code>Roman</code>, which responds to methods with names
|
|
|
|
* consisting of roman numerals, returning the corresponding integer
|
|
|
|
* values.
|
|
|
|
*
|
|
|
|
* class Roman
|
2011-03-07 03:44:45 -05:00
|
|
|
* def roman_to_int(str)
|
2008-05-24 21:12:12 -04:00
|
|
|
* # ...
|
|
|
|
* end
|
|
|
|
* def method_missing(methId)
|
|
|
|
* str = methId.id2name
|
2011-03-07 03:44:45 -05:00
|
|
|
* roman_to_int(str)
|
2008-05-24 21:12:12 -04:00
|
|
|
* end
|
|
|
|
* end
|
|
|
|
*
|
|
|
|
* r = Roman.new
|
|
|
|
* r.iv #=> 4
|
|
|
|
* r.xxiii #=> 23
|
|
|
|
* r.mm #=> 2000
|
|
|
|
*/
|
|
|
|
|
|
|
|
static VALUE
|
|
|
|
rb_method_missing(int argc, const VALUE *argv, VALUE obj)
|
2009-02-21 20:43:59 -05:00
|
|
|
{
|
|
|
|
rb_thread_t *th = GET_THREAD();
|
|
|
|
raise_method_missing(th, argc, argv, obj, th->method_missing_reason);
|
2012-04-13 20:36:26 -04:00
|
|
|
UNREACHABLE;
|
2009-02-21 20:43:59 -05:00
|
|
|
}
|
|
|
|
|
2011-10-06 03:29:33 -04:00
|
|
|
static VALUE
|
2011-10-06 07:51:55 -04:00
|
|
|
make_no_method_exception(VALUE exc, const char *format, VALUE obj, int argc, const VALUE *argv)
|
2011-10-06 03:29:33 -04:00
|
|
|
{
|
|
|
|
int n = 0;
|
|
|
|
VALUE args[3];
|
|
|
|
|
|
|
|
if (!format) {
|
|
|
|
format = "undefined method `%s' for %s";
|
|
|
|
}
|
2015-06-25 03:11:45 -04:00
|
|
|
args[n++] = rb_name_err_mesg_new(rb_str_new_cstr(format), obj, argv[0]);
|
2011-10-06 03:29:33 -04:00
|
|
|
args[n++] = argv[0];
|
|
|
|
if (exc == rb_eNoMethodError) {
|
|
|
|
args[n++] = rb_ary_new4(argc - 1, argv + 1);
|
|
|
|
}
|
|
|
|
return rb_class_new_instance(n, args, exc);
|
|
|
|
}
|
|
|
|
|
2009-02-21 20:43:59 -05:00
|
|
|
static void
|
|
|
|
raise_method_missing(rb_thread_t *th, int argc, const VALUE *argv, VALUE obj,
|
2015-06-03 06:42:18 -04:00
|
|
|
enum method_missing_reason last_call_status)
|
2008-05-24 21:12:12 -04:00
|
|
|
{
|
|
|
|
VALUE exc = rb_eNoMethodError;
|
2008-05-31 05:28:20 -04:00
|
|
|
const char *format = 0;
|
2009-02-21 20:43:59 -05:00
|
|
|
|
2008-05-24 21:12:12 -04:00
|
|
|
if (argc == 0 || !SYMBOL_P(argv[0])) {
|
|
|
|
rb_raise(rb_eArgError, "no id given");
|
|
|
|
}
|
|
|
|
|
|
|
|
stack_check();
|
|
|
|
|
2015-06-02 21:39:16 -04:00
|
|
|
if (last_call_status & MISSING_PRIVATE) {
|
2008-05-24 21:12:12 -04:00
|
|
|
format = "private method `%s' called for %s";
|
|
|
|
}
|
2015-06-02 21:39:16 -04:00
|
|
|
else if (last_call_status & MISSING_PROTECTED) {
|
2008-05-24 21:12:12 -04:00
|
|
|
format = "protected method `%s' called for %s";
|
|
|
|
}
|
2015-06-02 21:39:16 -04:00
|
|
|
else if (last_call_status & MISSING_VCALL) {
|
2008-05-24 21:12:12 -04:00
|
|
|
format = "undefined local variable or method `%s' for %s";
|
|
|
|
exc = rb_eNameError;
|
|
|
|
}
|
2015-06-02 21:39:16 -04:00
|
|
|
else if (last_call_status & MISSING_SUPER) {
|
2008-05-24 21:12:12 -04:00
|
|
|
format = "super: no superclass method `%s' for %s";
|
|
|
|
}
|
|
|
|
|
|
|
|
{
|
2011-10-06 07:51:55 -04:00
|
|
|
exc = make_no_method_exception(exc, format, obj, argc, argv);
|
2015-06-02 21:39:16 -04:00
|
|
|
if (!(last_call_status & MISSING_MISSING)) {
|
2014-01-09 05:12:59 -05:00
|
|
|
rb_vm_pop_cfunc_frame();
|
2009-02-21 20:43:59 -05:00
|
|
|
}
|
2008-05-24 21:12:12 -04:00
|
|
|
rb_exc_raise(exc);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline VALUE
|
2015-06-03 06:42:18 -04:00
|
|
|
method_missing(VALUE obj, ID id, int argc, const VALUE *argv, enum method_missing_reason call_status)
|
2008-05-24 21:12:12 -04:00
|
|
|
{
|
2014-01-01 11:40:11 -05:00
|
|
|
VALUE *nargv, result, work;
|
2008-12-15 00:15:26 -05:00
|
|
|
rb_thread_t *th = GET_THREAD();
|
2012-01-30 05:08:23 -05:00
|
|
|
const rb_block_t *blockptr = th->passed_block;
|
2008-12-15 00:15:26 -05:00
|
|
|
|
|
|
|
th->method_missing_reason = call_status;
|
|
|
|
th->passed_block = 0;
|
2008-05-24 21:12:12 -04:00
|
|
|
|
2008-12-15 00:15:26 -05:00
|
|
|
if (id == idMethodMissing) {
|
2015-06-02 21:39:16 -04:00
|
|
|
raise_method_missing(th, argc, argv, obj, call_status | MISSING_MISSING);
|
2008-05-24 21:12:12 -04:00
|
|
|
}
|
|
|
|
|
2014-01-01 11:40:11 -05:00
|
|
|
nargv = ALLOCV_N(VALUE, work, argc + 1);
|
2008-05-24 21:12:12 -04:00
|
|
|
nargv[0] = ID2SYM(id);
|
|
|
|
MEMCPY(nargv + 1, argv, VALUE, argc);
|
|
|
|
|
2009-10-29 00:55:10 -04:00
|
|
|
if (rb_method_basic_definition_p(CLASS_OF(obj) , idMethodMissing)) {
|
2015-06-02 21:39:16 -04:00
|
|
|
raise_method_missing(th, argc+1, nargv, obj, call_status | MISSING_MISSING);
|
2009-10-29 00:55:10 -04:00
|
|
|
}
|
2012-01-30 05:08:23 -05:00
|
|
|
th->passed_block = blockptr;
|
2008-12-15 00:15:26 -05:00
|
|
|
result = rb_funcall2(obj, idMethodMissing, argc + 1, nargv);
|
2014-01-01 11:40:11 -05:00
|
|
|
if (work) ALLOCV_END(work);
|
2008-12-15 00:15:26 -05:00
|
|
|
return result;
|
2008-05-24 21:12:12 -04:00
|
|
|
}
|
|
|
|
|
2009-02-21 20:43:59 -05:00
|
|
|
void
|
2014-06-18 02:16:39 -04:00
|
|
|
rb_raise_method_missing(rb_thread_t *th, int argc, const VALUE *argv,
|
2009-02-21 20:43:59 -05:00
|
|
|
VALUE obj, int call_status)
|
|
|
|
{
|
|
|
|
th->passed_block = 0;
|
2015-06-02 21:39:16 -04:00
|
|
|
raise_method_missing(th, argc, argv, obj, call_status | MISSING_MISSING);
|
2009-02-21 20:43:59 -05:00
|
|
|
}
|
|
|
|
|
2009-08-29 09:39:44 -04:00
|
|
|
/*!
|
|
|
|
* Calls a method
|
|
|
|
* \param recv receiver of the method
|
|
|
|
* \param mid an ID that represents the name of the method
|
|
|
|
* \param args an Array object which contains method arguments
|
|
|
|
*
|
|
|
|
* \pre \a args must refer an Array object.
|
|
|
|
*/
|
2008-05-24 21:12:12 -04:00
|
|
|
VALUE
|
|
|
|
rb_apply(VALUE recv, ID mid, VALUE args)
|
|
|
|
{
|
|
|
|
int argc;
|
2011-07-29 10:53:47 -04:00
|
|
|
VALUE *argv, ret;
|
2008-05-24 21:12:12 -04:00
|
|
|
|
2009-05-20 12:43:41 -04:00
|
|
|
argc = RARRAY_LENINT(args);
|
2011-07-29 10:53:47 -04:00
|
|
|
if (argc >= 0x100) {
|
|
|
|
args = rb_ary_subseq(args, 0, argc);
|
* include/ruby/ruby.h: constify RBasic::klass and add
RBASIC_CLASS(obj) macro which returns a class of `obj'.
This change is a part of RGENGC branch [ruby-trunk - Feature #8339].
* object.c: add new function rb_obj_reveal().
This function reveal interal (hidden) object by rb_obj_hide().
Note that do not change class before and after hiding.
Only permitted example is:
klass = RBASIC_CLASS(obj);
rb_obj_hide(obj);
....
rb_obj_reveal(obj, klass);
TODO: API design. rb_obj_reveal() should be replaced with others.
TODO: modify constified variables using cast may be harmful for
compiler's analysis and optimizaton.
Any idea to prohibt inserting RBasic::klass directly?
If rename RBasic::klass and force to use RBASIC_CLASS(obj),
then all codes such as `RBASIC(obj)->klass' will be
compilation error. Is it acceptable? (We have similar
experience at Ruby 1.9,
for example "RARRAY(ary)->ptr" to "RARRAY_PTR(ary)".
* internal.h: add some macros.
* RBASIC_CLEAR_CLASS(obj) clear RBasic::klass to make it internal
object.
* RBASIC_SET_CLASS(obj, cls) set RBasic::klass.
* RBASIC_SET_CLASS_RAW(obj, cls) same as RBASIC_SET_CLASS
without write barrier (planned).
* RCLASS_SET_SUPER(a, b) set super class of a.
* array.c, class.c, compile.c, encoding.c, enum.c, error.c, eval.c,
file.c, gc.c, hash.c, io.c, iseq.c, marshal.c, object.c,
parse.y, proc.c, process.c, random.c, ruby.c, sprintf.c,
string.c, thread.c, transcode.c, vm.c, vm_eval.c, win32/file.c:
Use above macros and functions to access RBasic::klass.
* ext/coverage/coverage.c, ext/readline/readline.c,
ext/socket/ancdata.c, ext/socket/init.c,
* ext/zlib/zlib.c: ditto.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@40691 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2013-05-13 06:49:11 -04:00
|
|
|
RBASIC_CLEAR_CLASS(args);
|
2011-07-29 10:53:47 -04:00
|
|
|
OBJ_FREEZE(args);
|
2014-03-17 00:20:16 -04:00
|
|
|
ret = rb_call(recv, mid, argc, RARRAY_CONST_PTR(args), CALL_FCALL);
|
2011-07-29 10:53:47 -04:00
|
|
|
RB_GC_GUARD(args);
|
|
|
|
return ret;
|
|
|
|
}
|
2008-05-24 21:12:12 -04:00
|
|
|
argv = ALLOCA_N(VALUE, argc);
|
2013-11-07 21:37:47 -05:00
|
|
|
MEMCPY(argv, RARRAY_CONST_PTR(args), VALUE, argc);
|
2009-07-15 10:59:41 -04:00
|
|
|
return rb_call(recv, mid, argc, argv, CALL_FCALL);
|
2008-05-24 21:12:12 -04:00
|
|
|
}
|
|
|
|
|
2009-08-29 09:39:44 -04:00
|
|
|
/*!
|
|
|
|
* Calls a method
|
|
|
|
* \param recv receiver of the method
|
|
|
|
* \param mid an ID that represents the name of the method
|
|
|
|
* \param n the number of arguments
|
|
|
|
* \param ... arbitrary number of method arguments
|
|
|
|
*
|
|
|
|
* \pre each of arguments after \a n must be a VALUE.
|
|
|
|
*/
|
2008-05-24 21:12:12 -04:00
|
|
|
VALUE
|
|
|
|
rb_funcall(VALUE recv, ID mid, int n, ...)
|
|
|
|
{
|
|
|
|
VALUE *argv;
|
|
|
|
va_list ar;
|
|
|
|
|
|
|
|
if (n > 0) {
|
|
|
|
long i;
|
|
|
|
|
2010-11-15 08:48:37 -05:00
|
|
|
va_init_list(ar, n);
|
|
|
|
|
2008-05-24 21:12:12 -04:00
|
|
|
argv = ALLOCA_N(VALUE, n);
|
|
|
|
|
|
|
|
for (i = 0; i < n; i++) {
|
|
|
|
argv[i] = va_arg(ar, VALUE);
|
|
|
|
}
|
|
|
|
va_end(ar);
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
argv = 0;
|
|
|
|
}
|
2009-07-15 10:59:41 -04:00
|
|
|
return rb_call(recv, mid, n, argv, CALL_FCALL);
|
2008-05-24 21:12:12 -04:00
|
|
|
}
|
|
|
|
|
2009-08-29 09:39:44 -04:00
|
|
|
/*!
