1
0
Fork 0
mirror of https://github.com/ruby/ruby.git synced 2022-11-09 12:17:21 -05:00

* benchmark/driver.rb: fix notations.

* benchmark/bm_loop_whileloop.rb: ditto.
* benchmark/bm_loop_whileloop2.rb: ditto.
* benchmark/bm_app_uri.rb: added.
* benchmark/bm_vm1_ivar_set.rb: ditto.
* benchmark/bm_so_binary_trees.rb: added from Computer Language
  Benchmarks Game (http://shootout.alioth.debian.org/).
* benchmark/bm_so_fannkuch.rb: ditto.
* benchmark/bm_so_mandelbrot.rb: ditto.
* benchmark/bm_so_meteor_contest.rb: ditto.
* benchmark/bm_so_nbody.rb: ditto.
* benchmark/bm_so_nsieve.rb: ditto.
* benchmark/bm_so_nsieve_bits.rb: ditto.
* benchmark/bm_so_partial_sums.rb: ditto.
* benchmark/bm_so_pidigits.rb: ditto.
* benchmark/bm_so_spectralnorm.rb: ditto.



git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@13548 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
This commit is contained in:
ko1 2007-09-28 10:18:53 +00:00
parent 335fe1ee7b
commit 30b2cb380e
16 changed files with 1173 additions and 4 deletions

View file

@ -1,3 +1,36 @@
Fri Sep 28 19:14:51 2007 Koichi Sasada <ko1@atdot.net>
* benchmark/driver.rb: fix notations.
* benchmark/bm_loop_whileloop.rb: ditto.
* benchmark/bm_loop_whileloop2.rb: ditto.
* benchmark/bm_app_uri.rb: added.
* benchmark/bm_vm1_ivar_set.rb: ditto.
* benchmark/bm_so_binary_trees.rb: added from Computer Language
Benchmarks Game (http://shootout.alioth.debian.org/).
* benchmark/bm_so_fannkuch.rb: ditto.
* benchmark/bm_so_mandelbrot.rb: ditto.
* benchmark/bm_so_meteor_contest.rb: ditto.
* benchmark/bm_so_nbody.rb: ditto.
* benchmark/bm_so_nsieve.rb: ditto.
* benchmark/bm_so_nsieve_bits.rb: ditto.
* benchmark/bm_so_partial_sums.rb: ditto.
* benchmark/bm_so_pidigits.rb: ditto.
* benchmark/bm_so_spectralnorm.rb: ditto.
Fri Sep 28 16:22:52 2007 Yukihiro Matsumoto <matz@ruby-lang.org>
* vm_core.h (rb_vm_struct): fix typo: bufferd -> buffered.

8
benchmark/bm_app_uri.rb Normal file
View file

@ -0,0 +1,8 @@
require 'uri'
100_000.times{
uri = URI.parse('http://www.ruby-lang.org')
uri.scheme
uri.host
uri.port
}

View file

@ -1,4 +1,4 @@
i=0
while i<30000000 # benchmark loop 1
while i<30_000_000 # benchmark loop 1
i+=1
end

View file

@ -1,5 +1,4 @@
i=0
while i<6000000 # benchmark loop 2
while i< 6_000_000 # benchmark loop 2
i+=1
end

View file

@ -0,0 +1,57 @@
# The Computer Language Shootout Benchmarks
# http://shootout.alioth.debian.org
#
# contributed by Jesse Millikan
# disable output
def STDOUT.write_ *args
end
def item_check(tree)
if tree[0] == nil
tree[1]
else
tree[1] + item_check(tree[0]) - item_check(tree[2])
end
end
def bottom_up_tree(item, depth)
if depth > 0
item_item = 2 * item
depth -= 1
[bottom_up_tree(item_item - 1, depth), item, bottom_up_tree(item_item, depth)]
else
[nil, item, nil]
end
end
max_depth = 12 # 16 # ARGV[0].to_i
min_depth = 4
max_depth = min_depth + 2 if min_depth + 2 > max_depth
stretch_depth = max_depth + 1
stretch_tree = bottom_up_tree(0, stretch_depth)
puts "stretch tree of depth #{stretch_depth}\t check: #{item_check(stretch_tree)}"
stretch_tree = nil
long_lived_tree = bottom_up_tree(0, max_depth)
min_depth.step(max_depth + 1, 2) do |depth|
iterations = 2**(max_depth - depth + min_depth)
check = 0
for i in 1..iterations
temp_tree = bottom_up_tree(i, depth)
check += item_check(temp_tree)
temp_tree = bottom_up_tree(-i, depth)
check += item_check(temp_tree)
end
puts "#{iterations * 2}\t trees of depth #{depth}\t check: #{check}"
end
puts "long lived tree of depth #{max_depth}\t check: #{item_check(long_lived_tree)}"

