1
0
Fork 0
mirror of https://github.com/ruby/ruby.git synced 2022-11-09 12:17:21 -05:00

* array.c (rb_ary_combination): new method to give all combination

of elements from an array.  [ruby-list:42671]

* array.c (rb_ary_product): a new method to get all combinations
  of elements from two arrays.  can be extended to combinations of
  n-arrays, e.g. a.product(b,c,d).  anyone volunteer?

* array.c (rb_ary_permutation): empty function body to calculate
  permutations of array elements.  need volunteer.

git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@13568 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
This commit is contained in:
matz 2007-09-29 08:43:59 +00:00
parent 0d07755472
commit 43c4d80930
4 changed files with 175 additions and 1 deletions

View file

@ -1,3 +1,15 @@
Sat Sep 29 17:31:04 2007 Yukihiro Matsumoto <matz@ruby-lang.org>
* array.c (rb_ary_combination): new method to give all combination
of elements from an array. [ruby-list:42671]
* array.c (rb_ary_product): a new method to get all combinations
of elements from two arrays. can be extended to combinations of
n-arrays, e.g. a.product(b,c,d). anyone volunteer?
* array.c (rb_ary_permutation): empty function body to calculate
permutations of array elements. need volunteer.
Sat Sep 29 17:14:44 2007 Yukihiro Matsumoto <matz@ruby-lang.org>
* marshal.c (r_leave): move proc invocation from r_entry() to

140
array.c
View file

@ -2954,6 +2954,143 @@ rb_ary_cycle(VALUE ary)
return Qnil;
}
static long
perm_len(long n, long k)
{
long i, val = 1;
while (n > k) {
val *= n--;
}
return val;
}
/*
* call-seq:
* ary.permutation(n)
*
* Returns an array of all permutations of length <i>n</i> of
* elements from <i>ary</i>].
*
* a = [1, 2, 3]
* a.permutation(0).to_a #=> []
* a.permutation(1).to_a #=> [[1],[2],[3]]
* a.permutation(2).to_a #=> [[1,2],[1,3],[2,1],[2,3],[3,1],[3,2]]
* a.permutation(3).to_a #=> [[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]
* a.permutation(4).to_a #=> []
*
*/
static VALUE
rb_ary_permutation(VALUE ary, VALUE num)
{
/* TBD */
}
static long
combi_len(long n, long k)
{
long i, val = 1;
if (k*2 > n) k = n-k;
if (k == 0) return 1;
if (k < 0) return 0;
val = 1;
for (i=1; i <= k; i++,n--) {
val *= n;
val /= i;
}
return val;
}
/*
* call-seq:
* ary.combination(n)
*
* Returns an enumerator of all combinations of length <i>n</i> of
* elements from <i>ary</i>].
*
* a = [1, 2, 3, 4]
* a.combination(0).to_a #=> []
* a.combination(1).to_a #=> [[1],[2],[3],[4]]
* a.combination(2).to_a #=> [[1,2],[1,3],[1,4],[2,3],[2,4],[3,4]]
* a.combination(3).to_a #=> [[1,2,3],[1,2,4],[1,3,4],[2,3,4]]
* a.combination(4).to_a #=> [[1,2,3,4]]
* a.combination(5).to_a #=> []
*
*/
static VALUE
rb_ary_combination(VALUE ary, VALUE num)
{
long n, i, len;
RETURN_ENUMERATOR(ary, 1, &num);
n = NUM2LONG(num);
len = RARRAY_LEN(ary);
if (n < 1 || len < n) {
/* yield nothing */
}
else if (n == 0) {
for (i = 0; i < len; i++) {
rb_yield(rb_ary_new2(0));
}
}
else if (n == 1) {
for (i = 0; i < len; i++) {
rb_yield(rb_ary_new3(1, RARRAY_PTR(ary)[i]));
}
}
else {
volatile VALUE tmp = rb_str_new(0, n*sizeof(long));
long *stack = (long*)RSTRING_PTR(tmp);
long nlen = combi_len(len, n);
volatile VALUE cc = rb_ary_new2(n);
VALUE *chosen = RARRAY_PTR(cc);
long lev = 0;
MEMZERO(stack, long, n);
stack[0] = -1;
for (i = 0; i < nlen; i++) {
chosen[lev] = RARRAY_PTR(ary)[stack[lev+1]];
for (lev++; lev < n; lev++) {
chosen[lev] = RARRAY_PTR(ary)[stack[lev+1] = stack[lev]+1];
}
rb_yield(rb_ary_new4(n, chosen));
do {
stack[lev--]++;
} while (lev && (stack[lev+1]+n == len+lev+1));
}
}
return ary;
}
/*
* call-seq:
* ary.product(ary2)
*
* Returns an array of all combinations of elements from both arrays.
*
* [1,2,3].product([4,5]) #=> [[1,4],[1,5],[2,4],[2,5],[3,4],[3,5]]
* [1,2].product([1,2]) #=> [[1,1],[1,2],[2,1],[2,2]]
*
*/
static VALUE
rb_ary_product(VALUE ary, VALUE a2)
{
VALUE result = rb_ary_new2(RARRAY_LEN(ary));
long i, j;
for (i=0; i<RARRAY_LEN(ary); i++) {
for (j=0; j<RARRAY_LEN(a2); j++) {
rb_ary_push(result, rb_ary_new3(2, rb_ary_entry(ary, i),
rb_ary_entry(a2, j)));
}
}
return result;
}
/* Arrays are ordered, integer-indexed collections of any object.
* Array indexing starts at 0, as in C or Java. A negative index is
* assumed to be relative to the end of the array---that is, an index of -1
@ -3052,6 +3189,9 @@ Init_Array(void)
rb_define_method(rb_cArray, "shuffle", rb_ary_shuffle, 0);
rb_define_method(rb_cArray, "choice", rb_ary_choice, 0);
rb_define_method(rb_cArray, "cycle", rb_ary_cycle, 0);
/* rb_define_method(rb_cArray, "permutation", rb_ary_permutation, 1); */
rb_define_method(rb_cArray, "combination", rb_ary_combination, 1);
rb_define_method(rb_cArray, "product", rb_ary_product, 1);
id_cmp = rb_intern("<=>");
}