|
|
|
|
* Calls a method
|
|
|
|
* \param recv receiver of the method
|
|
|
|
* \param mid an ID that represents the name of the method
|
|
|
|
* \param argc the number of arguments
|
|
|
|
* \param argv pointer to an array of method arguments
|
|
|
|
*/
|
2008-05-24 21:12:12 -04:00
|
|
|
VALUE
|
2013-05-31 04:27:06 -04:00
|
|
|
rb_funcallv(VALUE recv, ID mid, int argc, const VALUE *argv)
|
2008-05-24 21:12:12 -04:00
|
|
|
{
|
2009-07-15 10:59:41 -04:00
|
|
|
return rb_call(recv, mid, argc, argv, CALL_FCALL);
|
2008-05-24 21:12:12 -04:00
|
|
|
}
|
|
|
|
|
2009-08-29 09:39:44 -04:00
|
|
|
/*!
|
|
|
|
* Calls a method.
|
|
|
|
*
|
|
|
|
* Same as rb_funcall2 but this function can call only public methods.
|
|
|
|
* \param recv receiver of the method
|
|
|
|
* \param mid an ID that represents the name of the method
|
|
|
|
* \param argc the number of arguments
|
|
|
|
* \param argv pointer to an array of method arguments
|
|
|
|
*/
|
2008-05-24 21:12:12 -04:00
|
|
|
VALUE
|
2013-05-31 04:27:06 -04:00
|
|
|
rb_funcallv_public(VALUE recv, ID mid, int argc, const VALUE *argv)
|
2008-05-24 21:12:12 -04:00
|
|
|
{
|
2009-07-15 10:59:41 -04:00
|
|
|
return rb_call(recv, mid, argc, argv, CALL_PUBLIC);
|
2008-05-24 21:12:12 -04:00
|
|
|
}
|
|
|
|
|
2010-09-24 10:45:19 -04:00
|
|
|
VALUE
|
|
|
|
rb_funcall_passing_block(VALUE recv, ID mid, int argc, const VALUE *argv)
|
|
|
|
{
|
|
|
|
PASS_PASSED_BLOCK_TH(GET_THREAD());
|
|
|
|
|
|
|
|
return rb_call(recv, mid, argc, argv, CALL_PUBLIC);
|
|
|
|
}
|
|
|
|
|
2013-06-17 08:47:26 -04:00
|
|
|
VALUE
|
|
|
|
rb_funcall_with_block(VALUE recv, ID mid, int argc, const VALUE *argv, VALUE pass_procval)
|
|
|
|
{
|
|
|
|
if (!NIL_P(pass_procval)) {
|
|
|
|
rb_thread_t *th = GET_THREAD();
|
|
|
|
rb_block_t *block = 0;
|
|
|
|
|
|
|
|
rb_proc_t *pass_proc;
|
|
|
|
GetProcPtr(pass_procval, pass_proc);
|
|
|
|
block = &pass_proc->block;
|
|
|
|
|
|
|
|
th->passed_block = block;
|
|
|
|
}
|
|
|
|
|
|
|
|
return rb_call(recv, mid, argc, argv, CALL_PUBLIC);
|
|
|
|
}
|
|
|
|
|
2015-02-04 23:41:05 -05:00
|
|
|
static VALUE *
|
|
|
|
current_vm_stack_arg(rb_thread_t *th, const VALUE *argv)
|
|
|
|
{
|
|
|
|
rb_control_frame_t *prev_cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(th->cfp);
|
|
|
|
if (RUBY_VM_CONTROL_FRAME_STACK_OVERFLOW_P(th, prev_cfp)) return NULL;
|
|
|
|
if (prev_cfp->sp + 1 != argv) return NULL;
|
|
|
|
return prev_cfp->sp + 1;
|
|
|
|
}
|
|
|
|
|
2008-05-24 21:12:12 -04:00
|
|
|
static VALUE
|
2009-10-30 03:57:21 -04:00
|
|
|
send_internal(int argc, const VALUE *argv, VALUE recv, call_type scope)
|
2008-05-24 21:12:12 -04:00
|
|
|
{
|
2011-10-06 03:29:33 -04:00
|
|
|
ID id;
|
2008-05-24 21:12:12 -04:00
|
|
|
VALUE vid;
|
2012-12-05 11:10:41 -05:00
|
|
|
VALUE self;
|
2015-02-04 23:41:05 -05:00
|
|
|
VALUE ret, vargv = 0;
|
* vm.c, eval_intern.h (PASS_PASSED_BLOCK):
set a VM_FRAME_FLAG_PASSED flag to skip this frame when
searching ruby-level-cfp.
* eval.c, eval_intern.h, proc.c: fix to check cfp. if there is
no valid ruby-level-cfp, cause RuntimeError exception.
[ruby-dev:34128]
* vm_core.h, vm_evalbody.c, vm.c, vm_dump.c, vm_insnhelper.c,
insns.def: rename FRAME_MAGIC_* to VM_FRAME_MAGIC_*.
* KNOWNBUGS.rb, bootstraptest/test*.rb: move solved bugs.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@17084 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2008-06-10 17:46:43 -04:00
|
|
|
rb_thread_t *th = GET_THREAD();
|
2008-05-24 21:12:12 -04:00
|
|
|
|
2012-12-05 11:10:41 -05:00
|
|
|
if (scope == CALL_PUBLIC) {
|
|
|
|
self = Qundef;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
self = RUBY_VM_PREVIOUS_CONTROL_FRAME(th->cfp)->self;
|
|
|
|
}
|
|
|
|
|
2008-05-24 21:12:12 -04:00
|
|
|
if (argc == 0) {
|
|
|
|
rb_raise(rb_eArgError, "no method name given");
|
|
|
|
}
|
|
|
|
|
2015-02-04 14:10:03 -05:00
|
|
|
vid = *argv;
|
* vm.c, eval_intern.h (PASS_PASSED_BLOCK):
set a VM_FRAME_FLAG_PASSED flag to skip this frame when
searching ruby-level-cfp.
* eval.c, eval_intern.h, proc.c: fix to check cfp. if there is
no valid ruby-level-cfp, cause RuntimeError exception.
[ruby-dev:34128]
* vm_core.h, vm_evalbody.c, vm.c, vm_dump.c, vm_insnhelper.c,
insns.def: rename FRAME_MAGIC_* to VM_FRAME_MAGIC_*.
* KNOWNBUGS.rb, bootstraptest/test*.rb: move solved bugs.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@17084 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2008-06-10 17:46:43 -04:00
|
|
|
|
2011-10-06 03:29:33 -04:00
|
|
|
id = rb_check_id(&vid);
|
|
|
|
if (!id) {
|
|
|
|
if (rb_method_basic_definition_p(CLASS_OF(recv), idMethodMissing)) {
|
2011-10-06 07:51:55 -04:00
|
|
|
VALUE exc = make_no_method_exception(rb_eNoMethodError, NULL,
|
2015-02-04 14:10:03 -05:00
|
|
|
recv, argc, argv);
|
2011-10-06 03:29:33 -04:00
|
|
|
rb_exc_raise(exc);
|
|
|
|
}
|
2015-02-04 23:41:05 -05:00
|
|
|
if (!SYMBOL_P(*argv)) {
|
|
|
|
VALUE *tmp_argv = current_vm_stack_arg(th, argv);
|
|
|
|
vid = rb_str_intern(vid);
|
|
|
|
if (tmp_argv) {
|
|
|
|
tmp_argv[0] = vid;
|
|
|
|
}
|
|
|
|
else if (argc > 1) {
|
|
|
|
tmp_argv = ALLOCV_N(VALUE, vargv, argc);
|
|
|
|
tmp_argv[0] = vid;
|
|
|
|
MEMCPY(tmp_argv+1, argv+1, VALUE, argc-1);
|
|
|
|
argv = tmp_argv;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
argv = &vid;
|
|
|
|
}
|
|
|
|
}
|
2015-02-04 14:10:03 -05:00
|
|
|
id = idMethodMissing;
|
2015-07-29 02:25:21 -04:00
|
|
|
th->method_missing_reason = MISSING_NOENTRY;
|
2015-02-04 23:41:05 -05:00
|
|
|
}
|
|
|
|
else {
|
2015-02-04 14:10:03 -05:00
|
|
|
argv++; argc--;
|
2011-10-06 03:29:33 -04:00
|
|
|
}
|
2011-12-23 11:23:13 -05:00
|
|
|
PASS_PASSED_BLOCK_TH(th);
|
2015-02-04 23:41:05 -05:00
|
|
|
ret = rb_call0(recv, id, argc, argv, scope, self);
|
|
|
|
ALLOCV_END(vargv);
|
|
|
|
return ret;
|
2008-05-24 21:12:12 -04:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2013-02-23 23:24:52 -05:00
|
|
|
* call-seq:
|
|
|
|
* foo.send(symbol [, args...]) -> obj
|
|
|
|
* foo.__send__(symbol [, args...]) -> obj
|
|
|
|
* foo.send(string [, args...]) -> obj
|
|
|
|
* foo.__send__(string [, args...]) -> obj
|
2008-05-24 21:12:12 -04:00
|
|
|
*
|
|
|
|
* Invokes the method identified by _symbol_, passing it any
|
|
|
|
* arguments specified. You can use <code>__send__</code> if the name
|
|
|
|
* +send+ clashes with an existing method in _obj_.
|
2013-02-23 23:24:52 -05:00
|
|
|
* When the method is identified by a string, the string is converted
|
|
|
|
* to a symbol.
|
2008-05-24 21:12:12 -04:00
|
|
|
*
|
|
|
|
* class Klass
|
|
|
|
* def hello(*args)
|
|
|
|
* "Hello " + args.join(' ')
|
|
|
|
* end
|
|
|
|
* end
|
|
|
|
* k = Klass.new
|
|
|
|
* k.send :hello, "gentle", "readers" #=> "Hello gentle readers"
|
|
|
|
*/
|
|
|
|
|
|
|
|
VALUE
|
|
|
|
rb_f_send(int argc, VALUE *argv, VALUE recv)
|
|
|
|
{
|
2009-10-30 03:57:21 -04:00
|
|
|
return send_internal(argc, argv, recv, CALL_FCALL);
|
2008-05-24 21:12:12 -04:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* call-seq:
|
2010-05-17 17:07:33 -04:00
|
|
|
* obj.public_send(symbol [, args...]) -> obj
|
2013-02-23 23:24:52 -05:00
|
|
|
* obj.public_send(string [, args...]) -> obj
|
2008-05-24 21:12:12 -04:00
|
|
|
*
|
|
|
|
* Invokes the method identified by _symbol_, passing it any
|
|
|
|
* arguments specified. Unlike send, public_send calls public
|
|
|
|
* methods only.
|
2013-02-23 23:24:52 -05:00
|
|
|
* When the method is identified by a string, the string is converted
|
|
|
|
* to a symbol.
|
2008-05-24 21:12:12 -04:00
|
|
|
*
|
|
|
|
* 1.public_send(:puts, "hello") # causes NoMethodError
|
|
|
|
*/
|
|
|
|
|
|
|
|
VALUE
|
|
|
|
rb_f_public_send(int argc, VALUE *argv, VALUE recv)
|
|
|
|
{
|
2009-10-30 03:57:21 -04:00
|
|
|
return send_internal(argc, argv, recv, CALL_PUBLIC);
|
2008-05-24 21:12:12 -04:00
|
|
|
}
|
|
|
|
|
|
|
|
/* yield */
|
|
|
|
|
|
|
|
static inline VALUE
|
|
|
|
rb_yield_0(int argc, const VALUE * argv)
|
|
|
|
{
|
|
|
|
return vm_yield(GET_THREAD(), argc, argv);
|
|
|
|
}
|
|
|
|
|
|
|
|
VALUE
|
|
|
|
rb_yield(VALUE val)
|
|
|
|
{
|
|
|
|
if (val == Qundef) {
|
|
|
|
return rb_yield_0(0, 0);
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
return rb_yield_0(1, &val);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
VALUE
|
|
|
|
rb_yield_values(int n, ...)