View file

@ -0,0 +1,45 @@
# The Computer Language Shootout
# http://shootout.alioth.debian.org/
# Contributed by Sokolov Yura
# Modified by Ryan Williams
def fannkuch(n)
maxFlips, m, r, check = 0, n-1, n, 0
count = (1..n).to_a
perm = (1..n).to_a
while true
if check < 30
puts "#{perm}"
check += 1
end
while r != 1
count[r-1] = r
r -= 1
end
if perm[0] != 1 and perm[m] != n
perml = perm.clone #.dup
flips = 0
while (k = perml.first ) != 1
perml = perml.slice!(0, k).reverse + perml
flips += 1
end
maxFlips = flips if flips > maxFlips
end
while true
if r==n then return maxFlips end
perm.insert r,perm.shift
break if (count[r] -= 1) > 0
r += 1
end
end
end
def puts *args
end
N = 10 # (ARGV[0] || 1).to_i
puts "Pfannkuchen(#{N}) = #{fannkuch(N)}"

View file

@ -0,0 +1,57 @@
# The Computer Language Benchmarks Game
# http://shootout.alioth.debian.org/
#
# contributed by Karl von Laudermann
# modified by Jeremy Echols
size = 600 # ARGV[0].to_i
puts "P4\n#{size} #{size}"
ITER = 49 # Iterations - 1 for easy for..in looping
LIMIT_SQUARED = 4.0 # Presquared limit
byte_acc = 0
bit_num = 0
count_size = size - 1 # Precomputed size for easy for..in looping
# For..in loops are faster than .upto, .downto, .times, etc.
for y in 0..count_size
for x in 0..count_size
zr = 0.0
zi = 0.0
cr = (2.0*x/size)-1.5
ci = (2.0*y/size)-1.0
escape = false
# To make use of the for..in code, we use a dummy variable,
# like one would in C
for dummy in 0..ITER
tr = zr*zr - zi*zi + cr
ti = 2*zr*zi + ci
zr, zi = tr, ti
if (zr*zr+zi*zi) > LIMIT_SQUARED
escape = true
break
end
end
byte_acc = (byte_acc << 1) | (escape ? 0b0 : 0b1)
bit_num += 1
# Code is very similar for these cases, but using separate blocks
# ensures we skip the shifting when it's unnecessary, which is most cases.
if (bit_num == 8)
print byte_acc.chr
byte_acc = 0
bit_num = 0
elsif (x == count_size)
byte_acc <<= (8 - bit_num)
print byte_acc.chr
byte_acc = 0
bit_num = 0
end
end
end