View file

@ -2872,6 +2872,7 @@ rb_str_inspect(VALUE str)
char *p, *pend;
VALUE result = rb_str_buf_new2("");
rb_enc_associate(result, enc);
str_cat_char(result, '"', enc);
p = RSTRING_PTR(str); pend = RSTRING_END(str);
while (p < pend) {
@ -2928,7 +2929,6 @@ rb_str_inspect(VALUE str)
str_cat_char(result, '"', enc);
OBJ_INFECT(result, str);
rb_enc_associate(result, enc);
return result;
}

View file

@ -1177,4 +1177,26 @@ class TestArray < Test::Unit::TestCase
assert_equal(@cls[1,2], @cls[1, 2] | @cls[1, 2])
end
# def test_permutation
# assert_equal(@cls[], @cls[1,2,3].permutation(0).to_a)
# assert_equal(@cls[[1],[2],[3]], @cls[1,2,3].permutation(1).to_a)
# assert_equal(@cls[[1,2],[1,3],[2,1],[2,3],[3,1],[3,2]], @cls[1,2,3].permutation(2).to_a)
# assert_equal(@cls[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]], @cls[1,2,3].permutation(3).to_a)
# assert_equal(@cls[], @cls[1,2,3].permutation(4).to_a)
# end
def test_combination
assert_equal(@cls[], @cls[1,2,3,4].combination(0).to_a)
assert_equal(@cls[[1],[2],[3],[4]], @cls[1,2,3,4].combination(1).to_a)
assert_equal(@cls[[1,2],[1,3],[1,4],[2,3],[2,4],[3,4]], @cls[1,2,3,4].combination(2).to_a)
assert_equal(@cls[[1,2,3],[1,2,4],[1,3,4],[2,3,4]], @cls[1,2,3,4].combination(3).to_a)
assert_equal(@cls[[1,2,3,4]], @cls[1,2,3,4].combination(4).to_a)
assert_equal(@cls[], @cls[1,2,3,4].combination(5).to_a)
end
def test_product
assert_equal(@cls[[1,4],[1,5],[2,4],[2,5],[3,4],[3,5]],
@cls[1,2,3].product([4,5]))
assert_equal(@cls[[1,1],[1,2],[2,1],[2,2]], @cls[1,2].product([1,2]))
end
end