|
|
|
|
{
|
|
|
|
if (n == 0) {
|
|
|
|
return rb_yield_0(0, 0);
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
int i;
|
|
|
|
VALUE *argv;
|
|
|
|
va_list args;
|
|
|
|
argv = ALLOCA_N(VALUE, n);
|
|
|
|
|
|
|
|
va_init_list(args, n);
|
|
|
|
for (i=0; i<n; i++) {
|
|
|
|
argv[i] = va_arg(args, VALUE);
|
|
|
|
}
|
|
|
|
va_end(args);
|
|
|
|
|
|
|
|
return rb_yield_0(n, argv);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
VALUE
|
|
|
|
rb_yield_values2(int argc, const VALUE *argv)
|
|
|
|
{
|
|
|
|
return rb_yield_0(argc, argv);
|
|
|
|
}
|
|
|
|
|
|
|
|
VALUE
|
|
|
|
rb_yield_splat(VALUE values)
|
|
|
|
{
|
|
|
|
VALUE tmp = rb_check_array_type(values);
|
|
|
|
volatile VALUE v;
|
|
|
|
if (NIL_P(tmp)) {
|
|
|
|
rb_raise(rb_eArgError, "not an array");
|
|
|
|
}
|
2013-11-07 21:37:47 -05:00
|
|
|
v = rb_yield_0(RARRAY_LENINT(tmp), RARRAY_CONST_PTR(tmp));
|
2014-11-13 19:26:26 -05:00
|
|
|
RB_GC_GUARD(tmp);
|
2008-05-24 21:12:12 -04:00
|
|
|
return v;
|
|
|
|
}
|
|
|
|
|
2013-11-29 03:06:19 -05:00
|
|
|
VALUE
|
|
|
|
rb_yield_block(VALUE val, VALUE arg, int argc, const VALUE *argv, VALUE blockarg)
|
|
|
|
{
|
|
|
|
const rb_block_t *blockptr = 0;
|
|
|
|
if (!NIL_P(blockarg)) {
|
2013-11-29 23:21:26 -05:00
|
|
|
rb_proc_t *blockproc;
|
|
|
|
GetProcPtr(blockarg, blockproc);
|
|
|
|
blockptr = &blockproc->block;
|
2013-11-29 03:06:19 -05:00
|
|
|
}
|
|
|
|
return vm_yield_with_block(GET_THREAD(), argc, argv, blockptr);
|
|
|
|
}
|
|
|
|
|
2008-05-24 21:12:12 -04:00
|
|
|
static VALUE
|
|
|
|
loop_i(void)
|
|
|
|
{
|
|
|
|
for (;;) {
|
|
|
|
rb_yield_0(0, 0);
|
|
|
|
}
|
|
|
|
return Qnil;
|
|
|
|
}
|
|
|
|
|
2012-11-06 12:12:20 -05:00
|
|
|
static VALUE
|
2013-06-26 09:43:22 -04:00
|
|
|
rb_f_loop_size(VALUE self, VALUE args, VALUE eobj)
|
2012-11-06 17:50:30 -05:00
|
|
|
{
|
2012-11-06 12:12:20 -05:00
|
|
|
return DBL2NUM(INFINITY);
|
|
|
|
}
|
|
|
|
|
2008-05-24 21:12:12 -04:00
|
|
|
/*
|
|
|
|
* call-seq:
|
2010-05-13 01:49:55 -04:00
|
|
|
* loop { block }
|
|
|
|
* loop -> an_enumerator
|
2008-05-24 21:12:12 -04:00
|
|
|
*
|
|
|
|
* Repeatedly executes the block.
|
|
|
|
*
|
2010-05-13 01:49:55 -04:00
|
|
|
* If no block is given, an enumerator is returned instead.
|
|
|
|
*
|
2008-05-24 21:12:12 -04:00
|
|
|
* loop do
|
|
|
|
* print "Input: "
|
|
|
|
* line = gets
|
|
|
|
* break if !line or line =~ /^qQ/
|
|
|
|
* # ...
|
|
|
|
* end
|
|
|
|
*
|
|
|
|
* StopIteration raised in the block breaks the loop.
|
|
|
|
*/
|
|
|
|
|
|
|
|
static VALUE
|
2008-12-27 04:28:26 -05:00
|
|
|
rb_f_loop(VALUE self)
|
2008-05-24 21:12:12 -04:00
|
|
|
{
|
2012-11-06 12:12:20 -05:00
|
|
|
RETURN_SIZED_ENUMERATOR(self, 0, 0, rb_f_loop_size);
|
2008-05-24 21:12:12 -04:00
|
|
|
rb_rescue2(loop_i, (VALUE)0, 0, 0, rb_eStopIteration, (VALUE)0);
|
|
|
|
return Qnil; /* dummy */
|
|
|
|
}
|
|
|
|
|
2010-02-17 03:05:42 -05:00
|
|
|
#if VMDEBUG
|
2010-01-24 08:52:32 -05:00
|
|
|
static const char *
|
|
|
|
vm_frametype_name(const rb_control_frame_t *cfp);
|
2010-02-17 03:05:42 -05:00
|
|
|
#endif
|
2010-01-24 08:52:32 -05:00
|
|
|
|
2015-03-28 01:22:12 -04:00
|
|
|
static VALUE
|
|
|
|
rb_iterate0(VALUE (* it_proc) (VALUE), VALUE data1,
|
|
|
|
const struct vm_ifunc *const ifunc,
|
|
|
|
rb_thread_t *const th)
|
2008-05-24 21:12:12 -04:00
|
|
|
{
|
|
|
|
int state;
|
|
|
|
volatile VALUE retval = Qnil;
|
2015-03-28 01:22:12 -04:00
|
|
|
rb_control_frame_t *const cfp = th->cfp;
|
2008-05-24 21:12:12 -04:00
|
|
|
|
|
|
|
TH_PUSH_TAG(th);
|
|
|
|
state = TH_EXEC_TAG();
|
|
|
|
if (state == 0) {
|
|
|
|
iter_retry:
|
2009-12-20 09:20:46 -05:00
|
|
|
{
|
|
|
|
rb_block_t *blockptr;
|
2015-03-28 01:22:12 -04:00
|
|
|
if (ifunc) {
|
|
|
|
blockptr = RUBY_VM_GET_BLOCK_PTR_IN_CFP(cfp);
|
2015-03-10 15:57:30 -04:00
|
|
|
blockptr->iseq = (void *)ifunc;
|
2009-12-20 09:20:46 -05:00
|
|
|
blockptr->proc = 0;
|
|
|
|
}
|
|
|
|
else {
|
2015-03-28 01:22:12 -04:00
|
|
|
blockptr = VM_CF_BLOCK_PTR(cfp);
|
2009-12-20 09:20:46 -05:00
|
|
|
}
|
|
|
|
th->passed_block = blockptr;
|
|
|
|
}
|
2008-05-24 21:12:12 -04:00
|
|
|
retval = (*it_proc) (data1);
|
|
|
|
}
|
2015-03-28 01:22:04 -04:00
|
|
|
else if (state == TAG_BREAK || state == TAG_RETRY) {
|
|
|
|
const struct vm_throw_data *const err = (struct vm_throw_data *)th->errinfo;
|
|
|
|
const rb_control_frame_t *const escape_cfp = THROW_DATA_CATCH_FRAME(err);
|
2008-05-24 21:12:12 -04:00
|
|
|
|
2015-03-28 01:22:04 -04:00
|
|
|
if (cfp == escape_cfp) {
|
|
|
|
rb_vm_rewind_cfp(th, cfp);
|
2010-01-24 08:52:32 -05:00
|
|
|
|
2015-03-28 01:22:04 -04:00
|
|
|
state = 0;
|
|
|
|
th->state = 0;
|
|
|
|
th->errinfo = Qnil;
|
2008-05-24 21:12:12 -04:00
|
|
|
|
2015-03-28 01:22:04 -04:00
|
|
|
if (state == TAG_RETRY) goto iter_retry;
|
|
|
|
retval = THROW_DATA_VAL(err);
|
|
|
|
}
|
|
|
|
else if (0) {
|
|
|
|
SDR(); fprintf(stderr, "%p, %p\n", cfp, escape_cfp);
|
2008-05-24 21:12:12 -04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
TH_POP_TAG();
|
|
|
|
|
2015-03-27 19:51:18 -04:00
|
|
|
if (state) {
|
2008-05-24 21:12:12 -04:00
|
|
|
TH_JUMP_TAG(th, state);
|
|
|
|
}
|
|
|
|
return retval;
|
|
|
|
}
|
|
|
|
|
2015-03-28 01:22:12 -04:00
|
|
|
VALUE
|
|
|
|
rb_iterate(VALUE (* it_proc)(VALUE), VALUE data1,
|
|
|
|
VALUE (* bl_proc)(ANYARGS), VALUE data2)
|
|
|
|
{
|
|
|
|
return rb_iterate0(it_proc, data1,
|
|
|
|
bl_proc ? IFUNC_NEW(bl_proc, data2, rb_frame_this_func()) : 0,
|
|
|
|
GET_THREAD());
|
|
|
|
}
|
|
|
|
|
2008-05-24 21:12:12 -04:00
|
|
|
struct iter_method_arg {
|
|
|
|
VALUE obj;
|
|
|
|
ID mid;
|
|
|
|
int argc;
|
2013-11-29 03:02:51 -05:00
|
|
|
const VALUE *argv;
|
2008-05-24 21:12:12 -04:00
|
|
|
};
|
|
|
|
|
|
|
|
static VALUE
|
|
|
|
iterate_method(VALUE obj)
|
|
|
|
{
|
|
|
|
const struct iter_method_arg * arg =
|
|
|
|
(struct iter_method_arg *) obj;
|
|
|
|
|
2009-07-15 10:59:41 -04:00
|
|
|
return rb_call(arg->obj, arg->mid, arg->argc, arg->argv, CALL_FCALL);
|
2008-05-24 21:12:12 -04:00
|
|
|
}
|
|
|
|
|
|
|
|
VALUE
|
2013-11-29 03:02:51 -05:00
|
|
|
rb_block_call(VALUE obj, ID mid, int argc, const VALUE * argv,
|
2008-05-24 21:12:12 -04:00
|
|
|
VALUE (*bl_proc) (ANYARGS), VALUE data2)
|
|
|
|
{
|
|
|
|
struct iter_method_arg arg;
|
|
|
|
|
|
|
|
arg.obj = obj;
|
|
|
|
arg.mid = mid;
|
|
|
|
arg.argc = argc;
|
|
|
|
arg.argv = argv;
|
|
|
|
return rb_iterate(iterate_method, (VALUE)&arg, bl_proc, data2);
|
|
|
|
}
|
|
|
|
|
2012-09-19 11:42:26 -04:00
|
|
|
static VALUE
|
|
|
|
iterate_check_method(VALUE obj)
|
|
|
|
{
|
|
|
|
const struct iter_method_arg * arg =
|
|
|
|
(struct iter_method_arg *) obj;
|
|
|
|
|
|
|
|
return rb_check_funcall(arg->obj, arg->mid, arg->argc, arg->argv);
|
|
|
|
}
|
|
|
|
|
|
|
|
VALUE
|
2013-11-29 03:02:51 -05:00
|
|
|
rb_check_block_call(VALUE obj, ID mid, int argc, const VALUE *argv,
|
2012-09-19 11:42:26 -04:00
|
|
|
VALUE (*bl_proc) (ANYARGS), VALUE data2)
|
|
|
|
{
|
|
|
|
struct iter_method_arg arg;
|
|
|
|
|
|
|
|
arg.obj = obj;
|
|
|
|
arg.mid = mid;
|
|
|
|
arg.argc = argc;
|
|
|
|
arg.argv = argv;
|
|
|
|
return rb_iterate(iterate_check_method, (VALUE)&arg, bl_proc, data2);
|
|
|
|
}
|
|
|
|
|
2008-05-24 21:12:12 -04:00
|
|
|
VALUE
|
|
|
|
rb_each(VALUE obj)
|
|
|
|
{
|
2009-07-15 10:59:41 -04:00
|
|
|
return rb_call(obj, idEach, 0, 0, CALL_FCALL);
|
2008-05-24 21:12:12 -04:00
|
|
|
}
|
|
|
|
|
|
|
|
static VALUE
|
2015-03-08 17:22:43 -04:00
|
|
|
eval_string_with_cref(VALUE self, VALUE src, VALUE scope, rb_cref_t *const cref_arg, volatile VALUE file, volatile int line)
|
2008-05-24 21:12:12 -04:00
|
|
|
{
|
|
|
|
int state;
|
|
|
|
VALUE result = Qundef;
|
|
|
|
VALUE envval;
|
|
|
|
rb_thread_t *th = GET_THREAD();
|
|
|
|
rb_env_t *env = NULL;
|
* iseq.c, vm_eval.c: set th->base_block properly.
th->base_block is information for (a) parsing, (b) compiling
and (c) setting up the frame to execute the program passed by
`eval' method. For example, (1) parser need to know up-level
variables to detect it is variable or method without paren.
Befor (a), (b) and (c), VM set th->base_block by passed bindng
(or previous frame information). After execute (a), (b) and (c),
VM should clear th->base_block. However, if (a), (b) or (c)
raises an exception, then th->base_block is not cleared.
Problem is that the uncleared value th->balo_block is used for
irrelevant iseq compilation. It causes SEGV or critical error.
I tried to solve this problem: to clear them before exception,
but finally I found out that it is difficult to do it (Ruby
program can be run in many places).
Because of this background, I set th->base_block before
compiling iseq and restore it after compiling.
Basically, th->base_block is dirty hack (similar to global
variable) and this patch is also dirty.
* bootstraptest/test_eval.rb: add a test for above.
* internal.h: remove unused decl.
* iseq.c (rb_iseq_compile_with_option): add base_block parameter.
set th->base_block before compation and restore it after
compilation.
* ruby.c (require_libraries): pass 0 as base_block instead of
setting th->base_block
* tool/compile_prelude.rb (prelude_eval): apply above changes.
* vm.c, vm_eval.c: ditto.