View file

@ -0,0 +1,564 @@
#!/usr/bin/env ruby
#
# The Computer Language Shootout
# http://shootout.alioth.debian.org
# contributed by Kevin Barnes (Ruby novice)
# PROGRAM: the main body is at the bottom.
# 1) read about the problem here: http://www-128.ibm.com/developerworks/java/library/j-javaopt/
# 2) see how I represent a board as a bitmask by reading the blank_board comments
# 3) read as your mental paths take you
def print *args
end
# class to represent all information about a particular rotation of a particular piece
class Rotation
# an array (by location) containing a bit mask for how the piece maps at the given location.
# if the rotation is illegal at that location the mask will contain false
attr_reader :start_masks
# maps a direction to a relative location. these differ depending on whether it is an even or
# odd row being mapped from
@@rotation_even_adder = { :west => -1, :east => 1, :nw => -7, :ne => -6, :sw => 5, :se => 6 }
@@rotation_odd_adder = { :west => -1, :east => 1, :nw => -6, :ne => -5, :sw => 6, :se => 7 }
def initialize( directions )
@even_offsets, @odd_offsets = normalize_offsets( get_values( directions ))
@even_mask = mask_for_offsets( @even_offsets)
@odd_mask = mask_for_offsets( @odd_offsets)
@start_masks = Array.new(60)
# create the rotational masks by placing the base mask at the location and seeing if
# 1) it overlaps the boundries and 2) it produces a prunable board. if either of these
# is true the piece cannot be placed
0.upto(59) do | offset |
mask = is_even(offset) ? (@even_mask << offset) : (@odd_mask << offset)
if (blank_board & mask == 0 && !prunable(blank_board | mask, 0, true)) then
imask = compute_required( mask, offset)
@start_masks[offset] = [ mask, imask, imask | mask ]
else
@start_masks[offset] = false
end
end
end
def compute_required( mask, offset )
board = blank_board
0.upto(offset) { | i | board |= 1 << i }
board |= mask
return 0 if (!prunable(board | mask, offset))
board = flood_fill(board,58)
count = 0
imask = 0
0.upto(59) do | i |
if (board[i] == 0) then
imask |= (1 << i)
count += 1
end
end
(count > 0 && count < 5) ? imask : 0
end
def flood_fill( board, location)
return board if (board[location] == 1)
board |= 1 << location
row, col = location.divmod(6)
board = flood_fill( board, location - 1) if (col > 0)
board = flood_fill( board, location + 1) if (col < 4)
if (row % 2 == 0) then
board = flood_fill( board, location - 7) if (col > 0 && row > 0)
board = flood_fill( board, location - 6) if (row > 0)
board = flood_fill( board, location + 6) if (row < 9)
board = flood_fill( board, location + 5) if (col > 0 && row < 9)
else
board = flood_fill( board, location - 5) if (col < 4 && row > 0)
board = flood_fill( board, location - 6) if (row > 0)
board = flood_fill( board, location + 6) if (row < 9)
board = flood_fill( board, location + 7) if (col < 4 && row < 9)
end
board
end
# given a location, produces a list of relative locations covered by the piece at this rotation
def offsets( location)
if is_even( location) then
@even_offsets.collect { | value | value + location }
else
@odd_offsets.collect { | value | value + location }
end
end
# returns a set of offsets relative to the top-left most piece of the rotation (by even or odd rows)
# this is hard to explain. imagine we have this partial board:
# 0 0 0 0 0 x [positions 0-5]
# 0 0 1 1 0 x [positions 6-11]
# 0 0 1 0 0 x [positions 12-17]
# 0 1 0 0 0 x [positions 18-23]
# 0 1 0 0 0 x [positions 24-29]
# 0 0 0 0 0 x [positions 30-35]
# ...
# The top-left of the piece is at position 8, the
# board would be passed as a set of positions (values array) containing [8,9,14,19,25] not necessarily in that
# sorted order. Since that array starts on an odd row, the offsets for an odd row are: [0,1,6,11,17] obtained
# by subtracting 8 from everything. Now imagine the piece shifted up and to the right so it's on an even row:
# 0 0 0 1 1 x [positions 0-5]
# 0 0 1 0 0 x [positions 6-11]
# 0 0 1 0 0 x [positions 12-17]
# 0 1 0 0 0 x [positions 18-23]
# 0 0 0 0 0 x [positions 24-29]
# 0 0 0 0 0 x [positions 30-35]
# ...
# Now the positions are [3,4,8,14,19] which after subtracting the lowest value (3) gives [0,1,5,11,16] thus, the
# offsets for this particular piece are (in even, odd order) [0,1,5,11,16],[0,1,6,11,17] which is what
# this function would return
def normalize_offsets( values)
min = values.min
even_min = is_even(min)
other_min = even_min ? min + 6 : min + 7
other_values = values.collect do | value |
if is_even(value) then
value + 6 - other_min
else
value + 7 - other_min
end
end
values.collect! { | value | value - min }
if even_min then
[values, other_values]
else
[other_values, values]
end
end
# produce a bitmask representation of an array of offset locations
def mask_for_offsets( offsets )
mask = 0
