1
0
Fork 0
mirror of https://github.com/ruby/ruby.git synced 2022-11-09 12:17:21 -05:00

s/an Bignum/a Bignum/ [ci skip]

This commit is contained in:
Nobuyoshi Nakada 2021-12-28 18:20:44 +09:00
parent 40e7aefeba
commit 0a47896d20
Notes: git 2021-12-28 18:35:22 +09:00
3 changed files with 5 additions and 5 deletions

View file

@ -56,13 +56,13 @@ describe "Integer#<< (with n << m)" do
(3 << -bignum_value).should == 0
end
it "returns an Bignum == fixnum_max * 2 when fixnum_max << 1 and n > 0" do
it "returns a Bignum == fixnum_max * 2 when fixnum_max << 1 and n > 0" do
result = fixnum_max << 1
result.should be_an_instance_of(Integer)
result.should == fixnum_max * 2
end
it "returns an Bignum == fixnum_min * 2 when fixnum_min << 1 and n < 0" do
it "returns a Bignum == fixnum_min * 2 when fixnum_min << 1 and n < 0" do
result = fixnum_min << 1
result.should be_an_instance_of(Integer)
result.should == fixnum_min * 2

View file

@ -56,13 +56,13 @@ describe "Integer#>> (with n >> m)" do
(3 >> bignum_value).should == 0
end
it "returns an Bignum == fixnum_max * 2 when fixnum_max >> -1 and n > 0" do
it "returns a Bignum == fixnum_max * 2 when fixnum_max >> -1 and n > 0" do
result = fixnum_max >> -1
result.should be_an_instance_of(Integer)
result.should == fixnum_max * 2
end
it "returns an Bignum == fixnum_min * 2 when fixnum_min >> -1 and n < 0" do
it "returns a Bignum == fixnum_min * 2 when fixnum_min >> -1 and n < 0" do
result = fixnum_min >> -1
result.should be_an_instance_of(Integer)
result.should == fixnum_min * 2

View file

@ -53,7 +53,7 @@ describe "A number literal" do
eval('0.0174532925199432957r').should == Rational(174532925199432957, 10000000000000000000)
end
it "can be an bignum literal with trailing 'r' to represent a Rational" do
it "can be a bignum literal with trailing 'r' to represent a Rational" do
eval('1111111111111111111111111111111111111111111111r').should == Rational(1111111111111111111111111111111111111111111111, 1)
eval('-1111111111111111111111111111111111111111111111r').should == Rational(-1111111111111111111111111111111111111111111111, 1)
end