* vm_core.h: add comments.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@36179 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-06-22 05:32:56 -04:00
|
|
|
rb_block_t block, *base_block;
|
2008-06-24 09:16:44 -04:00
|
|
|
volatile int parse_in_eval;
|
2008-07-01 12:55:30 -04:00
|
|
|
volatile int mild_compile_error;
|
2015-03-08 17:22:43 -04:00
|
|
|
rb_cref_t *orig_cref;
|
2013-08-06 03:15:18 -04:00
|
|
|
VALUE crefval;
|
2008-05-24 21:12:12 -04:00
|
|
|
|
|
|
|
if (file == 0) {
|
2013-07-29 04:00:34 -04:00
|
|
|
file = rb_sourcefilename();
|
2008-05-24 21:12:12 -04:00
|
|
|
line = rb_sourceline();
|
|
|
|
}
|
|
|
|
|
2008-06-24 09:16:44 -04:00
|
|
|
parse_in_eval = th->parse_in_eval;
|
2008-07-01 12:55:30 -04:00
|
|
|
mild_compile_error = th->mild_compile_error;
|
2012-10-23 16:42:45 -04:00
|
|
|
TH_PUSH_TAG(th);
|
|
|
|
if ((state = TH_EXEC_TAG()) == 0) {
|
2015-03-08 17:22:43 -04:00
|
|
|
rb_cref_t *cref = cref_arg;
|
2013-05-15 04:06:07 -04:00
|
|
|
rb_binding_t *bind = 0;
|
2015-07-21 18:52:59 -04:00
|
|
|
const rb_iseq_t *iseq;
|
2013-06-15 11:31:44 -04:00
|
|
|
VALUE absolute_path = Qnil;
|
2013-07-29 04:00:34 -04:00
|
|
|
VALUE fname;
|
2008-05-24 21:12:12 -04:00
|
|
|
|
2014-03-18 10:06:34 -04:00
|
|
|
if (file != Qundef) {
|
|
|
|
absolute_path = file;
|
|
|
|
}
|
|
|
|
|
2014-09-19 18:55:59 -04:00
|
|
|
if (!NIL_P(scope)) {
|
2013-07-22 03:32:52 -04:00
|
|
|
bind = Check_TypedStruct(scope, &ruby_binding_data_type);
|
|
|
|
{
|
2008-05-24 21:12:12 -04:00
|
|
|
envval = bind->env;
|
2014-03-18 10:22:23 -04:00
|
|
|
if (NIL_P(absolute_path) && !NIL_P(bind->path)) {
|
2013-07-29 04:00:34 -04:00
|
|
|
file = bind->path;
|
2012-06-03 22:49:37 -04:00
|
|
|
line = bind->first_lineno;
|
2013-06-14 19:37:35 -04:00
|
|
|
absolute_path = rb_current_realfilepath();
|
2010-05-09 14:41:51 -04:00
|
|
|
}
|
2008-05-24 21:12:12 -04:00
|
|
|
}
|
|
|
|
GetEnvPtr(envval, env);
|
* iseq.c, vm_eval.c: set th->base_block properly.
th->base_block is information for (a) parsing, (b) compiling
and (c) setting up the frame to execute the program passed by
`eval' method. For example, (1) parser need to know up-level
variables to detect it is variable or method without paren.
Befor (a), (b) and (c), VM set th->base_block by passed bindng
(or previous frame information). After execute (a), (b) and (c),
VM should clear th->base_block. However, if (a), (b) or (c)
raises an exception, then th->base_block is not cleared.
Problem is that the uncleared value th->balo_block is used for
irrelevant iseq compilation. It causes SEGV or critical error.
I tried to solve this problem: to clear them before exception,
but finally I found out that it is difficult to do it (Ruby
program can be run in many places).
Because of this background, I set th->base_block before
compiling iseq and restore it after compiling.
Basically, th->base_block is dirty hack (similar to global
variable) and this patch is also dirty.
* bootstraptest/test_eval.rb: add a test for above.
* internal.h: remove unused decl.
* iseq.c (rb_iseq_compile_with_option): add base_block parameter.
set th->base_block before compation and restore it after
compilation.
* ruby.c (require_libraries): pass 0 as base_block instead of
setting th->base_block
* tool/compile_prelude.rb (prelude_eval): apply above changes.
* vm.c, vm_eval.c: ditto.
* vm_core.h: add comments.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@36179 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-06-22 05:32:56 -04:00
|
|
|
base_block = &env->block;
|
2008-05-24 21:12:12 -04:00
|
|
|
}
|
|
|
|
else {
|
2009-02-13 01:25:59 -05:00
|
|
|
rb_control_frame_t *cfp = rb_vm_get_ruby_level_next_cfp(th, th->cfp);
|
* vm.c, eval_intern.h (PASS_PASSED_BLOCK):
set a VM_FRAME_FLAG_PASSED flag to skip this frame when
searching ruby-level-cfp.
* eval.c, eval_intern.h, proc.c: fix to check cfp. if there is
no valid ruby-level-cfp, cause RuntimeError exception.
[ruby-dev:34128]
* vm_core.h, vm_evalbody.c, vm.c, vm_dump.c, vm_insnhelper.c,
insns.def: rename FRAME_MAGIC_* to VM_FRAME_MAGIC_*.
* KNOWNBUGS.rb, bootstraptest/test*.rb: move solved bugs.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@17084 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2008-06-10 17:46:43 -04:00
|
|
|
|
|
|
|
if (cfp != 0) {
|
|
|
|
block = *RUBY_VM_GET_BLOCK_PTR_IN_CFP(cfp);
|
* iseq.c, vm_eval.c: set th->base_block properly.
th->base_block is information for (a) parsing, (b) compiling
and (c) setting up the frame to execute the program passed by
`eval' method. For example, (1) parser need to know up-level
variables to detect it is variable or method without paren.
Befor (a), (b) and (c), VM set th->base_block by passed bindng
(or previous frame information). After execute (a), (b) and (c),
VM should clear th->base_block. However, if (a), (b) or (c)
raises an exception, then th->base_block is not cleared.
Problem is that the uncleared value th->balo_block is used for
irrelevant iseq compilation. It causes SEGV or critical error.
I tried to solve this problem: to clear them before exception,
but finally I found out that it is difficult to do it (Ruby
program can be run in many places).
Because of this background, I set th->base_block before
compiling iseq and restore it after compiling.
Basically, th->base_block is dirty hack (similar to global
variable) and this patch is also dirty.
* bootstraptest/test_eval.rb: add a test for above.
* internal.h: remove unused decl.
* iseq.c (rb_iseq_compile_with_option): add base_block parameter.
set th->base_block before compation and restore it after
compilation.
* ruby.c (require_libraries): pass 0 as base_block instead of
setting th->base_block
* tool/compile_prelude.rb (prelude_eval): apply above changes.
* vm.c, vm_eval.c: ditto.
* vm_core.h: add comments.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@36179 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-06-22 05:32:56 -04:00
|
|
|
base_block = █
|
|
|
|
base_block->self = self;
|
|
|
|
base_block->iseq = cfp->iseq; /* TODO */
|
* vm.c, eval_intern.h (PASS_PASSED_BLOCK):
set a VM_FRAME_FLAG_PASSED flag to skip this frame when
searching ruby-level-cfp.
* eval.c, eval_intern.h, proc.c: fix to check cfp. if there is
no valid ruby-level-cfp, cause RuntimeError exception.
[ruby-dev:34128]
* vm_core.h, vm_evalbody.c, vm.c, vm_dump.c, vm_insnhelper.c,
insns.def: rename FRAME_MAGIC_* to VM_FRAME_MAGIC_*.
* KNOWNBUGS.rb, bootstraptest/test*.rb: move solved bugs.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@17084 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2008-06-10 17:46:43 -04:00
|
|
|
}
|
|
|
|
else {
|
|
|
|
rb_raise(rb_eRuntimeError, "Can't eval on top of Fiber or Thread");
|
|
|
|
}
|
2008-05-24 21:12:12 -04:00
|
|
|
}
|
|
|
|
|
2013-07-29 04:00:34 -04:00
|
|
|
if ((fname = file) == Qundef) {
|
|
|
|
fname = rb_usascii_str_new_cstr("(eval)");
|
|
|
|
}
|
|
|
|
|
2013-11-26 18:30:25 -05:00
|
|
|
if (RTEST(fname))
|
|
|
|
fname = rb_fstring(fname);
|
|
|
|
if (RTEST(absolute_path))
|
|
|
|
absolute_path = rb_fstring(absolute_path);
|
|
|
|
|
2008-05-24 21:12:12 -04:00
|
|
|
/* make eval iseq */
|
|
|
|
th->parse_in_eval++;
|
2008-07-01 12:55:30 -04:00
|
|
|
th->mild_compile_error++;
|
2015-07-21 18:52:59 -04:00
|
|
|
iseq = rb_iseq_compile_with_option(src, fname, absolute_path, INT2FIX(line), base_block, Qnil);
|
2008-07-01 12:55:30 -04:00
|
|
|
th->mild_compile_error--;
|
2008-05-24 21:12:12 -04:00
|
|
|
th->parse_in_eval--;
|
|
|
|
|
2013-08-06 03:15:18 -04:00
|
|
|
if (!cref && base_block->iseq) {
|
2015-03-04 21:56:03 -05:00
|
|
|
if (NIL_P(scope)) {
|
* fix namespace issue on singleton class expressions. [Bug #10943]
* vm_core.h, method.h: remove rb_iseq_t::cref_stack. CREF is stored
to rb_method_definition_t::body.iseq_body.cref.
* vm_insnhelper.c: modify SVAR usage.
When calling ISEQ type method, push CREF information onto method
frame, SVAR located place. Before this fix, SVAR is simply nil.
After this patch, CREF (or NULL == Qfalse for not iseq methods)
is stored at the method invocation.
When SVAR is requierd, then put NODE_IF onto SVAR location,
and NDOE_IF::nd_reserved points CREF itself.
* vm.c (vm_cref_new, vm_cref_dump, vm_cref_new_toplevel): added.
* vm_insnhelper.c (vm_push_frame): accept CREF.
* method.h, vm_method.c (rb_add_method_iseq): added. This function
accepts iseq and CREF.
* class.c (clone_method): use rb_add_method_iseq().
* gc.c (mark_method_entry): mark method_entry::body.iseq_body.cref.
* iseq.c: remove CREF related codes.
* insns.def (getinlinecache/setinlinecache): CREF should be cache key
because a different CREF has a different namespace.
* node.c (rb_gc_mark_node): mark NODE_IF::nd_reserved for SVAR.
* proc.c: catch up changes.
* struct.c: ditto.
* insns.def: ditto.
* vm_args.c (raise_argument_error): ditto.
* vm_eval.c: ditto.
* test/ruby/test_class.rb: add a test.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@49874 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-03-06 07:24:58 -05:00
|
|
|
orig_cref = rb_vm_get_cref(base_block->ep);
|
2015-06-02 21:39:16 -04:00
|
|
|
cref = vm_cref_new(Qnil, METHOD_VISI_PUBLIC, NULL);
|
2015-03-04 21:56:03 -05:00
|
|
|
crefval = (VALUE) cref;
|
|
|
|
COPY_CREF(cref, orig_cref);
|
|
|
|
}
|
|
|
|
else {
|
* fix namespace issue on singleton class expressions. [Bug #10943]
* vm_core.h, method.h: remove rb_iseq_t::cref_stack. CREF is stored
to rb_method_definition_t::body.iseq_body.cref.
* vm_insnhelper.c: modify SVAR usage.
When calling ISEQ type method, push CREF information onto method
frame, SVAR located place. Before this fix, SVAR is simply nil.
After this patch, CREF (or NULL == Qfalse for not iseq methods)
is stored at the method invocation.
When SVAR is requierd, then put NODE_IF onto SVAR location,
and NDOE_IF::nd_reserved points CREF itself.
* vm.c (vm_cref_new, vm_cref_dump, vm_cref_new_toplevel): added.
* vm_insnhelper.c (vm_push_frame): accept CREF.
* method.h, vm_method.c (rb_add_method_iseq): added. This function
accepts iseq and CREF.
* class.c (clone_method): use rb_add_method_iseq().
* gc.c (mark_method_entry): mark method_entry::body.iseq_body.cref.
* iseq.c: remove CREF related codes.
* insns.def (getinlinecache/setinlinecache): CREF should be cache key
because a different CREF has a different namespace.
* node.c (rb_gc_mark_node): mark NODE_IF::nd_reserved for SVAR.
* proc.c: catch up changes.
* struct.c: ditto.
* insns.def: ditto.
* vm_args.c (raise_argument_error): ditto.
* vm_eval.c: ditto.
* test/ruby/test_class.rb: add a test.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@49874 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-03-06 07:24:58 -05:00
|
|
|
cref = rb_vm_get_cref(base_block->ep);
|
2015-03-04 21:56:03 -05:00
|
|
|
}
|
2013-08-06 03:15:18 -04:00
|
|
|
}
|
2015-07-21 18:52:59 -04:00
|
|
|
vm_set_eval_stack(th, iseq, cref, base_block);
|
2013-08-06 03:15:18 -04:00
|
|
|
RB_GC_GUARD(crefval);
|
2008-05-24 21:12:12 -04:00
|
|
|
|
|
|
|
if (0) { /* for debug */
|
2015-07-21 18:52:59 -04:00
|
|
|
VALUE disasm = rb_iseq_disasm(iseq);
|
2011-02-20 02:23:55 -05:00
|
|
|
printf("%s\n", StringValuePtr(disasm));
|
2008-05-24 21:12:12 -04:00
|
|
|
}
|
|
|
|
|
|
|
|
/* save new env */
|
2015-07-21 18:52:59 -04:00
|
|
|
if (bind && iseq->body->local_table_size > 0) {
|
2015-07-14 12:23:17 -04:00
|
|
|
bind->env = vm_make_env_object(th, th->cfp);
|
2008-05-24 21:12:12 -04:00
|
|
|
}
|
|
|
|
|
|
|
|
/* kick */
|
* common.mk: clean up
- remove blockinlining.$(OBJEXT) to built
- make ENCODING_H_INCLDUES variable (include/ruby/encoding.h)
- make VM_CORE_H_INCLUDES variable (vm_core.h)
- simplify rules.