offsets.each { | value | mask = mask + ( 1 << value ) }
mask
end
# finds a "safe" position that a position as described by a list of directions can be placed
# without falling off any edge of the board. the values returned a location to place the first piece
# at so it will fit after making the described moves
def start_adjust( directions )
south = east = 0;
directions.each do | direction |
east += 1 if ( direction == :sw || direction == :nw || direction == :west )
south += 1 if ( direction == :nw || direction == :ne )
end
south * 6 + east
end
# given a set of directions places the piece (as defined by a set of directions) on the board at
# a location that will not take it off the edge
def get_values ( directions )
start = start_adjust(directions)
values = [ start ]
directions.each do | direction |
if (start % 12 >= 6) then
start += @@rotation_odd_adder[direction]
else
start += @@rotation_even_adder[direction]
end
values += [ start ]
end
# some moves take you back to an existing location, we'll strip duplicates
values.uniq
end
end
# describes a piece and caches information about its rotations to as to be efficient for iteration
# ATTRIBUTES:
# rotations -- all the rotations of the piece
# type -- a numeic "name" of the piece
# masks -- an array by location of all legal rotational masks (a n inner array) for that location
# placed -- the mask that this piece was last placed at (not a location, but the actual mask used)
class Piece
attr_reader :rotations, :type, :masks
attr_accessor :placed
# transform hashes that change one direction into another when you either flip or rotate a set of directions
@@flip_converter = { :west => :west, :east => :east, :nw => :sw, :ne => :se, :sw => :nw, :se => :ne }
@@rotate_converter = { :west => :nw, :east => :se, :nw => :ne, :ne => :east, :sw => :west, :se => :sw }
def initialize( directions, type )
@type = type
@rotations = Array.new();
@map = {}
generate_rotations( directions )
directions.collect! { | value | @@flip_converter[value] }
generate_rotations( directions )
# creates the masks AND a map that returns [location, rotation] for any given mask
# this is used when a board is found and we want to draw it, otherwise the map is unused
@masks = Array.new();
0.upto(59) do | i |
even = true
@masks[i] = @rotations.collect do | rotation |
mask = rotation.start_masks[i]
@map[mask[0]] = [ i, rotation ] if (mask)
mask || nil
end
@masks[i].compact!
end
end
# rotates a set of directions through all six angles and adds a Rotation to the list for each one
def generate_rotations( directions )
6.times do
rotations.push( Rotation.new(directions))
directions.collect! { | value | @@rotate_converter[value] }
end
end
# given a board string, adds this piece to the board at whatever location/rotation
# important: the outbound board string is 5 wide, the normal location notation is six wide (padded)
def fill_string( board_string)
location, rotation = @map[@placed]
rotation.offsets(location).each do | offset |
row, col = offset.divmod(6)
board_string[ row*5 + col, 1 ] = @type.to_s
end
end
end
# a blank bit board having this form:
#
# 0 0 0 0 0 1
# 0 0 0 0 0 1
# 0 0 0 0 0 1
# 0 0 0 0 0 1
# 0 0 0 0 0 1
# 0 0 0 0 0 1
# 0 0 0 0 0 1
# 0 0 0 0 0 1
# 0 0 0 0 0 1
# 0 0 0 0 0 1
# 1 1 1 1 1 1
#
# where left lest significant bit is the top left and the most significant is the lower right
# the actual board only consists of the 0 places, the 1 places are blockers to keep things from running
# off the edges or bottom
def blank_board
0b111111100000100000100000100000100000100000100000100000100000100000
end
def full_board
0b111111111111111111111111111111111111111111111111111111111111111111
end
# determines if a location (bit position) is in an even row
def is_even( location)
(location % 12) < 6
end
# support function that create three utility maps:
# $converter -- for each row an array that maps a five bit row (via array mapping)
# to the a a five bit representation of the bits below it
# $bit_count -- maps a five bit row (via array mapping) to the number of 1s in the row
# @@new_regions -- maps a five bit row (via array mapping) to an array of "region" arrays
# a region array has three values the first is a mask of bits in the region,
# the second is the count of those bits and the third is identical to the first
# examples:
# 0b10010 => [ 0b01100, 2, 0b01100 ], [ 0b00001, 1, 0b00001]
# 0b01010 => [ 0b10000, 1, 0b10000 ], [ 0b00100, 1, 0b00100 ], [ 0b00001, 1, 0b00001]
# 0b10001 => [ 0b01110, 3, 0b01110 ]
def create_collector_support
odd_map = [0b11, 0b110, 0b1100, 0b11000, 0b10000]
even_map = [0b1, 0b11, 0b110, 0b1100, 0b11000]
all_odds = Array.new(0b100000)
all_evens = Array.new(0b100000)
bit_counts = Array.new(0b100000)
new_regions = Array.new(0b100000)
0.upto(0b11111) do | i |
bit_count = odd = even = 0
