1
0
Fork 0
mirror of https://github.com/ruby/ruby.git synced 2022-11-09 12:17:21 -05:00

* array.c (rb_ary_repeated_permutation): new method added. a patch

from Makoto Kishimoto in [ruby-core:29267]   [ruby-core:28724]

* array.c (rb_ary_repeated_combination): ditto.

git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@27352 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
This commit is contained in:
matz 2010-04-16 07:24:04 +00:00
parent 42b8a699ed
commit 38ae996706
3 changed files with 271 additions and 0 deletions

View file

@ -1,3 +1,10 @@
Fri Apr 16 16:15:40 2010 Yukihiro Matsumoto <matz@ruby-lang.org>
* array.c (rb_ary_repeated_permutation): new method added. a patch
from Makoto Kishimoto in [ruby-core:29267] [ruby-core:28724]
* array.c (rb_ary_repeated_combination): ditto.
Thu Apr 15 22:41:47 2010 Yusuke Endoh <mame@tsg.ne.jp>
* thread.c (rb_thread_priority, rb_thread_priority_set): fix rdoc.

182
array.c
View file

@ -4031,6 +4031,186 @@ rb_ary_combination(VALUE ary, VALUE num)
return ary;
}
/*
* Recursively compute repeated permutations of r elements of the set
* [0..n-1].
* When we have a complete repeated permutation of array indexes, copy the
* values at those indexes into a new array and yield that array.
*
* n: the size of the set
* r: the number of elements in each permutation
* p: the array (of size r) that we're filling in
* index: what index we're filling in now
* values: the Ruby array that holds the actual values to permute
*/
static void
rpermute0(long n, long r, long *p, long index, VALUE values)
{
long i, j;
for (i = 0; i < n; i++) {
p[index] = i;
if (index < r-1) { /* if not done yet */
rpermute0(n, r, p, index+1, values); /* recurse */
}
else {
/* We have a complete permutation of array indexes */
/* Build a ruby array of the corresponding values */
/* And yield it to the associated block */
VALUE result = rb_ary_new2(r);
VALUE *result_array = RARRAY_PTR(result);
const VALUE *values_array = RARRAY_PTR(values);
for (j = 0; j < r; j++) result_array[j] = values_array[p[j]];
ARY_SET_LEN(result, r);
rb_yield(result);
if (RBASIC(values)->klass) {
rb_raise(rb_eRuntimeError, "repeated permute reentered");
}
}
}
}
/*
* call-seq:
* ary.repeated_permutation(n) { |p| block } -> array
* ary.repeated_permutation(n) -> enumerator
*
* When invoked with a block, yield all repeated permutations of length
* <i>n</i> of the elements of <i>ary</i>, then return the array itself.
* The implementation makes no guarantees about the order in which
* the repeated permutations are yielded.
*
* When invoked without a block, return an enumerator object instead.
*
* Examples:
*
* a = [1, 2]
* a.repeated_permutation(1).to_a #=> [[1], [2]]
* a.repeated_permutation(2).to_a #=> [[1,1],[1,2],[2,1],[2,2]]
* a.repeated_permutation(3).to_a #=> [[1,1,1],[1,1,2],[1,2,1],[1,2,2],
* # [2,1,1],[2,1,2],[2,2,1],[2,2,2]]
* a.repeated_permutation(0).to_a #=> [[]] # one permutation of length 0
*/
static VALUE
rb_ary_repeated_permutation(VALUE ary, VALUE num)
{
long r, n, i;
n = RARRAY_LEN(ary); /* Array length */
RETURN_ENUMERATOR(ary, 1, &num); /* Return enumerator if no block */
r = NUM2LONG(num); /* Permutation size from argument */
if (r < 0) {
/* no permutations: yield nothing */
}
else if (r == 0) { /* exactly one permutation: the zero-length array */
rb_yield(rb_ary_new2(0));
}
else if (r == 1) { /* this is a special, easy case */