- make depends rule to output depend status using gcc -MM.
* include/ruby/mvm.h, include/ruby/vm.h: rename mvm.h to vm.h.
* include/ruby.h: ditto.
* load.c: add inclusion explicitly.
* enumerator.c, object.c, parse.y, thread.c, vm_dump.c:
remove useless inclusion.
* eval_intern.h: cleanup inclusion.
* vm_core.h: rb_thread_t should be defined in this file.
* vm_evalbody.c, vm_exec.c: rename vm_evalbody.c to vm_exec.c.
* vm.h, vm_exec.h: rename vm.h to vm_exec.h.
* insnhelper.h, vm_insnhelper.h: rename insnhelper.h to vm_insnhelper.h.
* vm.c, vm_insnhelper.c, vm_insnhelper.h:
- rename vm_eval() to vm_exec_core().
- rename vm_eval_body() to vm_exec().
- cleanup include order.
* vm_method.c: fix comment.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@19466 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2008-09-22 20:20:28 -04:00
|
|
|
result = vm_exec(th);
|
2008-05-24 21:12:12 -04:00
|
|
|
}
|
2012-10-23 16:42:45 -04:00
|
|
|
TH_POP_TAG();
|
2008-07-01 12:55:30 -04:00
|
|
|
th->mild_compile_error = mild_compile_error;
|
2008-06-24 09:16:44 -04:00
|
|
|
th->parse_in_eval = parse_in_eval;
|
2008-05-24 21:12:12 -04:00
|
|
|
|
|
|
|
if (state) {
|
|
|
|
if (state == TAG_RAISE) {
|
|
|
|
VALUE errinfo = th->errinfo;
|
2013-07-29 04:00:34 -04:00
|
|
|
if (file == Qundef) {
|
2008-05-24 21:12:12 -04:00
|
|
|
VALUE mesg, errat, bt2;
|
|
|
|
|
|
|
|
errat = rb_get_backtrace(errinfo);
|
2009-03-29 23:12:48 -04:00
|
|
|
mesg = rb_attr_get(errinfo, id_mesg);
|
2011-09-29 07:07:45 -04:00
|
|
|
if (!NIL_P(errat) && RB_TYPE_P(errat, T_ARRAY) &&
|
2013-03-06 01:30:03 -05:00
|
|
|
(bt2 = rb_vm_backtrace_str_ary(th, 0, 0), RARRAY_LEN(bt2) > 0)) {
|
2011-09-29 07:07:45 -04:00
|
|
|
if (!NIL_P(mesg) && RB_TYPE_P(mesg, T_STRING) && !RSTRING_LEN(mesg)) {
|
2009-03-29 23:12:48 -04:00
|
|
|
if (OBJ_FROZEN(mesg)) {
|
2013-05-13 05:56:22 -04:00
|
|
|
VALUE m = rb_str_cat(rb_str_dup(RARRAY_AREF(errat, 0)), ": ", 2);
|
2009-03-29 23:12:48 -04:00
|
|
|
rb_ivar_set(errinfo, id_mesg, rb_str_append(m, mesg));
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
rb_str_update(mesg, 0, 0, rb_str_new2(": "));
|
2013-05-13 05:56:22 -04:00
|
|
|
rb_str_update(mesg, 0, 0, RARRAY_AREF(errat, 0));
|
2009-03-29 23:12:48 -04:00
|
|
|
}
|
2008-05-24 21:12:12 -04:00
|
|
|
}
|
2013-06-21 07:32:57 -04:00
|
|
|
RARRAY_ASET(errat, 0, RARRAY_AREF(bt2, 0));
|
2008-05-24 21:12:12 -04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
rb_exc_raise(errinfo);
|
|
|
|
}
|
|
|
|
JUMP_TAG(state);
|
|
|
|
}
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
static VALUE
|
2013-07-29 04:00:34 -04:00
|
|
|
eval_string(VALUE self, VALUE src, VALUE scope, VALUE file, int line)
|
2008-05-24 21:12:12 -04:00
|
|
|
{
|
|
|
|
return eval_string_with_cref(self, src, scope, 0, file, line);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* call-seq:
|
2010-05-17 17:07:33 -04:00
|
|
|
* eval(string [, binding [, filename [,lineno]]]) -> obj
|
2008-05-24 21:12:12 -04:00
|
|
|
*
|
|
|
|
* Evaluates the Ruby expression(s) in <em>string</em>. If
|
2009-10-14 10:08:26 -04:00
|
|
|
* <em>binding</em> is given, which must be a <code>Binding</code>
|
|
|
|
* object, the evaluation is performed in its context. If the
|
|
|
|
* optional <em>filename</em> and <em>lineno</em> parameters are
|
|
|
|
* present, they will be used when reporting syntax errors.
|
2008-05-24 21:12:12 -04:00
|
|
|
*
|
2011-03-07 03:44:45 -05:00
|
|
|
* def get_binding(str)
|
2008-05-24 21:12:12 -04:00
|
|
|
* return binding
|
|
|
|
* end
|
|
|
|
* str = "hello"
|
|
|
|
* eval "str + ' Fred'" #=> "hello Fred"
|
2011-03-07 03:44:45 -05:00
|
|
|
* eval "str + ' Fred'", get_binding("bye") #=> "bye Fred"
|
2008-05-24 21:12:12 -04:00
|
|
|
*/
|
|
|
|
|
|
|
|
VALUE
|
2014-06-18 02:16:39 -04:00
|
|
|
rb_f_eval(int argc, const VALUE *argv, VALUE self)
|
2008-05-24 21:12:12 -04:00
|
|
|
{
|
|
|
|
VALUE src, scope, vfile, vline;
|
2013-07-29 04:00:34 -04:00
|
|
|
VALUE file = Qundef;
|
2008-05-24 21:12:12 -04:00
|
|
|
int line = 1;
|
|
|
|
|
|
|
|
rb_scan_args(argc, argv, "13", &src, &scope, &vfile, &vline);
|
2013-08-18 06:36:51 -04:00
|
|
|
SafeStringValue(src);
|
2008-05-24 21:12:12 -04:00
|
|
|
if (argc >= 3) {
|
|
|
|
StringValue(vfile);
|
|
|
|
}
|
|
|
|
if (argc >= 4) {
|
|
|
|
line = NUM2INT(vline);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!NIL_P(vfile))
|
2013-07-29 04:00:34 -04:00
|
|
|
file = vfile;
|
2008-05-24 21:12:12 -04:00
|
|
|
return eval_string(self, src, scope, file, line);
|
|
|
|
}
|
|
|
|
|
2012-07-10 23:25:26 -04:00
|
|
|
/** @note This function name is not stable. */
|
|
|
|
VALUE
|
2012-09-03 22:52:44 -04:00
|
|
|
ruby_eval_string_from_file(const char *str, const char *filename)
|
|
|
|
{
|
2013-07-29 04:00:34 -04:00
|
|
|
VALUE file = filename ? rb_str_new_cstr(filename) : 0;
|
|
|
|
return eval_string(rb_vm_top_self(), rb_str_new2(str), Qnil, file, 1);
|
2012-07-10 23:25:26 -04:00
|
|
|
}
|
|
|
|
|
|
|
|
struct eval_string_from_file_arg {
|
2013-07-29 04:00:34 -04:00
|
|
|
VALUE str;
|
|
|
|
VALUE filename;
|
2012-07-10 23:25:26 -04:00
|
|
|
};
|
2012-09-03 22:52:44 -04:00
|
|
|
|
2012-07-10 23:25:26 -04:00
|
|
|
static VALUE
|
2013-07-29 01:52:50 -04:00
|
|
|
eval_string_from_file_helper(VALUE data)
|
2012-09-03 22:52:44 -04:00
|
|
|
{
|
2012-07-10 23:25:26 -04:00
|
|
|
const struct eval_string_from_file_arg *const arg = (struct eval_string_from_file_arg*)data;
|
2013-07-29 04:00:34 -04:00
|
|
|
return eval_string(rb_vm_top_self(), arg->str, Qnil, arg->filename, 1);
|
2012-07-10 23:25:26 -04:00
|
|
|
}
|
|
|
|
|
|
|
|
VALUE
|
2012-09-03 22:52:44 -04:00
|
|
|
ruby_eval_string_from_file_protect(const char *str, const char *filename, int *state)
|
|
|
|
{
|
2012-09-03 22:35:47 -04:00
|
|
|
struct eval_string_from_file_arg arg;
|
2013-07-29 04:00:34 -04:00
|
|
|
arg.str = rb_str_new_cstr(str);
|
|
|
|
arg.filename = filename ? rb_str_new_cstr(filename) : 0;
|
2013-07-29 01:52:50 -04:00
|
|
|
return rb_protect(eval_string_from_file_helper, (VALUE)&arg, state);
|
2012-07-10 23:25:26 -04:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Evaluates the given string in an isolated binding.
|
|
|
|
*
|
|
|
|
* Here "isolated" means the binding does not inherit any other binding. This
|
|
|
|
* behaves same as the binding for required libraries.
|
|
|
|
*
|
|
|
|
* __FILE__ will be "(eval)", and __LINE__ starts from 1 in the evaluation.
|
|
|
|
*
|
|
|
|
* @param str Ruby code to evaluate.
|
|
|
|
* @return The evaluated result.
|
|
|
|
* @throw Exception Raises an exception on error.
|
|
|
|
*/
|
2008-05-24 21:12:12 -04:00
|
|
|
VALUE
|
|
|
|
rb_eval_string(const char *str)
|
|
|
|
{
|
2012-07-10 23:25:26 -04:00
|
|
|
return ruby_eval_string_from_file(str, "eval");
|
2008-05-24 21:12:12 -04:00
|
|
|
}
|
|
|
|
|
2012-07-10 23:25:26 -04:00
|
|
|
/**
|
|
|
|
* Evaluates the given string in an isolated binding.
|
|
|
|
*
|
|
|
|
* __FILE__ will be "(eval)", and __LINE__ starts from 1 in the evaluation.
|
|
|
|
*
|
|
|
|
* @sa rb_eval_string
|
|
|
|
* @param str Ruby code to evaluate.
|
|
|
|
* @param state Being set to zero if succeeded. Nonzero if an error occurred.
|
|
|
|
* @return The evaluated result if succeeded, an undefined value if otherwise.
|
|
|
|
*/
|
2008-05-24 21:12:12 -04:00
|
|
|
VALUE
|
|
|
|
rb_eval_string_protect(const char *str, int *state)
|
|
|
|
{
|
|
|
|
return rb_protect((VALUE (*)(VALUE))rb_eval_string, (VALUE)str, state);
|
|
|
|
}
|
|
|
|
|
2012-07-10 23:25:26 -04:00
|
|
|
/**
|
|
|
|
* Evaluates the given string under a module binding in an isolated binding.
|
2014-12-08 22:48:35 -05:00
|
|
|
* This is same as the binding for loaded libraries on "load('foo', true)".
|
2012-07-10 23:25:26 -04:00
|
|
|
*
|
|
|
|
* __FILE__ will be "(eval)", and __LINE__ starts from 1 in the evaluation.
|
|
|
|
*
|
|
|
|
* @sa rb_eval_string
|
|
|
|
* @param str Ruby code to evaluate.
|
|
|
|
* @param state Being set to zero if succeeded. Nonzero if an error occurred.
|
|
|
|
* @return The evaluated result if succeeded, an undefined value if otherwise.