0.upto(4) do | bit |
if (i[bit] == 1) then
bit_count += 1
odd |= odd_map[bit]
even |= even_map[bit]
end
end
all_odds[i] = odd
all_evens[i] = even
bit_counts[i] = bit_count
new_regions[i] = create_regions( i)
end
$converter = []
10.times { | row | $converter.push((row % 2 == 0) ? all_evens : all_odds) }
$bit_counts = bit_counts
$regions = new_regions.collect { | set | set.collect { | value | [ value, bit_counts[value], value] } }
end
# determines if a board is punable, meaning that there is no possibility that it
# can be filled up with pieces. A board is prunable if there is a grouping of unfilled spaces
# that are not a multiple of five. The following board is an example of a prunable board:
# 0 0 1 0 0
# 0 1 0 0 0
# 1 1 0 0 0
# 0 1 0 0 0
# 0 0 0 0 0
# ...
#
# This board is prunable because the top left corner is only 3 bits in area, no piece will ever fit it
# parameters:
# board -- an initial bit board (6 bit padded rows, see blank_board for format)
# location -- starting location, everything above and to the left is already full
# slotting -- set to true only when testing initial pieces, when filling normally
# additional assumptions are possible
#
# Algorithm:
# The algorithm starts at the top row (as determined by location) and iterates a row at a time
# maintainng counts of active open areas (kept in the collector array) each collector contains
# three values at the start of an iteration:
# 0: mask of bits that would be adjacent to the collector in this row
# 1: the number of bits collected so far
# 2: a scratch space starting as zero, but used during the computation to represent
# the empty bits in the new row that are adjacent (position 0)
# The exact procedure is described in-code
def prunable( board, location, slotting = false)
collectors = []
# loop accross the rows
(location / 6).to_i.upto(9) do | row_on |
# obtain a set of regions representing the bits of the curent row.
regions = $regions[(board >> (row_on * 6)) & 0b11111]
converter = $converter[row_on]
# track the number of collectors at the start of the cycle so that
# we don't compute against newly created collectors, only existing collectors
initial_collector_count = collectors.length
# loop against the regions. For each region of the row
# we will see if it connects to one or more existing collectors.
# if it connects to 1 collector, the bits from the region are added to the
# bits of the collector and the mask is placed in collector[2]
# If the region overlaps more than one collector then all the collectors
# it overlaps with are merged into the first one (the others are set to nil in the array)
# if NO collectors are found then the region is copied as a new collector
regions.each do | region |
collector_found = nil
region_mask = region[2]
initial_collector_count.times do | collector_num |
collector = collectors[collector_num]
if (collector) then
collector_mask = collector[0]
if (collector_mask & region_mask != 0) then
if (collector_found) then
collector_found[0] |= collector_mask
collector_found[1] += collector[1]
collector_found[2] |= collector[2]
collectors[collector_num] = nil
else
collector_found = collector
collector[1] += region[1]
collector[2] |= region_mask
end
end
end
end
if (collector_found == nil) then
collectors.push(Array.new(region))
end
end
# check the existing collectors, if any collector overlapped no bits in the region its [2] value will
# be zero. The size of any such reaason is tested if it is not a muliple of five true is returned since
# the board is prunable. if it is a multiple of five it is removed.
# Collector that are still active have a new adjacent value [0] set based n the matched bits
# and have [2] cleared out for the next cycle.
collectors.length.times do | collector_num |
collector = collectors[collector_num]
if (collector) then
if (collector[2] == 0) then
return true if (collector[1] % 5 != 0)
collectors[collector_num] = nil
else
# if a collector matches all bits in the row then we can return unprunable early for the
# follwing reasons:
# 1) there can be no more unavailable bits bince we fill from the top left downward
# 2) all previous regions have been closed or joined so only this region can fail
# 3) this region must be good since there can never be only 1 region that is nuot
# a multiple of five
# this rule only applies when filling normally, so we ignore the rule if we are "slotting"
# in pieces to see what configurations work for them (the only other time this algorithm is used).
return false if (collector[2] == 0b11111 && !slotting)
collector[0] = converter[collector[2]]
collector[2] = 0
end
end
end
# get rid of all the empty converters for the next round
collectors.compact!
end
return false if (collectors.length <= 1) # 1 collector or less and the region is fine