for (i = 0; i < RARRAY_LEN(ary); i++) {
rb_yield(rb_ary_new3(1, RARRAY_PTR(ary)[i]));
}
}
else { /* this is the general case */
volatile VALUE t0 = tmpbuf(r, sizeof(long));
long *p = (long*)RSTRING_PTR(t0);
VALUE ary0 = ary_make_substitution(ary); /* private defensive copy of ary */
RBASIC(ary0)->klass = 0;
rpermute0(n, r, p, 0, ary0); /* compute and yield repeated permutations */
tmpbuf_discard(t0);
RBASIC(ary0)->klass = rb_cArray;
}
return ary;
}
static void
rcombinate0(long n, long r, long *p, long index, long rest, VALUE values)
{
long j;
if (rest > 0) {
for (; index < n; ++index) {
p[r-rest] = index;
rcombinate0(n, r, p, index, rest-1, values);
}
}
else {
VALUE result = rb_ary_new2(r);
VALUE *result_array = RARRAY_PTR(result);
const VALUE *values_array = RARRAY_PTR(values);
for (j = 0; j < r; ++j) result_array[j] = values_array[p[j]];
ARY_SET_LEN(result, r);
rb_yield(result);
if (RBASIC(values)->klass) {
rb_raise(rb_eRuntimeError, "repeated combination reentered");
}
}
}
/*
* call-seq:
* ary.repeated_combination(n) { |c| block } -> ary
* ary.repeated_combination(n) -> enumerator
*
* When invoked with a block, yields all repeated combinations of
* length <i>n</i> of elements from <i>ary</i> and then returns
* <i>ary</i> itself.
* The implementation makes no guarantees about the order in which
* the repeated combinations are yielded.
*
* When invoked without a block, returns an enumerator object instead.
*
* Examples:
*
* a = [1, 2, 3]
* a.repeated_combination(1).to_a #=> [[1], [2], [3]]
* a.repeated_combination(2).to_a #=> [[1,1],[1,2],[1,3],[2,2],[2,3],[3,3]]
* a.repeated_combination(3).to_a #=> [[1,1,1],[1,1,2],[1,1,3],[1,2,2],[1,2,3],
* # [1,3,3],[2,2,2],[2,2,3],[2,3,3],[3,3,3]]
* a.repeated_combination(4).to_a #=> [[1,1,1,1],[1,1,1,2],[1,1,1,3],[1,1,2,2],[1,1,2,3],
* # [1,1,3,3],[1,2,2,2],[1,2,2,3],[1,2,3,3],[1,3,3,3],
* # [2,2,2,2],[2,2,2,3],[2,2,3,3],[2,3,3,3],[3,3,3,3]]
* a.repeated_combination(0).to_a #=> [[]] # one combination of length 0
*
*/
static VALUE
rb_ary_repeated_combination(VALUE ary, VALUE num)
{
long n, i, len;
n = NUM2LONG(num); /* Combination size from argument */
RETURN_ENUMERATOR(ary, 1, &num); /* Return enumerator if no block */
len = RARRAY_LEN(ary);
if (n < 0) {
/* yield nothing */
}
else if (n == 0) {
rb_yield(rb_ary_new2(0));
}
else if (n == 1) {
for (i = 0; i < len; i++) {
rb_yield(rb_ary_new3(1, RARRAY_PTR(ary)[i]));
}
}
else if (len == 0) {
/* yield nothing */
}
else {
volatile VALUE t0 = tmpbuf(n, sizeof(long));
long *p = (long*)RSTRING_PTR(t0);
VALUE ary0 = ary_make_substitution(ary); /* private defensive copy of ary */
RBASIC(ary0)->klass = 0;
rcombinate0(len, n, p, 0, n, ary0); /* compute and yield repeated combinations */
tmpbuf_discard(t0);
RBASIC(ary0)->klass = rb_cArray;
}
return ary;
}
/*
* call-seq:
* ary.product(other_ary, ...) -> array
@ -4342,6 +4522,8 @@ Init_Array(void)
rb_define_method(rb_cArray, "cycle", rb_ary_cycle, -1);
rb_define_method(rb_cArray, "permutation", rb_ary_permutation, -1);
rb_define_method(rb_cArray, "combination", rb_ary_combination, 1);
rb_define_method(rb_cArray, "repeated_permutation", rb_ary_repeated_permutation, 1);
rb_define_method(rb_cArray, "repeated_combination", rb_ary_repeated_combination, 1);
rb_define_method(rb_cArray, "product", rb_ary_product, -1);
rb_define_method(rb_cArray, "take", rb_ary_take, 1);