|
|
|
|
*/
|
2008-05-24 21:12:12 -04:00
|
|
|
VALUE
|
|
|
|
rb_eval_string_wrap(const char *str, int *state)
|
|
|
|
{
|
|
|
|
int status;
|
|
|
|
rb_thread_t *th = GET_THREAD();
|
|
|
|
VALUE self = th->top_self;
|
|
|
|
VALUE wrapper = th->top_wrapper;
|
|
|
|
VALUE val;
|
|
|
|
|
|
|
|
th->top_wrapper = rb_module_new();
|
|
|
|
th->top_self = rb_obj_clone(rb_vm_top_self());
|
|
|
|
rb_extend_object(th->top_self, th->top_wrapper);
|
|
|
|
|
|
|
|
val = rb_eval_string_protect(str, &status);
|
|
|
|
|
|
|
|
th->top_self = self;
|
|
|
|
th->top_wrapper = wrapper;
|
|
|
|
|
|
|
|
if (state) {
|
|
|
|
*state = status;
|
|
|
|
}
|
|
|
|
else if (status) {
|
|
|
|
JUMP_TAG(status);
|
|
|
|
}
|
|
|
|
return val;
|
|
|
|
}
|
|
|
|
|
|
|
|
VALUE
|
|
|
|
rb_eval_cmd(VALUE cmd, VALUE arg, int level)
|
|
|
|
{
|
|
|
|
int state;
|
2013-05-15 04:06:10 -04:00
|
|
|
volatile VALUE val = Qnil; /* OK */
|
2008-05-24 21:12:12 -04:00
|
|
|
volatile int safe = rb_safe_level();
|
|
|
|
|
|
|
|
if (OBJ_TAINTED(cmd)) {
|
2015-07-17 10:51:34 -04:00
|
|
|
level = RUBY_SAFE_LEVEL_MAX;
|
2008-05-24 21:12:12 -04:00
|
|
|
}
|
|
|
|
|
2011-09-29 07:07:45 -04:00
|
|
|
if (!RB_TYPE_P(cmd, T_STRING)) {
|
2008-05-24 21:12:12 -04:00
|
|
|
PUSH_TAG();
|
|
|
|
rb_set_safe_level_force(level);
|
|
|
|
if ((state = EXEC_TAG()) == 0) {
|
2014-11-13 20:23:58 -05:00
|
|
|
val = rb_funcall2(cmd, idCall, RARRAY_LENINT(arg),
|
2014-03-17 00:20:16 -04:00
|
|
|
RARRAY_CONST_PTR(arg));
|
2008-05-24 21:12:12 -04:00
|
|
|
}
|
|
|
|
POP_TAG();
|
|
|
|
|
|
|
|
rb_set_safe_level_force(safe);
|
|
|
|
|
|
|
|
if (state)
|
2011-09-29 07:06:42 -04:00
|
|
|
JUMP_TAG(state);
|
2008-05-24 21:12:12 -04:00
|
|
|
return val;
|
|
|
|
}
|
|
|
|
|
|
|
|
PUSH_TAG();
|
|
|
|
if ((state = EXEC_TAG()) == 0) {
|
|
|
|
val = eval_string(rb_vm_top_self(), cmd, Qnil, 0, 0);
|
|
|
|
}
|
|
|
|
POP_TAG();
|
|
|
|
|
|
|
|
rb_set_safe_level_force(safe);
|
2012-10-19 09:22:03 -04:00
|
|
|
if (state) JUMP_TAG(state);
|
2008-05-24 21:12:12 -04:00
|
|
|
return val;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* block eval under the class/module context */
|
|
|
|
|
|
|
|
static VALUE
|
|
|
|
yield_under(VALUE under, VALUE self, VALUE values)
|
|
|
|
{
|
|
|
|
rb_thread_t *th = GET_THREAD();
|
|
|
|
rb_block_t block, *blockptr;
|
2015-03-08 17:22:43 -04:00
|
|
|
rb_cref_t *cref;
|
2008-05-24 21:12:12 -04:00
|
|
|
|
2012-06-10 23:14:59 -04:00
|
|
|
if ((blockptr = VM_CF_BLOCK_PTR(th->cfp)) != 0) {
|
2008-05-24 21:12:12 -04:00
|
|
|
block = *blockptr;
|
|
|
|
block.self = self;
|
2012-06-10 23:14:59 -04:00
|
|
|
VM_CF_LEP(th->cfp)[0] = VM_ENVVAL_BLOCK_PTR(&block);
|
2008-05-24 21:12:12 -04:00
|
|
|
}
|
2015-06-02 21:39:16 -04:00
|
|
|
cref = vm_cref_push(th, under, blockptr);
|
2015-03-08 15:50:37 -04:00
|
|
|
CREF_PUSHED_BY_EVAL_SET(cref);
|
2008-05-24 21:12:12 -04:00
|
|
|
|
|
|
|
if (values == Qundef) {
|
2009-12-03 13:25:57 -05:00
|
|
|
return vm_yield_with_cref(th, 1, &self, cref);
|
2008-05-24 21:12:12 -04:00
|
|
|
}
|
|
|
|
else {
|
* include/ruby/ruby.h: rename RARRAY_RAWPTR() to RARRAY_CONST_PTR().
RARRAY_RAWPTR(ary) returns (const VALUE *) type pointer and
usecase of this macro is not acquire raw pointer, but acquire
read-only pointer. So we rename to better name.
RSTRUCT_RAWPTR() is also renamed to RSTRUCT_CONST_PTR()
(I expect that nobody use it).
* array.c, compile.c, cont.c, enumerator.c, gc.c, proc.c, random.c,
string.c, struct.c, thread.c, vm_eval.c, vm_insnhelper.c:
catch up this change.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@43043 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2013-09-25 04:24:34 -04:00
|
|
|
return vm_yield_with_cref(th, RARRAY_LENINT(values), RARRAY_CONST_PTR(values), cref);
|
2008-05-24 21:12:12 -04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2012-12-07 21:37:16 -05:00
|
|
|
VALUE
|
|
|
|
rb_yield_refine_block(VALUE refinement, VALUE refinements)
|
|
|
|
{
|
|
|
|
rb_thread_t *th = GET_THREAD();
|
|
|
|
rb_block_t block, *blockptr;
|
2015-03-08 17:22:43 -04:00
|
|
|
rb_cref_t *cref;
|
2012-12-07 21:37:16 -05:00
|
|
|
|
|
|
|
if ((blockptr = VM_CF_BLOCK_PTR(th->cfp)) != 0) {
|
|
|
|
block = *blockptr;
|
|
|
|
block.self = refinement;
|
|
|
|
VM_CF_LEP(th->cfp)[0] = VM_ENVVAL_BLOCK_PTR(&block);
|
|
|
|
}
|
2015-06-02 21:39:16 -04:00
|
|
|
cref = vm_cref_push(th, refinement, blockptr);
|
2015-03-08 15:50:37 -04:00
|
|
|
CREF_PUSHED_BY_EVAL_SET(cref);
|
2015-03-08 17:22:43 -04:00
|
|
|
CREF_REFINEMENTS_SET(cref, refinements);
|
2012-12-07 21:37:16 -05:00
|
|
|
|
|
|
|
return vm_yield_with_cref(th, 0, NULL, cref);
|
|
|
|
}
|
|
|
|
|
2008-05-24 21:12:12 -04:00
|
|
|
/* string eval under the class/module context */
|
|
|
|
static VALUE
|
2013-07-29 04:00:34 -04:00
|
|
|
eval_under(VALUE under, VALUE self, VALUE src, VALUE file, int line)
|
2008-05-24 21:12:12 -04:00
|
|
|
{
|
2015-06-02 21:39:16 -04:00
|
|
|
rb_cref_t *cref = vm_cref_push(GET_THREAD(), under, NULL);
|
2008-05-24 21:12:12 -04:00
|
|
|
|
2012-08-08 09:51:32 -04:00
|
|
|
if (SPECIAL_CONST_P(self) && !NIL_P(under)) {
|
2015-03-08 15:50:37 -04:00
|
|
|
CREF_PUSHED_BY_EVAL_SET(cref);
|
2012-08-06 11:31:13 -04:00
|
|
|
}
|
2013-08-18 06:36:51 -04:00
|
|
|
SafeStringValue(src);
|
2008-05-24 21:12:12 -04:00
|
|
|
|
|
|
|
return eval_string_with_cref(self, src, Qnil, cref, file, line);
|
|
|
|
}
|
|
|
|
|
|
|
|
static VALUE
|
2014-06-18 02:16:39 -04:00
|
|
|
specific_eval(int argc, const VALUE *argv, VALUE klass, VALUE self)
|
2008-05-24 21:12:12 -04:00
|
|
|
{
|
|
|
|
if (rb_block_given_p()) {
|
2012-03-14 17:10:34 -04:00
|
|
|
rb_check_arity(argc, 0, 0);
|
2008-05-24 21:12:12 -04:00
|
|
|
return yield_under(klass, self, Qundef);
|
|
|
|
}
|
|
|
|
else {
|
2013-07-29 04:00:34 -04:00
|
|
|
VALUE file = Qundef;
|
2008-05-24 21:12:12 -04:00
|
|
|
int line = 1;
|
2014-06-18 02:16:39 -04:00
|
|
|
VALUE code;
|
2008-05-24 21:12:12 -04:00
|
|
|
|
2012-03-14 17:10:34 -04:00
|
|
|
rb_check_arity(argc, 1, 3);
|
2014-06-18 02:16:39 -04:00
|
|
|
code = argv[0];
|
|
|
|
SafeStringValue(code);
|
2012-03-14 17:10:34 -04:00
|
|
|
if (argc > 2)
|
|
|
|
line = NUM2INT(argv[2]);
|
|
|
|
if (argc > 1) {
|
2013-07-29 04:00:34 -04:00
|
|
|
file = argv[1];
|
|
|
|
if (!NIL_P(file)) StringValue(file);
|
2008-05-24 21:12:12 -04:00
|
|
|
}
|
2014-06-18 02:16:39 -04:00
|
|
|
return eval_under(klass, self, code, file, line);
|
2008-05-24 21:12:12 -04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-04-22 22:35:58 -04:00
|
|
|
static VALUE
|
|
|
|
singleton_class_for_eval(VALUE self)
|
|
|
|
{
|
|
|
|
if (SPECIAL_CONST_P(self)) {
|
|
|
|
return rb_special_singleton_class(self);
|
|
|
|
}
|
|
|
|
switch (BUILTIN_TYPE(self)) {
|
|
|
|
case T_FLOAT: case T_BIGNUM: case T_SYMBOL:
|
|
|
|
return Qnil;
|
|
|
|
default:
|
|
|
|
return rb_singleton_class(self);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2008-05-24 21:12:12 -04:00
|
|
|
/*
|
|
|
|
* call-seq:
|
2010-05-17 17:07:33 -04:00
|
|
|
* obj.instance_eval(string [, filename [, lineno]] ) -> obj
|
2014-05-24 17:52:31 -04:00
|
|
|
* obj.instance_eval {|obj| block } -> obj
|
2008-05-24 21:12:12 -04:00
|
|
|
*
|
|
|
|
* Evaluates a string containing Ruby source code, or the given block,
|
|
|
|
* within the context of the receiver (_obj_). In order to set the
|
|
|
|
* context, the variable +self+ is set to _obj_ while
|
|
|
|
* the code is executing, giving the code access to _obj_'s
|
2014-05-24 17:52:31 -04:00
|
|
|
* instance variables and private methods.
|
|
|
|
*
|
|
|
|
* When <code>instance_eval</code> is given a block, _obj_ is also
|
|
|
|
* passed in as the block's only argument.
|
|
|
|
*
|
|
|
|
* When <code>instance_eval</code> is given a +String+, the optional
|
|
|
|
* second and third parameters supply a filename and starting line number
|
|
|
|
* that are used when reporting compilation errors.
|
2008-05-24 21:12:12 -04:00
|
|
|
*
|
|
|
|
* class KlassWithSecret
|
|
|
|
* def initialize
|
|
|
|
* @secret = 99
|
|
|
|
* end
|
2014-05-24 17:52:31 -04:00
|
|
|
* private
|
|
|
|
* def the_secret
|
|
|
|
* "Ssssh! The secret is #{@secret}."
|
|
|
|
* end
|
2008-05-24 21:12:12 -04:00
|
|
|
* end
|
|
|
|
* k = KlassWithSecret.new
|
2014-05-24 17:52:31 -04:00
|
|
|
* k.instance_eval { @secret } #=> 99
|
|
|
|
* k.instance_eval { the_secret } #=> "Ssssh! The secret is 99."
|
|
|
|
* k.instance_eval {|obj| obj == self } #=> true
|
2008-05-24 21:12:12 -04:00
|
|
|
*/
|
|
|
|
|
|
|
|
VALUE
|
2014-06-18 02:16:39 -04:00
|
|
|
rb_obj_instance_eval(int argc, const VALUE *argv, VALUE self)
|
2008-05-24 21:12:12 -04:00
|
|
|
{
|
2015-04-22 22:35:58 -04:00
|
|
|
VALUE klass = singleton_class_for_eval(self);
|
2008-05-24 21:12:12 -04:00
|
|
|
return specific_eval(argc, argv, klass, self);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* call-seq:
|
2010-05-17 17:07:33 -04:00
|
|
|
* obj.instance_exec(arg...) {|var...| block } -> obj
|
2008-05-24 21:12:12 -04:00
|
|
|
*
|
|
|
|
* Executes the given block within the context of the receiver
|
|
|
|
* (_obj_). In order to set the context, the variable +self+ is set
|
|
|
|
* to _obj_ while the code is executing, giving the code access to
|
|
|
|
* _obj_'s instance variables. Arguments are passed as block parameters.
|
|
|
|
*
|
|
|
|
* class KlassWithSecret
|
|
|
|
* def initialize
|
|
|
|
* @secret = 99
|
|
|
|
* end
|
|
|
|
* end
|
|
|
|
* k = KlassWithSecret.new
|
|
|
|
* k.instance_exec(5) {|x| @secret+x } #=> 104
|
|
|
|
*/
|
|
|
|
|
|
|
|
VALUE
|
2014-06-18 02:16:39 -04:00
|
|
|
rb_obj_instance_exec(int argc, const VALUE *argv, VALUE self)
|
2008-05-24 21:12:12 -04:00
|
|
|
{
|
2015-04-22 22:35:58 -04:00
|
|
|
VALUE klass = singleton_class_for_eval(self);
|
2008-05-24 21:12:12 -04:00
|
|
|
return yield_under(klass, self, rb_ary_new4(argc, argv));
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* call-seq:
|
2010-05-17 17:07:33 -04:00
|
|
|
* mod.class_eval(string [, filename [, lineno]]) -> obj
|
|
|
|
* mod.module_eval {|| block } -> obj
|
2008-05-24 21:12:12 -04:00
|
|
|
*
|
2012-03-16 01:28:55 -04:00
|
|
|
* Evaluates the string or block in the context of _mod_, except that when
|
2012-03-16 01:38:52 -04:00
|
|
|
* a block is given, constant/class variable lookup is not affected. This
|
|
|
|
* can be used to add methods to a class. <code>module_eval</code> returns
|
|
|
|
* the result of evaluating its argument. The optional _filename_ and
|
|
|
|
* _lineno_ parameters set the text for error messages.
|
2008-05-24 21:12:12 -04:00
|
|
|
*
|
|
|
|
* class Thing
|
|
|
|
* end
|
|
|
|
* a = %q{def hello() "Hello there!" end}
|
|
|
|
* Thing.module_eval(a)
|
|
|
|
* puts Thing.new.hello()
|
|
|
|
* Thing.module_eval("invalid code", "dummy", 123)
|
|
|
|
*
|
|
|
|
* <em>produces:</em>
|
|
|
|
*
|
|
|
|
* Hello there!