collectors.any? { | collector | (collector[1] % 5) != 0 } # more than 1 and we test them all for bad size
end
# creates a region given a row mask. see prunable for what a "region" is
def create_regions( value )
regions = []
cur_region = 0
5.times do | bit |
if (value[bit] == 0) then
cur_region |= 1 << bit
else
if (cur_region != 0 ) then
regions.push( cur_region)
cur_region = 0;
end
end
end
regions.push(cur_region) if (cur_region != 0)
regions
end
# find up to the counted number of solutions (or all solutions) and prints the final result
def find_all
find_top( 1)
find_top( 0)
print_results
end
# show the board
def print_results
print "#{@boards_found} solutions found\n\n"
print_full_board( @min_board)
print "\n"
print_full_board( @max_board)
print "\n"
end
# finds solutions. This special version of the main function is only used for the top level
# the reason for it is basically to force a particular ordering on how the rotations are tested for
# the first piece. It is called twice, first looking for placements of the odd rotations and then
# looking for placements of the even locations.
#
# WHY?
# Since any found solution has an inverse we want to maximize finding solutions that are not already found
# as an inverse. The inverse will ALWAYS be 3 one of the piece configurations that is exactly 3 rotations away
# (an odd number). Checking even vs odd then produces a higher probability of finding more pieces earlier
# in the cycle. We still need to keep checking all the permutations, but our probability of finding one will
# diminsh over time. Since we are TOLD how many to search for this lets us exit before checking all pieces
# this bennifit is very great when seeking small numbers of solutions and is 0 when looking for more than the
# maximum number
def find_top( rotation_skip)
board = blank_board
(@pieces.length-1).times do
piece = @pieces.shift
piece.masks[0].each do | mask, imask, cmask |
if ((rotation_skip += 1) % 2 == 0) then
piece.placed = mask
find( 1, 1, board | mask)
end
end
@pieces.push(piece)
end
piece = @pieces.shift
@pieces.push(piece)
end
# the normail find routine, iterates through the available pieces, checks all rotations at the current location
# and adds any boards found. depth is acheived via recursion. the overall approach is described
# here: http://www-128.ibm.com/developerworks/java/library/j-javaopt/
# parameters:
# start_location -- where to start looking for place for the next piece at
# placed -- number of pieces placed
# board -- current state of the board
#
# see in-code comments
def find( start_location, placed, board)
# find the next location to place a piece by looking for an empty bit
while board[start_location] == 1
start_location += 1
end
@pieces.length.times do
piece = @pieces.shift
piece.masks[start_location].each do | mask, imask, cmask |
if ( board & cmask == imask) then
piece.placed = mask
if (placed == 9) then
add_board
else
find( start_location + 1, placed + 1, board | mask)
end
end
end
@pieces.push(piece)
end
end
# print the board
def print_full_board( board_string)
10.times do | row |
print " " if (row % 2 == 1)
5.times do | col |
print "#{board_string[row*5 + col,1]} "
end
print "\n"
end
end
# when a board is found we "draw it" into a string and then flip that string, adding both to
# the list (hash) of solutions if they are unique.
def add_board
board_string = "99999999999999999999999999999999999999999999999999"
@all_pieces.each { | piece | piece.fill_string( board_string ) }
save( board_string)
save( board_string.reverse)
end
# adds a board string to the list (if new) and updates the current best/worst board
def save( board_string)
if (@all_boards[board_string] == nil) then
@min_board = board_string if (board_string < @min_board)
@max_board = board_string if (board_string > @max_board)
@all_boards.store(board_string,true)
@boards_found += 1
# the exit motif is a time saver. Ideally the function should return, but those tests
# take noticable time (performance).
if (@boards_found == @stop_count) then
print_results
exit(0)
end
end
end
##
## MAIN BODY :)
##
create_collector_support
@pieces = [
Piece.new( [ :nw, :ne, :east, :east ], 2),
Piece.new( [ :ne, :se, :east, :ne ], 7),
Piece.new( [ :ne, :east, :ne, :nw ], 1),
Piece.new( [ :east, :sw, :sw, :se ], 6),
Piece.new( [ :east, :ne, :se, :ne ], 5),
Piece.new( [ :east, :east, :east, :se ], 0),
Piece.new( [ :ne, :nw, :se, :east, :se ], 4),
Piece.new( [ :se, :se, :se, :west ], 9),
Piece.new( [ :se, :se, :east, :se ], 8),
Piece.new( [ :east, :east, :sw, :se ], 3)
];
@all_pieces = Array.new( @pieces)
@min_board = "99999999999999999999999999999999999999999999999999"
@max_board = "00000000000000000000000000000000000000000000000000"
@stop_count = ARGV[0].to_i || 2089
@all_boards = {}
@boards_found = 0
find_all ######## DO IT!!!