View file

@ -814,6 +814,40 @@ class TestArray < Test::Unit::TestCase
assert_match(/reentered/, e.message)
end
def test_repeated_permutation_with_callcc
respond_to?(:callcc, true) or require 'continuation'
n = 1000
cont = nil
ary = [1,2,3]
begin
ary.repeated_permutation(2) {
callcc {|k| cont = k} unless cont
}
rescue => e
end
n -= 1
cont.call if 0 < n
assert_instance_of(RuntimeError, e)
assert_match(/reentered/, e.message)
end
def test_repeated_combination_with_callcc
respond_to?(:callcc, true) or require 'continuation'
n = 1000
cont = nil
ary = [1,2,3]
begin
ary.repeated_combination(2) {
callcc {|k| cont = k} unless cont
}
rescue => e
end
n -= 1
cont.call if 0 < n
assert_instance_of(RuntimeError, e)
assert_match(/reentered/, e.message)
end
def test_hash
a1 = @cls[ 'cat', 'dog' ]
a2 = @cls[ 'cat', 'dog' ]
@ -1504,6 +1538,54 @@ class TestArray < Test::Unit::TestCase
assert_equal(@cls[1, 2, 3, 4].permutation.to_a, b)
end
def test_repeated_permutation
a = @cls[1,2]
assert_equal(@cls[[]], a.repeated_permutation(0).to_a)
assert_equal(@cls[[1],[2]], a.repeated_permutation(1).to_a.sort)
assert_equal(@cls[[1,1],[1,2],[2,1],[2,2]],
a.repeated_permutation(2).to_a.sort)
assert_equal(@cls[[1,1,1],[1,1,2],[1,2,1],[1,2,2],
[2,1,1],[2,1,2],[2,2,1],[2,2,2]],
a.repeated_permutation(3).to_a.sort)
assert_equal(@cls[], a.repeated_permutation(-1).to_a)
assert_equal("abcde".each_char.to_a.repeated_permutation(5).sort,
"edcba".each_char.to_a.repeated_permutation(5).sort)
assert_equal(@cls[].repeated_permutation(0).to_a, @cls[[]])
assert_equal(@cls[].repeated_permutation(1).to_a, @cls[])
a = @cls[1, 2, 3, 4]
b = @cls[]
a.repeated_permutation(4) {|x| b << x; a.replace(@cls[9, 8, 7, 6]) }
assert_equal(@cls[9, 8, 7, 6], a)
assert_equal(@cls[1, 2, 3, 4].repeated_permutation(4).to_a, b)
end
def test_repeated_combination
a = @cls[1,2,3]
assert_equal(@cls[[]], a.repeated_combination(0).to_a)
assert_equal(@cls[[1],[2],[3]], a.repeated_combination(1).to_a.sort)
assert_equal(@cls[[1,1],[1,2],[1,3],[2,2],[2,3],[3,3]],
a.repeated_combination(2).to_a.sort)
assert_equal(@cls[[1,1,1],[1,1,2],[1,1,3],[1,2,2],[1,2,3],
[1,3,3],[2,2,2],[2,2,3],[2,3,3],[3,3,3]],
a.repeated_combination(3).to_a.sort)
assert_equal(@cls[[1,1,1,1],[1,1,1,2],[1,1,1,3],[1,1,2,2],[1,1,2,3],
[1,1,3,3],[1,2,2,2],[1,2,2,3],[1,2,3,3],[1,3,3,3],
[2,2,2,2],[2,2,2,3],[2,2,3,3],[2,3,3,3],[3,3,3,3]],
a.repeated_combination(4).to_a.sort)
assert_equal(@cls[], a.repeated_combination(-1).to_a)
assert_equal("abcde".each_char.to_a.repeated_combination(5).map{|a|a.sort}.sort,
"edcba".each_char.to_a.repeated_combination(5).map{|a|a.sort}.sort)
assert_equal(@cls[].repeated_combination(0).to_a, @cls[[]])
assert_equal(@cls[].repeated_combination(1).to_a, @cls[])
a = @cls[1, 2, 3, 4]
b = @cls[]
a.repeated_combination(4) {|x| b << x; a.replace(@cls[9, 8, 7, 6]) }
assert_equal(@cls[9, 8, 7, 6], a)
assert_equal(@cls[1, 2, 3, 4].repeated_combination(4).to_a, b)
end
def test_take
assert_equal([1,2,3], [1,2,3,4,5,0].take(3))
assert_raise(ArgumentError, '[ruby-dev:34123]') { [1,2].take(-1) }