|
|
|
|
* dummy:123:in `module_eval': undefined local variable
|
|
|
|
* or method `code' for Thing:Class
|
|
|
|
*/
|
|
|
|
|
|
|
|
VALUE
|
2014-06-18 02:16:39 -04:00
|
|
|
rb_mod_module_eval(int argc, const VALUE *argv, VALUE mod)
|
2008-05-24 21:12:12 -04:00
|
|
|
{
|
|
|
|
return specific_eval(argc, argv, mod, mod);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* call-seq:
|
2010-05-17 17:07:33 -04:00
|
|
|
* mod.module_exec(arg...) {|var...| block } -> obj
|
|
|
|
* mod.class_exec(arg...) {|var...| block } -> obj
|
2008-05-24 21:12:12 -04:00
|
|
|
*
|
|
|
|
* Evaluates the given block in the context of the class/module.
|
|
|
|
* The method defined in the block will belong to the receiver.
|
2013-06-01 10:17:14 -04:00
|
|
|
* Any arguments passed to the method will be passed to the block.
|
|
|
|
* This can be used if the block needs to access instance variables.
|
2008-05-24 21:12:12 -04:00
|
|
|
*
|
|
|
|
* class Thing
|
|
|
|
* end
|
|
|
|
* Thing.class_exec{
|
|
|
|
* def hello() "Hello there!" end
|
|
|
|
* }
|
|
|
|
* puts Thing.new.hello()
|
|
|
|
*
|
|
|
|
* <em>produces:</em>
|
|
|
|
*
|
|
|
|
* Hello there!
|
|
|
|
*/
|
|
|
|
|
|
|
|
VALUE
|
2014-06-18 02:16:39 -04:00
|
|
|
rb_mod_module_exec(int argc, const VALUE *argv, VALUE mod)
|
2008-05-24 21:12:12 -04:00
|
|
|
{
|
|
|
|
return yield_under(mod, mod, rb_ary_new4(argc, argv));
|
|
|
|
}
|
|
|
|
|
2014-11-15 02:28:08 -05:00
|
|
|
/*
|
|
|
|
* Document-class: UncaughtThrowError
|
|
|
|
*
|
|
|
|
* Raised when +throw+ is called with a _tag_ which does not have
|
|
|
|
* corresponding +catch+ block.
|
|
|
|
*
|
|
|
|
* throw "foo", "bar"
|
|
|
|
*
|
|
|
|
* <em>raises the exception:</em>
|
|
|
|
*
|
|
|
|
* UncaughtThrowError: uncaught throw "foo"
|
|
|
|
*/
|
|
|
|
|
|
|
|
static VALUE
|
|
|
|
uncaught_throw_init(int argc, const VALUE *argv, VALUE exc)
|
|
|
|
{
|
|
|
|
rb_check_arity(argc, 2, UNLIMITED_ARGUMENTS);
|
|
|
|
rb_call_super(argc - 2, argv + 2);
|
2014-11-16 03:33:49 -05:00
|
|
|
rb_ivar_set(exc, id_tag, argv[0]);
|
|
|
|
rb_ivar_set(exc, id_value, argv[1]);
|
2014-11-15 02:28:08 -05:00
|
|
|
return exc;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* call-seq:
|
|
|
|
* uncaught_throw.tag -> obj
|
|
|
|
*
|
|
|
|
* Return the tag object which was called for.
|
|
|
|
*/
|
|
|
|
|
|
|
|
static VALUE
|
|
|
|
uncaught_throw_tag(VALUE exc)
|
|
|
|
{
|
2014-11-16 03:33:49 -05:00
|
|
|
return rb_ivar_get(exc, id_tag);
|
2014-11-15 02:28:08 -05:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* call-seq:
|
|
|
|
* uncaught_throw.value -> obj
|
|
|
|
*
|
|
|
|
* Return the return value which was called for.
|
|
|
|
*/
|
|
|
|
|
|
|
|
static VALUE
|
|
|
|
uncaught_throw_value(VALUE exc)
|
|
|
|
{
|
2014-11-16 03:33:49 -05:00
|
|
|
return rb_ivar_get(exc, id_value);
|
2014-11-15 02:28:08 -05:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* call-seq:
|
|
|
|
* uncaught_throw.to_s -> string
|
|
|
|
*
|
|
|
|
* Returns formatted message with the inspected tag.
|
|
|
|
*/
|
|
|
|
|
|
|
|
static VALUE
|
|
|
|
uncaught_throw_to_s(VALUE exc)
|
|
|
|
{
|
2014-11-16 03:33:35 -05:00
|
|
|
VALUE mesg = rb_attr_get(exc, id_mesg);
|
2014-11-15 02:28:08 -05:00
|
|
|
VALUE tag = uncaught_throw_tag(exc);
|
|
|
|
return rb_str_format(1, &tag, mesg);
|
|
|
|
}
|
|
|
|
|
2008-05-24 21:12:12 -04:00
|
|
|
/*
|
|
|
|
* call-seq:
|
2009-06-12 18:06:59 -04:00
|
|
|
* throw(tag [, obj])
|
2008-05-24 21:12:12 -04:00
|
|
|
*
|
|
|
|
* Transfers control to the end of the active +catch+ block
|
2014-11-15 02:28:08 -05:00
|
|
|
* waiting for _tag_. Raises +UncaughtThrowError+ if there
|
2009-06-12 18:06:59 -04:00
|
|
|
* is no +catch+ block for the _tag_. The optional second
|
2008-05-24 21:12:12 -04:00
|
|
|
* parameter supplies a return value for the +catch+ block,
|
|
|
|
* which otherwise defaults to +nil+. For examples, see
|
|
|
|
* <code>Kernel::catch</code>.
|
|
|
|
*/
|
|
|
|
|
|
|
|
static VALUE
|
|
|
|
rb_f_throw(int argc, VALUE *argv)
|
|
|
|
{
|
|
|
|
VALUE tag, value;
|
2009-03-13 05:10:07 -04:00
|
|
|
|
|
|
|
rb_scan_args(argc, argv, "11", &tag, &value);
|
|
|
|
rb_throw_obj(tag, value);
|
2012-04-13 20:36:26 -04:00
|
|
|
UNREACHABLE;
|
2009-03-13 05:10:07 -04:00
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
rb_throw_obj(VALUE tag, VALUE value)
|
|
|
|
{
|
2008-05-24 21:12:12 -04:00
|
|
|
rb_thread_t *th = GET_THREAD();
|
|
|
|
struct rb_vm_tag *tt = th->tag;
|
|
|
|
|
|
|
|
while (tt) {
|
|
|
|
if (tt->tag == tag) {
|
|
|
|
tt->retval = value;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
tt = tt->prev;
|
|
|
|
}
|
|
|
|
if (!tt) {
|
2014-11-15 02:28:08 -05:00
|
|
|
VALUE desc[3];
|
|
|
|
desc[0] = tag;
|
|
|
|
desc[1] = value;
|
|
|
|
desc[2] = rb_str_new_cstr("uncaught throw %p");
|
|
|
|
rb_exc_raise(rb_class_new_instance(numberof(desc), desc, rb_eUncaughtThrow));
|
2008-05-24 21:12:12 -04:00
|
|
|
}
|
|
|
|
|
2015-03-11 08:49:27 -04:00
|
|
|
th->errinfo = (VALUE)THROW_DATA_NEW(tag, NULL, TAG_THROW);
|
2008-05-24 21:12:12 -04:00
|
|
|
JUMP_TAG(TAG_THROW);
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
rb_throw(const char *tag, VALUE val)
|
|
|
|
{
|
2009-03-13 05:10:07 -04:00
|
|
|
rb_throw_obj(ID2SYM(rb_intern(tag)), val);
|
2008-05-24 21:12:12 -04:00
|
|
|
}
|
|
|
|
|
2009-09-15 17:18:04 -04:00
|
|
|
static VALUE
|
* compile.c, cont.c, gc.c, insns.def, iseq.c, iseq.h, process.c,
thread.c, vm.c, vm_core.h, vm_dump.c, vm_eval.c,
vm_insnhelper.c, vm_method.c, template/insns_info.inc.tmpl,
tool/instruction.rb: fixed types.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@25030 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2009-09-21 16:58:26 -04:00
|
|
|
catch_i(VALUE tag, VALUE data)
|
|
|
|
{
|
2009-09-15 17:18:04 -04:00
|
|
|
return rb_yield_0(1, &tag);
|
|
|
|
}
|
* compile.c, cont.c, gc.c, insns.def, iseq.c, iseq.h, process.c,
thread.c, vm.c, vm_core.h, vm_dump.c, vm_eval.c,
vm_insnhelper.c, vm_method.c, template/insns_info.inc.tmpl,
tool/instruction.rb: fixed types.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@25030 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2009-09-21 16:58:26 -04:00
|
|
|
|
2008-05-24 21:12:12 -04:00
|
|
|
/*
|
|
|
|
* call-seq:
|
2014-07-27 17:35:47 -04:00
|
|
|
* catch([tag]) {|tag| block } -> obj
|
2008-05-24 21:12:12 -04:00
|
|
|
*
|
2014-07-27 17:38:23 -04:00
|
|
|
* +catch+ executes its block. If +throw+ is not called, the block executes
|
|
|
|
* normally, and +catch+ returns the value of the last expression evaluated.
|
2008-05-24 21:12:12 -04:00
|
|
|
*
|
2014-07-27 17:35:47 -04:00
|
|
|
* catch(1) { 123 } # => 123
|
2008-05-24 21:12:12 -04:00
|
|
|
*
|
2014-07-27 17:38:23 -04:00
|
|
|
* If +throw(tag2, val)+ is called, Ruby searches up its stack for a +catch+
|
|
|
|
* block whose +tag+ has the same +object_id+ as _tag2_. When found, the block
|
|
|
|
* stops executing and returns _val_ (or +nil+ if no second argument was given
|
|
|
|
* to +throw+).
|
2008-05-24 21:12:12 -04:00
|
|
|
*
|
2014-07-27 17:35:47 -04:00
|
|
|
* catch(1) { throw(1, 456) } # => 456
|
|
|
|
* catch(1) { throw(1) } # => nil
|
2008-05-24 21:12:12 -04:00
|
|
|
*
|
2014-07-27 17:38:23 -04:00
|
|
|
* When +tag+ is passed as the first argument, +catch+ yields it as the
|
|
|
|
* parameter of the block.
|
2014-07-27 17:35:47 -04:00
|
|
|
*
|
|
|
|
* catch(1) {|x| x + 2 } # => 3
|
2008-05-24 21:12:12 -04:00
|
|
|
*
|
2014-07-27 17:38:23 -04:00
|
|
|
* When no +tag+ is given, +catch+ yields a new unique object (as from
|
|
|
|
* +Object.new+) as the block parameter. This object can then be used as the
|
|
|
|
* argument to +throw+, and will match the correct +catch+ block.