148
benchmark/bm_so_nbody.rb Normal file
View file

@ -0,0 +1,148 @@
# The Computer Language Shootout
# http://shootout.alioth.debian.org
#
# Optimized for Ruby by Jesse Millikan
# From version ported by Michael Neumann from the C gcc version,
# which was written by Christoph Bauer.
SOLAR_MASS = 4 * Math::PI**2
DAYS_PER_YEAR = 365.24
def _puts *args
end
class Planet
attr_accessor :x, :y, :z, :vx, :vy, :vz, :mass
def initialize(x, y, z, vx, vy, vz, mass)
@x, @y, @z = x, y, z
@vx, @vy, @vz = vx * DAYS_PER_YEAR, vy * DAYS_PER_YEAR, vz * DAYS_PER_YEAR
@mass = mass * SOLAR_MASS
end
def move_from_i(bodies, nbodies, dt, i)
while i < nbodies
b2 = bodies[i]
dx = @x - b2.x
dy = @y - b2.y
dz = @z - b2.z
distance = Math.sqrt(dx * dx + dy * dy + dz * dz)
mag = dt / (distance * distance * distance)
b_mass_mag, b2_mass_mag = @mass * mag, b2.mass * mag
@vx -= dx * b2_mass_mag
@vy -= dy * b2_mass_mag
@vz -= dz * b2_mass_mag
b2.vx += dx * b_mass_mag
b2.vy += dy * b_mass_mag
b2.vz += dz * b_mass_mag
i += 1
end
@x += dt * @vx
@y += dt * @vy
@z += dt * @vz
end
end
def energy(bodies)
e = 0.0
nbodies = bodies.size
for i in 0 ... nbodies
b = bodies[i]
e += 0.5 * b.mass * (b.vx * b.vx + b.vy * b.vy + b.vz * b.vz)
for j in (i + 1) ... nbodies
b2 = bodies[j]
dx = b.x - b2.x
dy = b.y - b2.y
dz = b.z - b2.z
distance = Math.sqrt(dx * dx + dy * dy + dz * dz)
e -= (b.mass * b2.mass) / distance
end
end
e
end
def offset_momentum(bodies)
px, py, pz = 0.0, 0.0, 0.0
for b in bodies
m = b.mass
px += b.vx * m
py += b.vy * m
pz += b.vz * m
end
b = bodies[0]
b.vx = - px / SOLAR_MASS
b.vy = - py / SOLAR_MASS
b.vz = - pz / SOLAR_MASS
end
BODIES = [
# sun
Planet.new(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0),
# jupiter
Planet.new(
4.84143144246472090e+00,
-1.16032004402742839e+00,
-1.03622044471123109e-01,
1.66007664274403694e-03,
7.69901118419740425e-03,
-6.90460016972063023e-05,
9.54791938424326609e-04),
# saturn
Planet.new(
8.34336671824457987e+00,
4.12479856412430479e+00,
-4.03523417114321381e-01,
-2.76742510726862411e-03,
4.99852801234917238e-03,
2.30417297573763929e-05,
2.85885980666130812e-04),
# uranus
Planet.new(
1.28943695621391310e+01,
-1.51111514016986312e+01,
-2.23307578892655734e-01,
2.96460137564761618e-03,
2.37847173959480950e-03,
-2.96589568540237556e-05,
4.36624404335156298e-05),
# neptune
Planet.new(
1.53796971148509165e+01,
-2.59193146099879641e+01,
1.79258772950371181e-01,
2.68067772490389322e-03,
1.62824170038242295e-03,
-9.51592254519715870e-05,
5.15138902046611451e-05)
]
init = 200_000 # ARGV[0]
n = Integer(init)
offset_momentum(BODIES)
puts "%.9f" % energy(BODIES)
nbodies = BODIES.size
dt = 0.01
n.times do
i = 0
while i < nbodies
b = BODIES[i]
b.move_from_i(BODIES, nbodies, dt, i + 1)
i += 1
end
end
puts "%.9f" % energy(BODIES)

35
benchmark/bm_so_nsieve.rb Normal file
View file

@ -0,0 +1,35 @@
# The Computer Language Shootout
# http://shootout.alioth.debian.org/
#
# contributed by Glenn Parker, March 2005
# modified by Evan Phoenix, Sept 2006
def sieve(m)
flags = Flags.dup[0,m]
count = 0
pmax = m - 1
p = 2
while p <= pmax
unless flags[p].zero?
count += 1
mult = p
while mult <= pmax
flags[mult] = 0
mult += p
end
end
p += 1
end
count
end
n = 9 # (ARGV[0] || 2).to_i
Flags = ("\x1" * ( 2 ** n * 10_000)).unpack("c*")
n.downto(n-2) do |exponent|
break if exponent < 0
m = (1 << exponent) * 10_000
# m = (2 ** exponent) * 10_000
count = sieve(m)
printf "Primes up to %8d %8d\n", m, count
end

View file

@ -0,0 +1,42 @@
#!/usr/bin/ruby
#
# The Great Computer Language Shootout
# http://shootout.alioth.debian.org/
#
# nsieve-bits in Ruby
# Contributed by Glenn Parker, March 2005
CharExponent = 3
BitsPerChar = 1 << CharExponent
LowMask = BitsPerChar - 1
def sieve(m)
items = "\xFF" * ((m / BitsPerChar) + 1)
masks = ""
BitsPerChar.times do |b|
masks << (1 << b).chr
end
count = 0
pmax = m - 1
2.step(pmax, 1) do |p|
if items[p >> CharExponent][p & LowMask] == 1
count += 1
p.step(pmax, p) do |mult|
a = mult >> CharExponent
b = mult & LowMask
items[a] -= masks[b] if items[a][b] != 0
end
end
end
count
end
n = 9 # (ARGV[0] || 2).to_i
n.step(n - 2, -1) do |exponent|
break if exponent < 0
m = 2 ** exponent * 10_000
count = sieve(m)
printf "Primes up to %8d %8d\n", m, count
end

View file

@ -0,0 +1,31 @@
n = 2_500_000 # (ARGV.shift || 1).to_i
alt = 1.0 ; s0 = s1 = s2 = s3 = s4 = s5 = s6 = s7 = s8 = 0.0
1.upto(n) do |d|
d = d.to_f ; d2 = d * d ; d3 = d2 * d ; ds = Math.sin(d) ; dc = Math.cos(d)
s0 += (2.0 / 3.0) ** (d - 1.0)
s1 += 1.0 / Math.sqrt(d)
s2 += 1.0 / (d * (d + 1.0))
s3 += 1.0 / (d3 * ds * ds)
s4 += 1.0 / (d3 * dc * dc)
s5 += 1.0 / d
s6 += 1.0 / d2
s7 += alt / d
s8 += alt / (2.0 * d - 1.0)
alt = -alt
end
if false
printf("%.9f\t(2/3)^k\n", s0)
printf("%.9f\tk^-0.5\n", s1)
printf("%.9f\t1/k(k+1)\n", s2)
printf("%.9f\tFlint Hills\n", s3)
printf("%.9f\tCookson Hills\n", s4)
printf("%.9f\tHarmonic\n", s5)
printf("%.9f\tRiemann Zeta\n", s6)
printf("%.9f\tAlternating Harmonic\n", s7)
printf("%.9f\tGregory\n", s8)
end

View file

@ -0,0 +1,92 @@
# The Great Computer Language Shootout
# http://shootout.alioth.debian.org/
#
# contributed by Gabriele Renzi
class PiDigitSpigot
def initialize()
@z = Transformation.new 1,0,0,1
@x = Transformation.new 0,0,0,0
@inverse = Transformation.new 0,0,0,0
end
def next!
@y = @z.extract(3)
if safe? @y
@z = produce(@y)
@y
else
@z = consume @x.next!()
next!()
end
end
def safe?(digit)
digit == @z.extract(4)
end
def produce(i)
@inverse.qrst(10,-10*i,0,1).compose(@z)
end
def consume(a)
@z.compose(a)
end
end
class Transformation
attr_reader :q, :r, :s, :t
def initialize (q, r, s, t)
@q,@r,@s,@t,@k = q,r,s,t,0
end
def next!()
@q = @k = @k + 1
@r = 4 * @k + 2
@s = 0
@t = 2 * @k + 1
self
end
def extract(j)
(@q * j + @r) / (@s * j + @t)
end
def compose(a)
self.class.new( @q * a.q,
@q * a.r + r * a.t,
@s * a.q + t * a.s,
@s * a.r + t * a.t
)
end
def qrst *args
initialize *args
self
end
end
WIDTH = 10
n = 2_500 # Integer(ARGV[0])
j = 0
digits = PiDigitSpigot.new
while n > 0
if n >= WIDTH
WIDTH.times {print digits.next!}
j += WIDTH
else
n.times {print digits.next!}
(WIDTH-n).times {print " "}
j += n
end
puts "\t:"+j.to_s
n -= WIDTH
end

View file

@ -0,0 +1,50 @@
# The Computer Language Shootout
# http://shootout.alioth.debian.org/
# Contributed by Sokolov Yura
def eval_A(i,j)
return 1.0/((i+j)*(i+j+1)/2+i+1)
end
def eval_A_times_u(u)
v, i = nil, nil
(0..u.length-1).collect { |i|
v = 0
for j in 0..u.length-1
v += eval_A(i,j)*u[j]
end
v
}
end
def eval_At_times_u(u)
v, i = nil, nil
(0..u.length-1).collect{|i|
v = 0
for j in 0..u.length-1
v += eval_A(j,i)*u[j]
end
v
}
end
def eval_AtA_times_u(u)
return eval_At_times_u(eval_A_times_u(u))
end
n = 500 # ARGV[0].to_i
u=[1]*n
for i in 1..10
v=eval_AtA_times_u(u)
u=eval_AtA_times_u(v)
end
vBv=0
vv=0
for i in 0..n-1
vBv += u[i]*v[i]
vv += v[i]*v[i]
end
str = "%0.9f" % (Math.sqrt(vBv/vv)), "\n"
# print str

View file

@ -0,0 +1,6 @@
i = 0
while i<30_000_000 # while loop 1
i+= 1
@a = 1
@b = 2
end

View file

@ -77,6 +77,7 @@ class BenchmarkDriver
if @verbose
message '-----------------------------------------------------------'
message 'raw data:'
message
message PP.pp(@results, "", 79)
message
message "Elapesed time: #{Time.now - @start_time} (sec)"
@ -158,6 +159,7 @@ class BenchmarkDriver
output
output '-----------------------------------------------------------'
output name
output
output File.read(file)
output
end