|
2009-06-12 18:06:59 -04:00
|
|
|
*
|
2014-07-27 17:35:47 -04:00
|
|
|
* catch do |obj_A|
|
|
|
|
* catch do |obj_B|
|
|
|
|
* throw(obj_B, 123)
|
|
|
|
* puts "This puts is not reached"
|
|
|
|
* end
|
|
|
|
*
|
|
|
|
* puts "This puts is displayed"
|
|
|
|
* 456
|
|
|
|
* end
|
|
|
|
*
|
|
|
|
* # => 456
|
|
|
|
*
|
|
|
|
* catch do |obj_A|
|
|
|
|
* catch do |obj_B|
|
|
|
|
* throw(obj_A, 123)
|
|
|
|
* puts "This puts is still not reached"
|
|
|
|
* end
|
|
|
|
*
|
|
|
|
* puts "Now this puts is also not reached"
|
|
|
|
* 456
|
|
|
|
* end
|
2009-06-12 18:06:59 -04:00
|
|
|
*
|
2014-07-27 17:35:47 -04:00
|
|
|
* # => 123
|
2008-05-24 21:12:12 -04:00
|
|
|
*/
|
|
|
|
|
|
|
|
static VALUE
|
|
|
|
rb_f_catch(int argc, VALUE *argv)
|
|
|
|
{
|
|
|
|
VALUE tag;
|
|
|
|
|
|
|
|
if (argc == 0) {
|
|
|
|
tag = rb_obj_alloc(rb_cObject);
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
rb_scan_args(argc, argv, "01", &tag);
|
|
|
|
}
|
2009-09-15 17:18:04 -04:00
|
|
|
return rb_catch_obj(tag, catch_i, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
VALUE
|
|
|
|
rb_catch(const char *tag, VALUE (*func)(), VALUE data)
|
|
|
|
{
|
|
|
|
VALUE vtag = tag ? ID2SYM(rb_intern(tag)) : rb_obj_alloc(rb_cObject);
|
|
|
|
return rb_catch_obj(vtag, func, data);
|
|
|
|
}
|
|
|
|
|
|
|
|
VALUE
|
2013-05-16 04:17:00 -04:00
|
|
|
rb_catch_obj(VALUE t, VALUE (*func)(), VALUE data)
|
2013-12-03 07:53:18 -05:00
|
|
|
{
|
|
|
|
int state;
|
2013-12-05 00:26:25 -05:00
|
|
|
VALUE val = rb_catch_protect(t, (rb_block_call_func *)func, data, &state);
|
2013-12-03 07:53:18 -05:00
|
|
|
if (state)
|
|
|
|
JUMP_TAG(state);
|
|
|
|
return val;
|
|
|
|
}
|
|
|
|
|
|
|
|
VALUE
|
|
|
|
rb_catch_protect(VALUE t, rb_block_call_func *func, VALUE data, int *stateptr)
|
2009-09-15 17:18:04 -04:00
|
|
|
{
|
|
|
|
int state;
|
|
|
|
volatile VALUE val = Qnil; /* OK */
|
|
|
|
rb_thread_t *th = GET_THREAD();
|
|
|
|
rb_control_frame_t *saved_cfp = th->cfp;
|
2013-05-16 04:17:00 -04:00
|
|
|
volatile VALUE tag = t;
|
2009-09-15 17:18:04 -04:00
|
|
|
|
2012-10-19 03:57:56 -04:00
|
|
|
TH_PUSH_TAG(th);
|
2008-05-24 21:12:12 -04:00
|
|
|
|
2013-11-18 08:47:56 -05:00
|
|
|
_tag.tag = tag;
|
2008-05-24 21:12:12 -04:00
|
|
|
|
2012-10-19 03:57:56 -04:00
|
|
|
if ((state = TH_EXEC_TAG()) == 0) {
|
2009-09-15 17:18:04 -04:00
|
|
|
/* call with argc=1, argv = [tag], block = Qnil to insure compatibility */
|
2013-12-03 07:53:18 -05:00
|
|
|
val = (*func)(tag, data, 1, (const VALUE *)&tag, Qnil);
|
2008-05-24 21:12:12 -04:00
|
|
|
}
|
2015-03-11 08:49:27 -04:00
|
|
|
else if (state == TAG_THROW && THROW_DATA_VAL((struct vm_throw_data *)th->errinfo) == tag) {
|
2014-06-19 16:27:59 -04:00
|
|
|
rb_vm_rewind_cfp(th, saved_cfp);
|
2008-05-24 21:12:12 -04:00
|
|
|
val = th->tag->retval;
|
|
|
|
th->errinfo = Qnil;
|
|
|
|
state = 0;
|
|
|
|
}
|
2012-10-19 03:57:56 -04:00
|
|
|
TH_POP_TAG();
|
2013-12-03 07:53:18 -05:00
|
|
|
if (stateptr)
|
|
|
|
*stateptr = state;
|
2008-05-24 21:12:12 -04:00
|
|
|
|
|
|
|
return val;
|
|
|
|
}
|
|
|
|
|
2014-07-01 13:57:37 -04:00
|
|
|
static void
|
|
|
|
local_var_list_init(struct local_var_list *vars)
|
|
|
|
{
|
|
|
|
vars->tbl = rb_hash_new();
|
|
|
|
RHASH(vars->tbl)->ntbl = st_init_numtable(); /* compare_by_identity */
|
|
|
|
RBASIC_CLEAR_CLASS(vars->tbl);
|
|
|
|
}
|
|
|
|
|
|
|
|
static VALUE
|
|
|
|
local_var_list_finish(struct local_var_list *vars)
|
|
|
|
{
|
|
|
|
/* TODO: not to depend on the order of st_table */
|
|
|
|
VALUE ary = rb_hash_keys(vars->tbl);
|
|
|
|
rb_hash_clear(vars->tbl);
|
|
|
|
vars->tbl = 0;
|
|
|
|
return ary;
|
|
|
|
}
|
|
|
|
|
2014-05-07 00:26:51 -04:00
|
|
|
static int
|
|
|
|
local_var_list_update(st_data_t *key, st_data_t *value, st_data_t arg, int existing)
|
|
|
|
{
|
|
|
|
if (existing) return ST_STOP;
|
|
|
|
*value = (st_data_t)Qtrue; /* INT2FIX(arg) */
|
|
|
|
return ST_CONTINUE;
|
|
|
|
}
|
|
|
|
|
2014-05-07 00:26:49 -04:00
|
|
|
static void
|
|
|
|
local_var_list_add(const struct local_var_list *vars, ID lid)
|
|
|
|
{
|
|
|
|
if (lid && rb_id2str(lid)) {
|
|
|
|
/* should skip temporary variable */
|
2014-05-07 00:26:51 -04:00
|
|
|
st_table *tbl = RHASH_TBL_RAW(vars->tbl);
|
|
|
|
st_data_t idx = 0; /* tbl->num_entries */
|
|
|
|
st_update(tbl, ID2SYM(lid), local_var_list_update, idx);
|
2014-05-07 00:26:49 -04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2009-01-18 19:13:44 -05:00
|
|
|
/*
|
|
|
|
* call-seq:
|
2010-05-17 17:07:33 -04:00
|
|
|
* local_variables -> array
|
2009-01-18 19:13:44 -05:00
|
|
|
*
|
|
|
|
* Returns the names of the current local variables.
|
|
|
|
*
|
|
|
|
* fred = 1
|
|
|
|
* for i in 1..10
|
|
|
|
* # ...
|
|
|
|
* end
|
2009-06-12 18:08:46 -04:00
|
|
|
* local_variables #=> [:fred, :i]
|
2009-01-18 19:13:44 -05:00
|
|
|
*/
|
|
|
|
|
|
|
|
static VALUE
|
|
|
|
rb_f_local_variables(void)
|
|
|
|
{
|
2014-05-07 00:26:49 -04:00
|
|
|
struct local_var_list vars;
|
2009-01-18 19:13:44 -05:00
|
|
|
rb_thread_t *th = GET_THREAD();
|
|
|
|
rb_control_frame_t *cfp =
|
|
|
|
vm_get_ruby_level_caller_cfp(th, RUBY_VM_PREVIOUS_CONTROL_FRAME(th->cfp));
|
2015-07-24 17:44:14 -04:00
|
|
|
unsigned int i;
|
2009-01-18 19:13:44 -05:00
|
|
|
|
2014-07-01 13:57:37 -04:00
|
|
|
local_var_list_init(&vars);
|
2009-01-18 19:13:44 -05:00
|
|
|
while (cfp) {
|
|
|
|
if (cfp->iseq) {
|
2015-07-21 18:52:59 -04:00
|
|
|
for (i = 0; i < cfp->iseq->body->local_table_size; i++) {
|
|
|
|
local_var_list_add(&vars, cfp->iseq->body->local_table[i]);
|
2009-01-18 19:13:44 -05:00
|
|
|
}
|
|
|
|
}
|
2012-06-10 23:14:59 -04:00
|
|
|
if (!VM_EP_LEP_P(cfp->ep)) {
|
2009-01-18 19:13:44 -05:00
|
|
|
/* block */
|
2012-06-10 23:14:59 -04:00
|
|
|
VALUE *ep = VM_CF_PREV_EP(cfp);
|
2009-01-18 19:13:44 -05:00
|
|
|
|
2014-05-07 00:26:49 -04:00
|
|
|
if (vm_collect_local_variables_in_heap(th, ep, &vars)) {
|
2009-01-18 19:13:44 -05:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
else {
|
2012-06-10 23:14:59 -04:00
|
|
|
while (cfp->ep != ep) {
|
2009-01-18 19:13:44 -05:00
|
|
|
cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
2014-07-01 13:57:37 -04:00
|
|
|
return local_var_list_finish(&vars);
|
2009-01-18 19:13:44 -05:00
|
|
|
}
|
|
|
|
|
2009-01-18 22:03:09 -05:00
|
|
|
/*
|
|
|
|
* call-seq:
|
2010-05-17 17:07:33 -04:00
|
|
|
* block_given? -> true or false
|
|
|
|
* iterator? -> true or false
|
2009-01-18 22:03:09 -05:00
|
|
|
*
|
|
|
|
* Returns <code>true</code> if <code>yield</code> would execute a
|
|
|
|
* block in the current context. The <code>iterator?</code> form
|
|
|
|
* is mildly deprecated.
|
|
|
|
*
|
|
|
|
* def try
|
|
|
|
* if block_given?
|
|
|
|
* yield
|
|
|
|
* else
|
|
|
|
* "no block"
|
|
|
|
* end
|
|
|
|
* end
|
|
|
|
* try #=> "no block"
|
|
|
|
* try { "hello" } #=> "hello"
|
|
|
|
* try do "hello" end #=> "hello"
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
|
|
VALUE
|
|
|
|
rb_f_block_given_p(void)
|
|
|
|
{
|
|
|
|
rb_thread_t *th = GET_THREAD();
|
|
|
|
rb_control_frame_t *cfp = th->cfp;
|
|
|
|
cfp = vm_get_ruby_level_caller_cfp(th, RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp));
|
|
|
|
|
2012-06-10 23:14:59 -04:00
|
|
|
if (cfp != 0 && VM_CF_BLOCK_PTR(cfp)) {
|
2009-01-18 22:03:09 -05:00
|
|
|
return Qtrue;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
return Qfalse;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2010-03-16 13:40:00 -04:00
|
|
|
VALUE
|
|
|
|
rb_current_realfilepath(void)
|
|
|
|
{
|
|
|
|
rb_thread_t *th = GET_THREAD();
|
|
|
|
rb_control_frame_t *cfp = th->cfp;
|
|
|
|
cfp = vm_get_ruby_level_caller_cfp(th, RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp));
|
2015-07-21 18:52:59 -04:00
|
|
|
if (cfp != 0) return cfp->iseq->body->location.absolute_path;
|
2010-03-16 13:40:00 -04:00
|
|
|
return Qnil;
|
|
|
|
}
|
|
|
|
|
2008-05-24 21:12:12 -04:00
|
|
|
void
|
|
|
|
Init_vm_eval(void)
|
|
|
|
{
|
2008-09-25 14:04:34 -04:00
|
|
|
rb_define_global_function("eval", rb_f_eval, -1);
|
2009-01-18 19:13:44 -05:00
|
|
|
rb_define_global_function("local_variables", rb_f_local_variables, 0);
|
2009-01-18 22:03:09 -05:00
|
|
|
rb_define_global_function("iterator?", rb_f_block_given_p, 0);
|
|
|
|
rb_define_global_function("block_given?", rb_f_block_given_p, 0);
|
2009-01-18 19:13:44 -05:00
|
|
|
|
2008-05-24 21:12:12 -04:00
|
|
|
rb_define_global_function("catch", rb_f_catch, -1);
|
|
|
|
rb_define_global_function("throw", rb_f_throw, -1);
|
|
|
|
|
|
|
|
rb_define_global_function("loop", rb_f_loop, 0);
|
|
|
|
|
|
|
|
rb_define_method(rb_cBasicObject, "instance_eval", rb_obj_instance_eval, -1);
|
|
|
|
rb_define_method(rb_cBasicObject, "instance_exec", rb_obj_instance_exec, -1);
|
|
|
|
rb_define_private_method(rb_cBasicObject, "method_missing", rb_method_missing, -1);
|
|
|
|
|
2009-07-15 10:59:41 -04:00
|
|
|
#if 1
|
|
|
|
rb_add_method(rb_cBasicObject, rb_intern("__send__"),
|
2015-06-02 21:39:16 -04:00
|
|
|
VM_METHOD_TYPE_OPTIMIZED, (void *)OPTIMIZED_METHOD_TYPE_SEND, METHOD_VISI_PUBLIC);
|
2009-07-15 10:59:41 -04:00
|
|
|
rb_add_method(rb_mKernel, rb_intern("send"),
|
2015-06-02 21:39:16 -04:00
|
|
|
VM_METHOD_TYPE_OPTIMIZED, (void *)OPTIMIZED_METHOD_TYPE_SEND, METHOD_VISI_PUBLIC);
|
2009-07-15 10:59:41 -04:00
|
|
|
#else
|
2008-05-24 21:12:12 -04:00
|
|
|
rb_define_method(rb_cBasicObject, "__send__", rb_f_send, -1);
|
|
|
|
rb_define_method(rb_mKernel, "send", rb_f_send, -1);
|
2009-07-15 10:59:41 -04:00
|
|
|
#endif
|
2008-05-24 21:12:12 -04:00
|
|
|
rb_define_method(rb_mKernel, "public_send", rb_f_public_send, -1);
|
|
|
|
|
|
|
|
rb_define_method(rb_cModule, "module_exec", rb_mod_module_exec, -1);
|
|
|
|
rb_define_method(rb_cModule, "class_exec", rb_mod_module_exec, -1);
|
2008-09-25 14:04:34 -04:00
|
|
|
rb_define_method(rb_cModule, "module_eval", rb_mod_module_eval, -1);
|
|
|
|
rb_define_method(rb_cModule, "class_eval", rb_mod_module_eval, -1);
|
2014-11-15 02:28:08 -05:00
|
|
|
|
|
|
|
rb_eUncaughtThrow = rb_define_class("UncaughtThrowError", rb_eArgError);
|
|
|
|
rb_define_method(rb_eUncaughtThrow, "initialize", uncaught_throw_init, -1);
|
|
|
|
rb_define_method(rb_eUncaughtThrow, "tag", uncaught_throw_tag, 0);
|
|
|
|
rb_define_method(rb_eUncaughtThrow, "value", uncaught_throw_value, 0);
|
|
|
|
rb_define_method(rb_eUncaughtThrow, "to_s", uncaught_throw_to_s, 0);
|
2014-11-16 03:33:49 -05:00
|
|
|
|
|
|
|
id_tag = rb_intern_const("tag");
|
|
|
|
id_value = rb_intern_const("value");
|
2008-05-24 21:12:12 -04:00
|
|
|
}
|